摘要
小麦白粉病是一种严重危害小麦生产的真菌病害,从现有资源中鉴定抗病种质并挖掘新的抗病基因是持续改良小麦抗病性的重要途径。四月黄是课题组前期从山西省小麦种质资源中鉴定出的一个抗白粉病小麦地方品种,本研究采用苗期单小种人工接种的方法对四月黄与晋麦47以及二者构建的遗传群体进行抗性鉴定和遗传分析,并采用分离群体分组分析法和90K SNP芯片扫描对四月黄携带的抗病基因进行定位。结果表明:四月黄对白粉病的抗性受一对显性核基因控制,遗传方式符合孟德尔遗传规律,暂命名为PmSYH。SNP芯片结果显示,多态性SNP标记主要富集在小麦7D染色体110~140 Mb区段和570~610 Mb区段。在上述区段分别开发SSR分子标记并利用抗、感病小群体进行连锁性筛选,结果从110~140 Mb区段筛选出6个与抗病基因连锁的SSR标记,从570~610 Mb区段未筛选出连锁标记。利用6个与PmSYH连锁的SSR标记对晋麦47/四月黄的F2群体进行基因分型,将PmSYH定位于位于7D染色体上132.6 Mb~137.5 Mb的物理区段,两侧标记分别为Sxau7DS-37和Sxau7DS-48,遗传距离分别为1.8 cM和3.1 cM。与前人定位结果比较分析表明,PmSYH是一个新的抗白粉病基因。本研究为小麦抗白粉病育种提供了新的基因资源,在北部冬麦区小麦白粉病抗性改良中具有一定的利用价值。
小麦(Triticum aestivum L.)是人类主要口粮作物之一,全世界约有35%~40%的人口以小麦作为主要食物来
推广种植抗病品种是防控小麦白粉病的有效措
本研究从山西省小麦种质资源中鉴定出的一个抗白粉病小麦地方品种四月黄,苗期和成株期都表现出优良的抗病性。利用其与感病品种晋麦47杂交构建的遗传群体进行抗病性遗传分析、SNP(single nucleotide polymorphism)芯片扫描和分子标记作图,挖掘四月黄中携带的抗白粉病基因及其遗传方式,为进一步有效利用其白粉病抗性提供理论依据。
供试材料包括抗白粉病品种四月黄,感白粉病品种晋麦47,及二者杂交构建的F1、F2、F2:3和BC1F1群体和铭贤169。其中四月黄为山西农业大学农学院从山西省高平市收集的小麦地方品种;晋麦47为普通小麦品种,来自山西农业大学棉花研究所;铭贤169为感病对照品种,来自山西农业大学农学院。抗病鉴定及遗传分析所用白粉病菌株为北部冬麦区流行小种E09,来自中国农业科学院植物保护研究所。7D染色体上的抗白粉病基因Pm38、MlNCD1和PmAF7DS的连锁标记的引物信息,从NCBI网站(https://www.ncbi.nlm.nih.gov/)获取。
在人工气候室内对试验材料进行了苗期抗白粉病鉴定,鉴定条件参考郭慧娟
将试验材料播种在55 cm×28 cm的矩形育苗盘内,每个育苗盘有72个独立的孔穴,孔穴大小为4.5 cm×4.5 cm,每穴播种10粒种子。为观察接菌后的发病效果,在每个育苗盘中播种6穴感病对照品种铭贤169,分布于育苗盘的四角及中间位置。四月黄和晋麦47相邻播种于育苗盘两侧各2穴。人工气候箱设置为21 ℃光照14 h和16 ℃黑暗10 h的光温周期,光照强度为6000 lx,相对湿度为65%~75%。播种10 d左右,当植株第一片叶子完全展开时,用提前培养好带有大量新鲜白粉菌E09孢子的铭贤169幼苗,将白粉菌孢子抖落接种于所有待鉴定材料上,并在相同条件的人工气候箱继续培养10~15 d,待育苗盘上的铭贤169第一片叶子布满孢子时,对试验材料进行抗病性调查。按照盛宝
将晋麦47/四月黄的F2:3家系种子分别播种在72孔育苗盘中鉴定其白粉病抗性,每个家系播种30粒。全部表现为抗病的家系,推测其F2单株为纯合抗病株,全部表现为感病的家系,推测其F2单株为纯合感病株,表现为抗感病分离的家系,推测其F2单株为杂合株。
在植株二叶一心时期,取幼嫩的小麦叶片10~15 cm,剪成小段后装入2.0 mL离心管中,并加入2颗直径2 mm左右的锆珠,盖好盖子在液氮中冷冻5 min左右,待叶片完全冷冻脆硬后,使用高通量组织研磨仪将叶片打成细粉状,之后采用改良的CTAB
采用分离群体分组分析法(BSA, bulked segregant analysis)从F2:3家系选取30个纯合抗病家系(反应型为0或0;)和30个纯合感病家系(反应型为4),每个家系取等量DNA分别混合建立抗病池和感病
筛选在抗病池和感病池之间存在多态性且抗病池扩增条带与抗病亲本一致、感病池扩增条带与感病亲本一致的SNP标记,根据SNP标记分布的富集程度分析抗病基因所在染色体区段。从Triticeae Multi-omics Center网站(http://202.194.139.32/getfasta/index.html)获取该区段中国春参考基因组序列IWGSC Ref Seq v2.1,利用SSR Hunter v1.3查找SSR序列,利用Primer Premier v6.0设计SSR引物,每隔500 kb左右设计一个SSR引物,引物由生工生物工程(上海)有限公司合成。利用PCR扩增四月黄和晋麦47,筛选二者之间扩增产物存在多态性的SSR引物。从晋麦47/四月黄的F2群体内,分别选取10株纯合抗病植株和10株纯合感病植株构建抗、感病小群体,利用筛选出的在亲本间可扩增出多态性条带的引物,扩增由10个抗病单株和10个感病单株组成的小群体,如果10个抗病单株的扩增带型与抗病亲本一致,且10个感病单株的扩增带型与感病亲本一致,则认为该标记与抗病基因连锁。筛选出的连锁标记见
标记名称 Marker name | 引物序列(5′-3′) Primer sequence (5′-3′) | 产物大小(bp) Product size | 退火温度(℃) Tm |
---|---|---|---|
Sxau7DS-12 |
GACGCCCGCTTTGTAATCTA GTCGGGATCGAGTCGACGG | 149 | 55 |
Sxau7DS-23 |
GAAAGCAAACAGGAGGCAT CGTATATGTGAATTGTAT | 376 | 58 |
Sxau7DS-35 |
TAAAGTGACGTTCTTTCGCATT GGATAAAATATAAAAAGGGA | 166 | 58 |
Sxau7DS-37 |
CAACACACTCCCCTCTCGTT CCCACAACTCTTTGTGTTCT | 126 | 60 |
Sxau7DS-48 |
TCTCTCTTTCTTAGTGGGGA GCCTCTCCTTCGGAGCCCAC | 148 | 55 |
Sxau7DS-60 |
CCTCCTCCATTTAGGGATA TCTTGATGATCTATATAG | 159 | 58 |
PCR反应体系和扩增程序参照张晓军
抗病性接种鉴定结果显示,四月黄对白粉菌菌株E09表现为免疫或近免疫(0或0;),晋麦47表现为高感(
亲本/组合 Parents/cross | 抗病 Resistant | 感病 Susceptible | 预期分离比 Expected ratio of segregation | P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0; | 1 | 2 | 合计 Total | 3 | 4 | 合计Total | ||||
四月黄 Siyuehuang (P1) | 33 | 7 | - | - | 40 | - | - | - | - | - | - |
晋麦47 Jinmai 47(P2) | - | - | - | - | - | - | 40 | 40 | - | - | - |
铭贤169 Mingxian 169 | - | - | - | - | - | - | 120 | 120 | - | - | - |
F1(P2 / P1) | 65 | 24 | - | - | 89 | - | - | - | - | - | - |
F2(P2 / P1) | 92 | 46 | 122 | 3 | 263 | 43 | 46 | 89 | 3:1 | 0.16 | 0.42 |
F1(P1 / P2) | 71 | 9 | - | - | 80 | - | - | - | - | - | - |
BC1F1 (P2/P1// P2) | 33 | 26 | 0 | 0 | 59 | 41 | 19 | 60 | 1:1 | 0.07 | 0.28 |
-:无数据
-:No data

图1 四月黄、晋麦47及其F2群体对白粉菌E09的抗性反应
Fig. 1 Resistant reaction of Siyuehuang, Jinmai 47 and their F2 populations to bgt E09
SYH:四月黄;JM47:晋麦47
SYH: Siyuehuan; JM47: Jinmai 47
利用小麦90 K SNP芯片对四月黄、晋麦47及利用其F2群体构建的抗病池和感病池进行BSA分析。结果(
染色体 Chromosome | 多态性SNP数目 Number of polymorphic SNP | SNP总数 Number of SNP | 染色体长度(Mb) Chromosome length | 多态性SNPs比例(%) Proportion of polymorphic SNP |
---|---|---|---|---|
Chr1A | 3 | 2400 | 594.10 | 0.13 |
Chr1B | 3 | 2957 | 689.85 | 0.10 |
Chr1D | 1 | 2078 | 495.45 | 0.05 |
Chr2A | 3 | 2956 | 780.80 | 0.10 |
Chr2B | 8 | 4144 | 801.26 | 0.19 |
Chr2D | 4 | 2480 | 651.85 | 0.16 |
Chr3A | 1 | 2367 | 750.84 | 0.04 |
Chr3B | 8 | 2748 | 830.83 | 0.29 |
Chr3D | 1 | 1734 | 615.55 | 0.06 |
Chr4A | 1 | 2132 | 744.59 | 0.05 |
Chr4B | 2 | 1995 | 673.62 | 0.10 |
Chr4D | 0 | 1279 | 509.86 | 0 |
Chr5A | 4 | 2562 | 709.77 | 0.16 |
Chr5B | 7 | 3124 | 713.15 | 0.22 |
Chr5D | 0 | 2031 | 566.08 | 0 |
Chr6A | 4 | 2277 | 618.08 | 0.18 |
Chr6B | 1 | 2502 | 720.99 | 0.04 |
Chr6D | 1 | 1580 | 473.59 | 0.06 |
Chr7A | 5 | 2746 | 736.71 | 0.18 |
Chr7B | 12 | 2453 | 750.62 | 0.49 |
Chr7D | 64 | 2002 | 638.69 | 3.20 |
总计Total | 133 | 50547 | 14066.28 | 0.26 |
通过对7D染色体上多态性SNP标记的分布情况进行分析可知(

图2 多态性SNP在小麦染色体上的分布
Fig. 2 Distribution of polymorphic SNPs on wheat chromosomes
根据SNP芯片分析结果,在7D染色体110~140 Mb区段共开发63个标记,在570~610 Mb区段共开发80个标记进行PCR扩增。结果从110~140 Mb区段的63个标记中筛选出6个与抗病基因连锁的SSR标记,分别为Sxau7DS-12、Sxau7DS-23、Sxau7DS-35、Sxau7DS-37、Sxau7DS-48和Sxau7DS-60(标记的引物信息见

图3 PmSYH两侧连锁标记在F2群体中的扩增图谱
Fig. 3 Amplification profiles of adjacent SSRs at both sides of PmSYH in F2 population
P1:四月黄; P2:晋麦47; R:F2群体中抗病植株; S:F2群体中感病植株
P1: Siyuehuang; P2: Jinmai 47; R: Resistant plant in F2 population; S: Susceptible plant in F2 population;M:50 bp DNA marker
根据晋麦47/四月黄352个F2群体的基因分型和表型结果,利用Join map v4.0软件中计算遗传距离。结果如

图4 PmSYH的遗传图谱和物理图谱
Fig. 4 Genetic and physical maps of PmSYH
A:PmSYH的遗传连锁图;B:PmSYH连锁标记在小麦7DS染色体上的物理图谱; PmSYH表示目标基因所在位置
A: Genetic linkage map of PmSYH; B: Physical map of PmSYH linked markers on wheat 7DS chromosome;PmSYH indicates the location of target gene
迄今为止,国内外科学家已从小麦及其近缘种中发现并定位了100多个抗白粉病基
我国是小麦白粉病的高发地区,国内80%以上的主推品种对白粉病抗性较
参考文献
Chaves M S,Martinelli J A,Wesp-Guterres C,Graichen F A S,Bram-mer S P,Scagliusi S M,da Silva P R,Wiethölter P,Torres G A M,Lau E Y,Luciano C,Ana L S C. The importance for food security of maintaining rust resistance in wheat. Food Security,2013,5:157-176 [百度学术]
Zhai H Q,Cao S Q,Wan J M,Zhang R X,Lu W,Li L B,Kuang T Y,Min S K,Zhu D F,Cheng S H. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yielding hybrid rice (Oryza sativa. L). Science China(Life Sciences),2002,45(6):637-646 [百度学术]
Kumar Y,Mishra S K,Tyagi M C,Singh S P,Sharma B. Linkage between genes for leaf colour,plant pubescence,number of leaf-lets and plant height in lentil (Lens culinaris Medik.). Euphytica,2005,145:41-48 [百度学术]
Wang Z H,Wang Y,Hong X,Hu D H,Liu C X,Yang J,Li Y,Huang Y Q,Feng Y Q,Gong H Y,Li Y,Fang G,Tang H R,Li Y S. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. Journal of Experimental Botany,2014,66(3):973-987 [百度学术]
陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位. 作物学报,2019,45(10):1503-1510 [百度学术]
Chen F,Qiao L Y,Li R,Liu C,Li X,Guo H J,Zhang S W,Chang L F,Li D F,Yan X T,Ren Y K,Zhang X J,Chang Z J. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357. Acta Agronomica Sinica,2019,45(10):1503-1510 [百度学术]
原宗英,武英鹏,夏宏,张治家,夏青. 山西小麦品种和育种材料抗锈病、白粉病鉴定. 中国植保导刊,2017,37(2):15-18 [百度学术]
Yuan Z Y,Wu Y P,Xia H,Zhang Z J,Xia Q. Evaluation of Shanxi wheat cultivars for resistance to wheat stripe rust,leaf rust and powdery mildew. China Plant Protection,2017,37(2):15-18 [百度学术]
黄冲,姜玉英,李春广. 1987年-2018年我国小麦主要病虫害发生危害及演变分析. 植物保护,2020,46(6):186-193 [百度学术]
Huang C,Jiang Y Y,Li C G. Occurrence,yield loss and dynamics of wheat diseases and insect pests in China from 1987 to 2018. Plant Protection,2020,46(6):186-193 [百度学术]
刘敏捷,原宗英,李霞,武英鹏,周建波. 不同杀菌剂对小麦白粉病的田间防效. 中国植保导刊,2019,39(6):70-71 [百度学术]
Liu M J,Yuan Z Y,Li X,Wu Y P,Zhou J B. Field control effect of different fungicides on wheat powdery mildew. China Plant Protection,2019,39(6):70-71 [百度学术]
郎漫,李平,蔡祖聪. 百菌清在土壤中的降解及其生态环境效应. 中国农学通报,2012,25(15):211-215 [百度学术]
Lang M,Li P,Cai Z C. The degradation of chlorothalonil in soil and its environmental implications. Chinese Agricultural Science Bulletin,2012,25(15):211-215 [百度学术]
吴文铸,郭敏,孔德洋,许静,单正军. 3种三唑类杀菌剂的环境降解特性. 生态与农村环境学报,2016,32(5):837-841 [百度学术]
Wu W T,Guo M,Kong D Y,Xu J,Shan Z J. Environmental degradation properties of 3 triazole fungicides. Journal of Ecology and Rural Environment,2016,32(5):837-841 [百度学术]
李菊颖,严伟强,何健,吴文铸,孔德洋,单正军. 戊唑醇在环境中的降解迁移和生物富集性研究. 生态毒理学报,2017,12(4):310-318 [百度学术]
Li J Y,Yan W Q,He J,Wu W Z,Kong D Y,Shan Z J. Degradation,migration and bioaccumulation of tebuconazole in the environment. Asian Journal of Ecotoxicology,2017,12(4):310-318 [百度学术]
杨作民,唐伯让,沈克全,夏先春. 小麦抗病育种的战略问题:小麦对锈病和白粉病第二线抗源的建立和利用. 作物学报,1994,20(4):385-394 [百度学术]
Yang Z M,Tang B R,Shen K Q,Xia X C. Strategic issues in wheat disease resistance breeding:The establishment and utilization of wheat second-line resistance to rust and powdery mildew. Acta Agronomica Sinica,1994,20(4):385-394 [百度学术]
Wang W R,He H G,Gao H M,Xu H X,Song W Y,Zhang X,Zhang L P,Song J C,Liu C,Liu K C,Ma P T. Characterization of the powdery mildew resistance gene in wheat breeding line KN0816 and its evaluation in marker-assisted selection. Plant Disease,2021,105(12):4042-4050 [百度学术]
Golzar H,Shankar M,D′Antuono M. Responses of commercial wheat varieties and differential lines to western Australian powdery mildew (Blumeria graminis f. Sp. tritici) populations. Australasian Plant Pathology ,2016,45 (4):347-355 [百度学术]
Parks R,Carbone I,Murphy J P,Marshall D,Cowger C. Virulence structure of the Eastern U.S. wheat powdery mildew population. Plant Disease,2008,92(7):1074-1082 [百度学术]
Singh R P,Singh P K,Rutkoski J,Hodson D P,He X,Jørgensen L N,Hovmøller M S,Espino J H. Disease Impact on wheat yield potential and prospects of genetic control. Annual Review of Phytopathology,2016,54:303-322 [百度学术]
Cowger C,Mehra L,Arellano C,Meyers E,Murphy J P. Virulence differences in blumeria graminis f. sp. tritici from the central and Eastern United States. Phytopathology,2018,108(3):402-411 [百度学术]
董策,张希太,蔺桂芬,肖磊,李炎艳,谢淑芹,裴艳婷,路其祥. 2013-2021年河北省审冬小麦品种抗病性分析. 山西农业科学,2023,51(3):306-312 [百度学术]
Dong C,Zhang X T,Lin G F,Xiao L,Li Y Y,Xie S Q,Pei Y T,Lu Q X. Disease resistance analysis of the registered wheat varieties in Hebei province from 2013 to 2021. Journal of Shanxi Agricultural Sciences,2023,51(3):306-312 [百度学术]
Chen F,Jia H Y,Zhang X J,Qiao L Y,Li X,Zheng J,Guo H J,Powers C,Yan L L,Chang Z J. Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat. The Crop Journal,2019,7(6):771-783 [百度学术]
郭慧娟,贾举庆,李欣,乔麟轶,阎晓涛,任永康,常利芳,张树伟,畅志坚,张晓军. 小麦种质CH7015中抗白粉病基因的SSR定位. 华北农学报,2019,34(6):203-208 [百度学术]
Guo H J,Jia J Q,Li X,Qiao L Y,Yan X T,Ren Y K,Chang L F,Zhang S W,Chang Z J,Zhang X J. Mapping of resistance gene to powdery mildew in wheat cultivar CH7015 using SSR markers. Acta Agriculturae Boreali-Sinica,2019,34(6):203-208 [百度学术]
盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护,1988,14(1):49 [百度学术]
Sheng B Q. Powdery mildew at seedling stage of wheat was recorded by reaction type. Plant Protection,1988,14(1):49 [百度学术]
李洪杰,王晓鸣,宋凤景,伍翠平,武小菲,张宁,周阳,张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测.作物学报,2011,37(6):943-954 [百度学术]
Li H J,Wang X M,Song F J,Wu C P,Wu X F,Zhang N,Zhou Y,Zhang X Y. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agronomica Sinica,2011,37(6):943-954 [百度学术]
陈昆松,李方,徐昌杰,张上隆,傅承新. 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传,2004,26(4):529-531 [百度学术]
Chen K S,Li F,Xu C J,Zhang S L,Fu C X. An efficient macro-method of genomic DNA isolation from actinidia chinensis leaves. Hereditas,2004,26(4):529-531 [百度学术]
杨文静,乔麟轶,李欣,郭慧娟,陈芳,张树伟,常利芳,贾举庆,畅志坚,张晓军. 小麦抗条锈基因Yr69的连锁标记开发. 植物科学学报,2022,40(2):197-204 [百度学术]
Yang W J,Qiao L Y,Li X,Guo H J,Chen F,Zhang S W,Chang L F,Jia J Q,Chang Z J,Zhang X J. Development of linkage markers for stripe rust resistance gene Yr69 in triticum aestivum. Plant Science Journal,2022,40(2):197-204 [百度学术]
Wang S C,Wong D,Forrest K,Allen A,Chao S,Huang B E,Maccaferri M,Salvi S,Milner S G,Cattivelli L,Mastrangelo A M,Whan A,Stephen S,Barker G,Wieseke R,Plieske J,International Wheat Genome Sequencing Consortium,Lillemo M,Mather D,Appels R,Dolferus R,Brown G G,Korol A,Akhunova A R,Feuillet C,Salse J,Morgante M,Pozniak C,Luo M C,Dvorak J,Morell M,Dubcovsky J,Ganal M,Tuberosa R,Lawley C,Mikoulitch I,Cavanagh C,Edwards K J,Hayden M,Akhunov E,Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnology Journal,2014,12(6):787-796 [百度学术]
张晓军,杨文静,畅志坚,常利芳,闫贵云,张树伟,李欣,乔麟轶,郭慧娟,雷梦林,贾举庆,穆志新. 小麦抗条锈病基因Yr69连锁标记在育种中的应用评价. 麦类作物学报,2021,41(4):417-423 [百度学术]
Zhang X J,Yang W J,Chang Z J,Chang L F,Yan G Y,Zhang S W,Li X,Qiao L Y,Guo H J,Lei M L,Jia J Q,Mu Z X. Evaluation on the application of molecular markers linked with the wheat stripe rust resistance gene Yr69 in wheat breeding. Journal of Triticeae Crops,2021,41(4):417-423 [百度学术]
王运斌,江良荣,黄荣裕,黄育民,郑景生. 一种高效省本的非变性聚丙烯酰胺凝胶电泳银染法的建立-以水稻为例. 福建稻麦科技,2015,33(3):4-8 [百度学术]
Wang Y B,Jiang L R,Huang R Y,Huang Y M,Zheng J S. A high-efficiency and low cost method of DNA silver staining in non-denaturant polycrylamide gel electrophoresis-an example based on rice. Fujian Rice and Wheat Technology,2015,33(3):4-8 [百度学术]
He H G,Liu R K,Ma P T,Du H N,Zhang H H,Wu Q H,Yang L J,Gong S J,Liu T L,Huo N X,Gu Y Q,Zhu S Y. Characterization of Pm68,a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796. Theoretical and Applied Genetics,2021,134(1):53-62 [百度学术]
Li Y H,Wei Z Z,Sela H,Govta L,Klymiuk V,Roychowdhury R,Chawla H S,Ens J,Wiebe K,Bocharova V,Ben-David R,Pawar P B,Zhang Y Q,Jaiwar S,Molnár I,Doležel J,Coaker G,Pozniak G J,Fahima T. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69. Plant Communications,2023,5(1):100646 [百度学术]
McIntosh R A,Dubcovsky J,RogersW J,XiaX C,Raupp W J. Catalogue of gene symbols for wheat:2020 supplement. Annual Wheat Newsletterl,2020,66:116-117 [百度学术]
Lillemo M,Asalf B,Singh R P,Huerta E J,Chen X M,He Z H,Bjornstad A. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics,2008,116:1155-1166 [百度学术]
Maxwell J J,Lyerly J H,Srnic G,Murphy J P,Cowger C,Parks R,Marshall D,Brown-Guedira G,Miranda L. A novel-derived powdery mildew resistance gene identified in common wheat. Crop Science,2012,52(3):1162-1170 [百度学术]
Reddy I N B L,Chandrasekhar K,Zewdu Y,Dinoor A,Keller B,Bendavid R. Identification and genetic mapping of PmAF7DS a powdery mildew resistance gene in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics,2016,129:1127-1137 [百度学术]
Tosa Y,Sakai K. The genetics of resistance of hexaploid wheat to the wheat grass powdery mildew fungus. Genome,1990,33(2):225-230 [百度学术]
杨立军,曾凡松,龚双军,史文琦,张学江,汪华,向礼波,喻大昭. 68个主推小麦品种的白粉病抗性分析及基因推导. 中国农业科学,2013,46(16):3354-3368 [百度学术]
Yang L J,Zeng F S,Gong S J,Shi W Q,Zhang X J,Wang H,Xiang L B,Yu D Z. Evaluation of resistance to powdery mildew in 68 Chinese major wheat cultivars and postulation of their resistance genes. Scientia Agricultura Sinica,2013,46(16):3354-3368 [百度学术]
McIntosh R A,Zhang P,Cowger C,Parks R,Lagudah E S,Hoxha S. Rye-derived powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus. Theoretical and Applied Genetics,2011,123(3):359-367 [百度学术]
Qi L L,Cao M S,Chen P D,Li W L,Liu D J. Identification,mapping,and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome,1996,39(1):191-197 [百度学术]
曹廷杰,陈永兴,李丹,张艳,王西成,赵虹,刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测. 作物学报,2015,41(8):1172-1182 [百度学术]
Cao T J,Chen Y X,Li D,Zhang Y,Wang X C,Zhao H,Liu Z Y. Identification and molecular detection of powdery mildew resistance of new bred wheat varieties (lines) in Henan province,China. Acta Agronomica Sinica,2015,41(8):1172-1182 [百度学术]