摘要
宁夏枸杞为著名耐盐药用植物,本研究以宁夏枸杞为材料,采用RACE方法克隆LbALDH3F1基因并进行序列分析,PCR法克隆LbALDH3F1基因启动子序列,构建过表达载体pCAMBIA 2300 EGFP- LbALDH3F1进行拟南芥遗传转化和亚细胞定位,并进行转LbALDH3F1拟南芥耐NaCl胁迫检验及PCR鉴定。结果表明,宁夏枸杞LbALDH3F1基因全长1700 bp,编码序列为1446 bp,编码481个氨基酸残基;上游启动子序列为1850 bp;LbALDH3F1二级结构以 α 螺旋和无规则卷曲为主,定位于细胞核和细胞膜中。随着NaCl胁迫程度加深,宁夏枸杞的LbALDH3F1表达量呈先升后降的趋势,且在200 mmol/L NaCl胁迫时表达量最高。对LbALDH3F1进行遗传转化,发现转基因拟南芥对NaCl胁迫的耐受能力明显增强,超氧化物歧化酶表现出更高的活性,脯氨酸及叶绿素a含量在300 mmol/L NaCl胁迫下显著升高,而过氧化氢及丙二醛等含量在高盐胁迫下显著低于野生型拟南芥,表明LbALDH3F1具有提高植物抗氧化能力从而增强耐NaCl胁迫的能力。该研究结果为深入探讨宁夏枸杞LbALDH3F1基因功能及其在响应盐胁迫过程中的应答机制奠定了基础。
盐碱胁迫等逆境胁迫因子会影响植物的生长发育,使细胞内产生大量的活性氧(ROS,reactive oxygen species
宁夏枸杞(Lycium barbarum)为茄科枸杞属的多年生落叶灌木,广泛分布于我国西北部地区,是典型的耐盐碱药用植物和园艺植物。长期的盐生环境使宁夏枸杞进化出了一系列适应盐胁迫的机制,包括离子选择性吸
宁夏枸杞‘宁杞1号’种苗由宁夏农林科学院枸杞工程中心惠赠。将种苗种植于珍珠岩∶蛭石∶草木灰为1∶1∶1的培养基质中,人工培养室内培养1个月(8~12叶期),定期浇水,一周浇一次Hoagland营养液,培养条件为温度25±2 ℃、湿度42%、光周期16 h / 8 h、光照强度60 μmol/
真核表达试验材料哥伦比亚野生型拟南芥(Col-0)、植物双元表达载体pCAMBIA 2300-EGFP和农杆菌菌株GV 3101由本实验室保存。
采用多糖多酚植物总RNA提取试剂盒(天根生化科技有限公司)提取经NaCl胁迫处理的宁夏枸杞‘宁杞1号’叶片总RNA,1%琼脂糖凝胶电泳及Nanodrop 2000微量核酸测定仪(赛默飞世尔科技公司)测定其浓度及质量。样品总RNA质量检测合格后构建cDNA测序文库。cDNA第一条链的合成参照RevertAid First Strand cDNA Synthesis Kit试剂盒(Fermentas)说明书进行。
根据宁夏枸杞转录组序列结
引物名称 Primer name | 引物序列(5′-3′) Primer sequence(5′-3′) | 引物功能 Primer function |
---|---|---|
Actin-F | CCTAAGGCCAACAGAGAGAAA | Actin内参引物 |
Actin-R | CGACCACTAGCATACAAGGAA | |
3′GSP1 | AAGCAGAACATCTTCAGGAAGTGTGGTATT | 3′ RACE基因克隆引物 |
3′GSP2 | TCCAATATGCAGCAGATACACTCCCATT | |
5′GSP1 | CTCTGGTTTTCCCTGA | 5′ RACE基因克隆引物 |
5′GSP2 | AAAAGTCTCTCTAAGAAC | |
5′GSP3 | TCCAAATCTTTCTCACACTCTG | |
LbALDH3F1-F | ATGTCAGAGTGTGAGAAAG | 中间片段基因克隆引物 |
LbALDH3F1-R | TCAAGCCTTCTTGAGTCC | |
AD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA | LbALDH3F1启动子克隆引物 |
AD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT | |
AD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA | |
AD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT | |
LbALDH3F1-R1 | AGACCAAGAGGCTCAGGAACAAAC | |
LbALDH3F1-R2 | CTAATGTCCCAATCTCATCCCTGTAAGC | |
LbALDH3F1-R3 | GTGACCTCCTCCATGATTCTTCTCTG | |
LbALDH3F1-F | GAGGCTTACAGGGATGAGATTG | 枸杞qRT-PCR引物 |
LbALDH3F1-R | CCAAGAGGCTCAGGAACTAAC | |
LbALDH3F1-2300-EGFP-F | ACGGGGGACGAGCTCGGTACCATGTCAGAGTGTGAGAAAGATTTG | 过表达载体目的基因扩增引物 |
LbALDH3F1-2300-EGFP-R | CACCATGGTGTCGACTCTAGAAGCCTTCTTGAGTCCTAGTG | |
LbALDH3F1-T-F | GCAGCAGATACACTCCCATTTG | 转基因拟南芥PCR鉴定引物 |
LbALDH3F1-T-R | GCCGTCGTCCTTGAAGAAGA | |
LbALDH3F1-F-Y | GAGGCTTACAGGGATGAGATTG | 转基因拟南芥qRT-PCR引物 |
LbALDH3F1-R-Y | ACTCTGCTGAAGAAGGGAATG |
加粗序列为与载体同源的序列
Sequences homologous to the vector are marked in bold
利用Primer 5.0设计3′ RACE引物3′GSP1和3′GSP2与5′ RACE引物5′ GSP1、5′ GSP2和5′ GSP3(
对克隆得到的宁夏枸杞LbALDH3F1 cDNA序列进行生物信息学分析。使用ProtParam(https://web.expasy.org/compute_pi/)在线工具分析蛋白理化性质;使用SMART(http://smart.embl-heidelberg.de/)对蛋白的保守结构域进行分析;蛋白质的二级与三级结构则通过SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_ automat.pl?page=npsa_sopma.html)与SWISS-MODEL(https://swissmodel.expasy.org/interactive)分别完成。
启动子克隆参照史光珍
利用Primer 5.0设计LbALDH3F1扩增引物LbALDH3F1-2300-EGFP-F和LbALDH3F1-2300-EGFP-R(
将转LbALDH3F1拟南芥T3代及野生型拟南芥种子表面消毒后,播种于MS固体培养基上生长7~10 d,之后移栽至育苗基质,人工气候培养箱中生长15~20 d,培养条件为22 ℃(光照16 h)/ 20 ℃(黑暗8 h),湿度60 %,光照强度700 μmol/m
将测序鉴定正确的重组质粒加入感受态农杆菌GV 3101菌液中进行转化,28 ℃ 培养48 h左右。将培养出来的单菌落提取质粒并进行PCR鉴定,引物为LbALDH3F1-T-F、LbALDH3F1-T-R,扩增程序与体系参照1.2.4 PCR验证。检测为阳性的农杆菌用来侵染拟南芥叶片的原生质体。原生质体用1.5 mL预冷的W5 buffer轻柔悬浮,冰上放置30 min后离心1 min(23℃,100 g),弃上清,每管沉淀用800 μL MMG buffer重悬。每个2 mL离心管中加入20 μL阳性质粒和300 μL MMG buffer重悬的的原生质体,轻柔混匀,再加入250 μL PEG/C
宁夏枸杞和NaCl胁迫的野生型拟南芥、T3代转基因拟南芥叶片RNA、cDNA 第一链的合成按照1.2.1 方法执行。qRT-PCR定量实验使用ChamQ Universal SYBR qPCR Master Mix试剂盒(诺唯赞生物科技有限公司)完成。用Premier 5.0分别设计宁夏枸杞的内参基因Actin的扩增引物Actin-F和Actin-R、qRT-PCR 扩增引物LbALDH3F1-F和LbALDH3F1-R、转LbALDH3F1拟南芥的扩增引物LbALDH3F1-F-Y和LbALDH3F1-R-Y(
采用苏州梦犀生物医药科技有限公司的乙醛脱氢酶(ALDH,aldehyde dehydrogenase)酶活检测试剂盒,对不同NaCl浓度处理的宁夏枸杞叶片ALDH的酶活进行测定。
采用睿信生物科技有限公司的过氧化氢酶(CAT,catalase)试剂盒、过氧化物酶(POD,peroxidase)试剂盒、超氧化物歧化酶(SOD,superoxide dismutase)-WST-8 法活性测定试剂盒分别测定野生型和转基因拟南芥CAT、POD和SOD活性。采用睿信生物科技有限公司的植物叶绿素(Chlorophyll)含量试剂盒、脯氨酸(Pro,proline)含量测定试剂盒、脱落酸(ABA,abscisic acid)定量检测试剂盒(ELISA)、丙二醛(MDA,malondialdehyde)含量检测试剂盒、过氧化氢(H2O2,hydrogen peroxide)含量检测试剂盒及羟自由基清除率检测试剂盒分别测定野生型和转基因拟南芥叶绿素、Pro、ABA、MDA、H2O2含量及羟自由基清除率。
经PCR扩增获得宁夏枸杞LbALDH3F1基因的中间片段(

图1 宁夏枸杞LbALDH3F1基因克隆
Fig. 1 Cloning of LbALDH3F1 gene from L. barbarum
A:LbALDH3F1基因中间片段;M:DL2000,下同;1:LbALDH3F1基因中间片段;B:LbALDH3F1基因3′克隆片段;2~3:3′RACE 产物;C: LbALDH3F1基因5′克隆片段;4~5:5′ RACE PCR产物
A: Amplification results of intermediate segments of LbALDH3F1; M: DL 2000;The same as below; 1: Intermediate segments of LbALDH3F1; B: Cloning of 3′fragments of LbALDH3F1 genes; 2-3: 3′RACE products;C: Cloning of 5′fragments of LbALDH3F1 genes;4-5: 5′RACE products

图2 LbALDH3F1的核苷酸序列(上)和推导氨基酸序列(下)
Fig. 2 Nucleotide sequence (upperlines) and deduced amino acid sequence (lowerlines) of LbALDH3F1 gene
红色ATG字体为起始密码子; 红色TGA字体为终止密码子; 粗体部分为CDS序列
The red ATG font is the iniation codon; The red TGA font is the termination codon, The bold part is CDS sequence
ProtParam软件在线预测分析结果表明,LbALDH3F1蛋白质的分子量为53.77177 kDa,理论等电点为9.01,脂肪指数为99.96,不稳定系数大于40,推测该蛋白为不稳定蛋白质,亲水性小于0,为亲水性蛋白,分子式为 C2461H3907N625O690S1。
根据SOPMA在线网站对LbALDH3F1蛋白进行二级结构预测发现,二级结构主要由 α 螺旋和随机卷曲两种结构方式组成,分别有214和157个氨基酸,占44.49 % 和32.64 %,延伸链有79个氨基酸,占16.42 %,β转角有31个氨基酸,占6.44 %。在SWISS-MODEL网站选取相似度最近的6 k10.1.A为参照,构建LbALDH3F1三级结构模型,该同源模型覆盖了LbALDH3F1氨基酸序列的43.32 %(


图3 LbALDH3F1基因序列三级结构预测、亚细胞定位及系统进化树分析
Fig. 3 Tertiary structure prediction, subcellular localization and phylogenetic tree analysis of the LbALDH3F1 gene sequence
A:LbALDH3F1蛋白的三级结构模型预测;B:LbALDH3F1亚细胞定位,比例尺均为10 μm;C:LbALDH3F1系统进化树,红框表示宁夏枸杞基因名称,条目格式为基因名称+物种+基因注释信息
A: Prediction of LbALDH3F1 protein tertiary structure model; B: Subcellular localization of LbALDH3F1, all scales are 10 μm; C: Phylogenetic tree of LbALDH3F1 gene; The red boxes indicate gene names; The format of term is gene name+species+gene annotation information of L. barbarum
通过共聚焦激光扫描显微镜观察发现,试验组在拟南芥的细胞核和部分细胞膜中检测到绿色荧光信号,表明LbALDH3F1定位于细胞核及部分细胞膜中(
利用NCBI公布的ALDH3F1基因序列,构建基于LbALDH3F1同源基因的系统发育进化树。发现宁夏枸杞LbALDH3F1与渐狭叶烟草(Nicotiana attenuata Torr. ex S.Watson)的ALDH3F1基因序列相似性最高(
利用TAIL-PCR技术扩增得到基因的上游序列,测序结果经DNAMAN比对,发现LbALDH3F1启动子序列长度为1850 bp(

图4 LbALDH3F1基因启动子片段
Fig. 4 LbALDH3F1 gene promoter fragment
1~2:LbALDH3F1启动子;红色字体为起始密码子,粗体部分为CDS序列
M: DL 2000; 1~2: The LbALDH3F1 promoter; The red font is start codon, the bold part is CDS sequence
利用Plant CARE和PLACE在线工具对启动子序列进行顺式作用元件预测分析。LbALDH3F1启动子存在多个顺式作用元件响应 NaCl 胁迫,其中3-AF1 binding site、AE-box、G-box、GA-motif、GATA-motif、GT1-motif、LAMP-element、TCCC-motif元件参与光响应信号,ABRE、ABRE3a、ABRE4、MYB、MYC元件参与脱落酸信号,CGTCA-motif、TGACG-motif参与茉莉酸甲酯信号,TGA-element元件参与生长素信号(
顺式元件名称 Cis-acting elements name | 特征序列 Characteristic sequence | 功能 Function | 位置(bp) Site |
---|---|---|---|
3-AF1 binding site | TAAGAGAGGAA | 光反应响应元件 | -486 |
ABRE | ACGTG | ABA、干旱、NaCl 响应元件 | +69 |
ABRE3a | TACGTG | ABA响应元件 | +68 |
ABRE4 | CACGTA | ABA响应元件 | -68 |
AE-box | AGAAACAA | 光反应响应元件 | -671 |
CGTCA-motif | CGTCA | MeJA响应元件 | +718、-1146、-1066 |
G-box | TACGTG | 光反应响应元件 | +68、+1679 |
GA-motif | ATAGATAA | 光反应响应元件 | -232 |
GATA-motif | GATAGGA | 光反应响应元件 | -487 |
GT1-motif | GTGTGTGAA | 光反应响应元件 | -1027、+1398 |
LAMP-element | CCTTATCCA | 光反应响应元件 | -11 |
MYB | TAACCA | MYB结合位点;干旱响应元件;ABA响应元件 | -90、-1438 |
MYC | CATTTG | MYC结合位点;干旱响应元件;ABA响应元件 | -657、-1248 |
TCCC-motif | TCTCCCT | 光反应响应元件 | +25 |
TGA-element | AACGAC | 生长素响应元件 | -474 |
TGACG-motif | TGACG | MeJA响应元件 | -718、+1146、+1066 |
as-1 | TGACG | TGA转录因子的结合位点 | -718、+1146、+1066 |
+表示上游,-表示下游
+ represents the upstream, and -represents the downstream
对不同浓度NaCl处理的枸杞叶片LbALDH3F1进行qRT-PCR分析。结果表明,随着NaCl胁迫程度增加, LbALDH3F1相对表达量呈先升高后下降的趋势,在200 mmol/L NaCl胁迫时表达量最高(

图5 宁夏枸杞不同浓度NaCl胁迫下LbALDH3F1相对表达量及ALDH酶活变化
Fig. 5 Relative expression of LbALDH3F1 and active changes of ALDH enzyme under different concentrations of NaCl stress in L. barbarum
不同小写字母表示差异显著(P < 0.05);下同
The different lowercase letters indicate significant differences (P < 0.05); The same as below
对不同NaCl浓度处理的宁夏枸杞叶片ALDH酶活进行测定,发现随着NaCl胁迫程度增加,ALDH酶活性呈先升高后下降的趋势,100 mmol/L NaCl处理显著高于其他处理(
转LbALDH3F1拟南芥目标片段大小在640 bp左右,测序序列与载体和部分目的基因片段序列相符,野生型拟南芥无条带,表明LbALDH3F1基因成功连接到2300-EGFP载体内,且成功转化到拟南芥基因组(

图6 转LbALDH3F1 拟南芥T1 代DNA电泳检测
Fig. 6 LbALDH3F1 transgenic A. thaliana T1 generation DNA electrophoresis detection
1~9:转LbALDH3F1拟南芥DNA;WT:阴性对照(野生型);CK:空白对照(水);P:阳性对照(农杆菌菌液);下同
1-9: LbALDH3F1 transgenic A. thaliana DNA;WT: Negative control (wild type); CK: Blank control (water); P: Positive control (Agrobacterium tumefaciens);The same as below
对盐胁迫下野生型及转基因拟南芥叶片进行qRT-PCR表达量分析,结果显示各浓度NaCl胁迫转基因拟南芥的表达量均显著高于野生型拟南芥,表明成功将宁夏枸杞LbALDH3F1基因转入拟南芥,而且转基因拟南芥LbALDH3F1基因在各浓度NaCl胁迫下差异表达显著(

图7 转基因拟南芥不同浓度NaCl胁迫下LbALDH3F1相对表达量
Fig. 7 Relative expression of LbALDH3F1 transgenic A. thaliana under different concentrations of NaCl stress
0、100、200、300表示不同浓度NaCl;下同
The 0,100,200, and 300 indicate different concentrations of NaCl; The same as below
不同NaCl浓度处理野生型及转LbALDH3F1拟南芥的表型变化如

图8 不同浓度NaCl胁迫野生型和转LbALDH3F1拟南芥植株表型变化及存活情况
Fig. 8 Phenotypic change and survival data of different NaCl stressed wild type and LbALDH3F1 transgenic A. thaliana
A:不同NaCl浓度处理野生型和转LbALDH3F1拟南芥0/4/7 d的表型变化;WT-0/4/7:野生型拟南芥盐胁迫后0/4/7 d,LbALDH3F1-0/4/7:转基因拟南芥盐胁迫后0/4/7 d;B:不同NaCl浓度处理野生型和转LbALDH3F1拟南芥0/4/7 d的存活数;C:300 mmol/L NaCl胁迫野生型及转基因拟南芥存活率
A: Phenotypic changes in wild type and LbALDH3F1 transgenic A. thaliana treated with different NaCl concentrations on 0/4/7 d; WT-0/4/7: 0/4/7 d of salt stress in wild-type A. thaliana, LbALDH3F1-0/4/7: 0/4/7 d of salt stress in transgenic A. thaliana; B: Survival number of wild-type and LbALDH3F1 transgenic A. thaliana treated with different NaCl concentrations on 0/4/7 d; C: Survival rate of wild type and LbALDH3F1 transgenic A. thaliana under 300 mmol/L NaCl stress
对盐胁迫下野生型及过表达LbALDH3F1拟南芥相关抗氧化物质进行测定(

图9 转基因拟南芥相关生理指标
Fig. 9 Relevant physiological indicators of transgenic A. thaliana plants
对盐胁迫下野生型及过表达LbALDH3F1拟南芥的Pro、ABA及叶绿素a的含量进行测定,盐胁迫的转基因拟南芥Pro及叶绿素a的含量均较高于野生型,且在高盐(300 mmol/
宁夏枸杞作为重要的耐盐药用植物,耐盐基因功能分析对揭示其抗盐生理及分子机制至关重要。本研究通过RACE技术获得宁夏枸杞LbALDH3F1基因全长1700 bp,编码481个氨基酸残基,蛋白质二级结构以 α 螺旋和无规则卷曲为主,与渐狭叶烟草(N. attenuata)ALDH3F1同源性较高。
蛋白质的亚细胞定位与其功能密切相
不同基因的启动子区含有不同功能的顺式作用元件,植物响应环境胁迫与这些顺式作用元件有
ALDHs基因家族与植物的抗逆性和生长发育密切相关,如过表达Ath-ALDH3的拟南芥在遭遇干旱、NaCl 和 H2O2 等胁迫时表现出更强的耐受
参考文献
Singh S, Brocker C, Koppaka V, Chen Y, Jackson B C, Matsumoto A, Thompson D C, Vasiliou V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radical Biology and Medicine, 2013,56:89-101 [百度学术]
Perozich J, Nicholas H, Wang B C, Lindahl R, Hempel J. Relationships within the aldehyde dehydrogenase extended family. Protein Science, 1999,8(1):137-146 [百度学术]
Carmona-Molero R, Jimenez-Lopez J C, Caballo C, Gil J, Millan T, Die J V. Aldehyde dehydrogenase 3 is an expanded gene family with potential adaptive roles in chickpea. Plants, 2021,10(11):2429 [百度学术]
Islam M S, Ghosh A. Evolution, family expansion, and functional diversification of plant aldehyde dehydrogenases. Gene, 2022,829:146522 [百度学术]
Koppaka V, Thompson D C, Chen Y, Ellermann M, Nicolaou K C, Juvonen R O, Petersen D, Deitrich R A, Hurley T D, Vasiliou V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacological Reviews, 2012,64(3):520-539 [百度学术]
Hou Q, Bartels D. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Annals of Botany, 2015,115(3):465-479 [百度学术]
Gao C, Han B. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa). Gene, 2009,431(1-2):86-94 [百度学术]
Brocker C, Lassen N, Estey T, Pappa A, Cantore M, Orlova V V, Chavakis T, Kavanagh K L, Oppermann U, Vasiliou V. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. Journal of Biological Chemistry, 2010,285(24):18452-18463 [百度学术]
Zhao J, Missihoun T D, Bartels D. The role of Arabidopsis aldehyde dehydrogenase genes in response to high temperature and stress combinations. Journal of Experimental Botany, 2017,68(15):4295-4308 [百度学术]
Guo X, Wang Y, Lu H, Cai X, Wang X, Zhou Z, Wang C, Wang Y, Zhang Z, Wang K, Liu F. Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton. Gene, 2017,628:230-245 [百度学术]
华园榕. 油桐乙醛脱氢酶ALDH基因家族的克隆与功能表达研究. 长沙: 中南林业科技大学, 2017 [百度学术]
Hua Y R. Cloning and functional expression of aldhs gene of aldehydedehydrogenase in Vernicia fordii. Changsha: Central South University of Forestry and Technology, 2017 [百度学术]
Sunkar R, Bartels D, Kirch H H. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant Journal, 2003,35(4):452-464 [百度学术]
Raza H, Khan M R, Zafar S A, Kirch H H, Bartles D. Aldehyde dehydrogenase 3I1 gene is recruited in conferring multiple abiotic stress tolerance in plants. Plant Biology, 2022,24(1):85-94 [百度学术]
朱志明, 毛桂莲, 许兴, 王盛, 郑蕊, 杨淑娟. 盐胁迫下宁夏枸杞根系N
Zhu Z M, Mao G L, Xu X, Wang S, Zheng R, Yang S J. Effect of salt stress and inhibitor on uptake and transportation of N
梁敏. 盐胁迫下宁夏枸杞差异蛋白的筛选及离子转运相关基因的表达. 银川: 宁夏大学, 2019 [百度学术]
Liang M. Screening of differential proteins and expression of related iontransport genes in Lycium barbarum L. under salt stress. Yinchuan: Ningxia University, 2019 [百度学术]
陆瑛, 鲁延芳, 占玉芳, 杜国新, 滕玉风. 盐胁迫对“宁杞1号”生长表现和生理指标的影响. 林业科技通讯, 2018(5):70-75 [百度学术]
Lu Y, Lu Y F, Zhan Y F, Du G X, Teng Y F. The influence of growth performance and physiological lndex in salt stress for 3 kinds of tree species. Forest Science and Technology, 2018(5):70-75 [百度学术]
马晓蓉, 杨淑娟, 姚宁, 王玲霞, 马强, 梁文裕. NaCl胁迫对宁夏枸杞叶和幼根显微及超微结构的影响. 西北植物学报, 2021,41(12):2087-2095 [百度学术]
Ma X R, Yang S J, Yao N, Wang L X, Ma Q, Liang W Y. Effect of NaCl stress on the microstructure and ultrastructure of leaves and young roots in Lycium barbarum. Acta Botanica Boreali-Occidentalia Sinica, 2021,41(12):2087-2095 [百度学术]
梁敏, 许兴, 丁向真, 李志英, 郑蕊, 杨淑娟, 毛桂莲. 盐胁迫下宁夏枸杞N
Liang M, Xu X, Ding X Z, Li Z Y, Zheng R, Yang S J, Mao G L. Effects of salt stress on N
胡进红.宁夏枸杞响应NaCl胁迫的基因差异表达及TGA2和ALDH3F1的功能分析. 银川: 宁夏大学, 2023 [百度学术]
Hu J H. Analysis of gene differential expression of Lycium barbarum in response to NaCl stress and function of TGA2 and ALDH31. Yinchuan: Ningxia University, 2023 [百度学术]
史光珍, 王兆晔, 孙琦, 朱新霞. 雪莲SikCDPK1启动子的克隆和活性分析. 生物技术通报, 2022,38(9):191-197 [百度学术]
Shi G Z, Wang Z Y, Sun Q, Zhu X X. Cloning and activity analysis of SikCDPK1 promoter from Saussurea involucrata. Biotechnology Bulletin, 2022,38(9): 191-197 [百度学术]
Liu Y G, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007,43(5):649-650, 652, 654 [百度学术]
朱熙. 马铃薯中与胁迫相关StMAPKs基因的分离及功能研究. 兰州: 甘肃农业大学, 2021 [百度学术]
Zhu X. Isolation and functional study of stress-related StMAPKs genein potato. Lanzhou: Gansu Agricultural University, 2021 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25(4):402-408 [百度学术]
张家瑞, 孙僖, 梁芳, 王菲, 张艳俊, 王海燕, 刘大群. 小麦病程相关蛋白1基因的亚细胞定位及信号肽鉴定. 河北农业大学学报, 2017,40(4):1-7 [百度学术]
Zhang J R, Sun X, Liang F, Wang F, Zhang Y J, Wang H Y, Liu D Q. Identification of the signal peptide and subcellular localization of pathogenesis related protein 1 gene from wheat. Journal of Hebei Agricultural University, 2017,40(4): 1-7 [百度学术]
常凯, 童立冬, 江忠勇, 熊怡淞, 张睿, 熊杰. 醛脱氢酶(ALDH)蛋白家族的信息学比较分析与修饰预测. 基因组学与应用生物学, 2016,35(1):28-33 [百度学术]
Chang K, Tong L D, Jiang Z Y, Xiong Y S, Zhang R, Xiong J.Comparative analysis and mutation prediction of aldehyde dehydrogenase based on the bioinformatics methods. Genomics and Applied Biology, 2016,35(1):28-33 [百度学术]
黄世平, 曾幼玲. 植物醛脱氢酶在逆境胁迫中的研究进展. 生物技术通报, 2015,31(12):8-14 [百度学术]
Huang S P, Zeng Y L. Research progress on plant aldehyde dehydrogenase under adversity stresses. Biotechnology Bulletin, 2015, 31(12): 8-14 [百度学术]
Perozich J, Kuo I, Wang B C, Boesch J S, Lindahl R, Hempel J. Shifting the NAD/NADP preference in class 3 aldehyde dehydrogenase. European Journal of Biochemistry, 2000,267(20):6197-6203 [百度学术]
宋志钢, 刘颖, 刘瑞, 卢少云. 海雀稗PvCIPK9基因克隆及耐盐功能鉴定. 草地学报, 2023,31(10):2938-2948 [百度学术]
Song Z G, Liu Y, Liu R, Lu S Y. Cloning and identification of salt tolerance function of Paspalum vaginatum PvCIPK9. Acta Agrestia Sinica, 2023,31(10):2938-2948 [百度学术]
徐金龙, 张文静, 向凤宁. 植物盐胁迫诱导启动子及其顺式作用元件研究进展. 植物生理学报, 2021,57(4):759-766 [百度学术]
Xu J L, Zhang W J, Xiang F N. Advances in stress inducible promoter and cis-acting elements in higher plants. Plant Physiology Journal, 2021,57(4): 759-766 [百度学术]
Sunkar R, Bartels D, Kirch H H. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant Journal, 2003,35(4):452-464 [百度学术]
Cao Y, Wang J, Zhao S, Fang Q, Ruan J, Li S, Liu T, Qi Y, Zhang L, Zhang X, Meng F. Overexpression of the aldehyde dehydrogenase AhALDH3H1 from Arachis hypogaea in soybean increases saline-alkali stress tolerance. Frontiers in Plant Science, 2023,14:1165384 [百度学术]
Gan Q, Luan M, Hu M, Liu Z, Zhang Z. Functional study of CYP90A1 and ALDH3F1 gene obtained by transcriptome sequencing analysis of Brassica napus seedlings treated with brassinolide. Frontiers in Plant Science, 2022,13:1040511 [百度学术]
Xu D, Liu Q, Chen G, Yan Z, Hu H. Aldehyde dehydrogenase ALDH3F1 involvement in flowering time regulation through histone acetylation modulation on FLOWERING LOCUS C. Journal of Integrative Plant Biology, 2020,62(8):1080-1092 [百度学术]
刘聪, 董腊嫒, 林建中, 刘选明. 逆境胁迫下植物体内活性氧代谢及调控机理研究进展. 生命科学研究, 2019,23(3):253-258 [百度学术]
Liu C, Dong L Y, Lin J Z, Liu X M. Research advances on regulation mechanism of reactive oxygen species metabolism under stresses. Life Sciences Research, 2019, 23(3): 253-258 [百度学术]
Zhao J, Missihoun T D, Bartels D. The role of Arabidopsis aldehyde dehydrogenase genes in response to high temperature and stress combinations. Journal of Experimental Botany, 2017,68(15):4295-4308 [百度学术]
Stiti N, Missihoun T D, Kotchoni S O, Kirch H H, Bartels D. Aldehyde dehydrogenases in Arabidopsis thaliana: Biochemical requirements, metabolic pathways, and functional analysis. Frontiers in Plant Science, 2011,2:65 [百度学术]