摘要
菊花(Chrysanthemum morifolium)具有重要的观赏与经济价值,干旱会降低其产量和品质,造成巨大经济损失。挖掘菊花中的抗旱基因,培育抗旱品种是解决上述问题的重要手段。MYB转录因子参与植物生长发育和响应非生物胁迫。本研究在拟南芥中异源表达菊花CmMYB15-like基因,通过观察干旱胁迫后的表型变化,测定相对含水量、丙二醛含量、可溶性糖含量、超氧化物歧化酶活性、木质素含量等指标,探究该基因的抗旱性功能。结果显示,过表达CmMYB15-like拟南芥的存活率、相对含水量、超氧化物歧化酶活性、可溶性糖含量较野生型显著升高,丙二醛含量较野生型显著下降;幼苗主根长度及侧根数目较野生型显著升高。此外,AtPAL2、AtPAL4、At4CL1等木质素合成相关基因表达显著上调,木质素含量显著提高。这些结果表明,CmMYB15-like参与拟南芥干旱胁迫反应,为菊花抗旱基因资源筛选和品种培育提供一定理论依据。
关键词
菊花是中国十大传统名花和世界四大切花之一,生长发育经常受到环境胁迫,其中干旱胁迫是制约菊花品质及产值的重要因素之一。在严重干旱胁迫下,菊花会出现萎蔫、失绿等变化,持续时间过长还会导致植株死亡。通过挖掘菊花中的抗旱性基因,选育抗旱性品种是解决上述问题的关键。MYB转录因子由其N端保守的MYB结构域命名,以结构域中不完全重复序列的多少以及位置分为1R-MYB(MYB-related)、2R-MYB(R2R3-MYB)、3R-MYB(R1R2R3-MYB)和4R-MYB四个亚类,植物中以2R-MYB亚家族最为常
MYB15作为MYB家族蛋白成员之一,目前相关研究大多集中在抗病、抗蚜以及耐寒性等方面,如拟南芥SG2-R2R3-MYB型转录因子MYB15通过提高体内木质素含量介导木质化和基础免
选用30盆在黑色小方盆(7 cm×7 cm)扦插生根、生长情况良好且大小一致、生长有6~8片真叶的盆栽菊花苗,生长环境为白天16 h/23 ℃,夜间8 h/22 ℃,光照15000 Lx,对其进行7 d的正常浇水培养。用200 g/L PEG-6000处理15盆菊花苗,模拟干旱胁迫处理,该方法采用灌根法进
引物名称 Primer name | 引物序列(5’-3’) Primer sequence (5’-3’) | 用途 Using |
---|---|---|
Actin-F | GGTAACATTGTGCTCAGTGGTGG | 内参引物 |
Actin-R | AACGACCTTAATCTTCATGCTGC | |
CmMYB15-like-ORF-F | TTTCATTGCCATACGGAATTCATGGGGAGAGCACCTTGTTGT | 基因克隆引物 |
CmMYB15-like-ORF-R | ATGAATGCTCATCCGGAATTCAAACTCAGGTAACTCGGGTAGTTCC | |
qRT-CmMYB15-like-F | TCTACCTCTAACCAACCATC | qRT-PCR引物 |
qRT-CmMYB15-like-R | CCTTTATTATCACCGTTTCC | |
SP-F | GAACCAATAGTTTCGCAATG | 转基因拟南芥PCR鉴定引物 |
pMDC43-R | ACGATCGGGGAAATTCGA |
根据前期获得的CmMYB15-like基因序列,利用Primer 5.0软件设计带有同源臂的CDS区克隆引物CmMYB15-like-ORF-F与CmMYB15-like-ORF-R(
用花序浸染法转化野生型拟南芥,使用含有潮霉素的培养基筛选转基因抗性植物,采用鉴定引物(
将在MS固体培养基上生长有4片真叶的转基因和野生型拟南芥幼苗移栽到黑色小方盆(7 cm× 7 cm)(营养土∶蛭石=2∶1)中,各株系移栽12盆,每盆5侏,在人工气候培养箱(白天16 h/23 ℃,夜间8 h/22 ℃,光照15000 Lx)中培养28 d,期间正常浇水。选取生长状况良好的OE-1、OE-2、OE-8转基因和野生型拟南芥各6盆盆栽苗进行14 d自然干旱处理,后复水3 d,观察植株表型,并拍照记录。分别采集干旱胁迫处理前和处理14 d后的野生型及CmMYB15-like转基因拟南芥地上部的叶片,用于测定相对含水量、超氧化物歧化酶活性、丙二醛含量、可溶性糖含量相关生理指标。相对含水量的测定参考Xiao
分别采集正常生长约28 d的3个转基因株系和野生型拟南芥距基部1 cm的茎组织,每个株系采集9株,分别用于木质素合成相关基因的表达检测、木质素染色和木质素含量测定。拟南芥以Actin作为内参基因,采用实时荧光定量PCR(qRT-PCR)检测木质素合成相关基因AtPAL1、AtPAL2、AtPAL4、AtC4H、At4CL1、AtHCT、AtC3H1、AtCCoAOMT、AtCCR1、AtF5H、AtCOMT、AtCAD
木质素总含量测定采用木质素含量检测试剂盒(BC4200-50T/48S,Solarbio)。木质素染色使用震动切片机(Leica,美国)对各株系茎组织进行切片,切片厚度100 μm,于盐酸-间苯三酚溶液(间苯三酚0.1 g,加乙醇1 mL,再加盐酸9 mL,混合均匀,现配现用)中浸泡5 min后,置于载玻片上并于体式显微镜(Leica,美国)下观察拍照。
采用200 mmol/L甘露
将消毒后的转基因和野生型拟南芥种子播种到MS固体培养基上,避光放置于4 ℃冰箱春化2 d,后转入无菌光照培养箱(白天16 h/23 ℃,夜间8 h/22 ℃,光照15000 Lx)中培养4 d,各株系选取9株根长一致的幼苗分别移栽到垂直放置的MS和200 mmol/L甘露醇培养基上处理7 d,统计不同株系的主根长度(Image J软件测定)及一级侧根数目。
为探究CmMYB15-like基因是否与干旱胁迫相关,分析了CmMYB15-like响应干旱的表达特性。结果显示,与0 h相比,干旱胁迫处理后1、3、6 h 的CmMYB15-like表达量显著上调,在1 h达到最高,为1 h对照组的16.9倍(

图1 CmMYB15-like在正常浇水及干旱胁迫下的表达模式分析
Fig. 1 Analysis of expression patterns of CmMYB15-likeunder normal watering and drought stress
**表示在P<0.01极显著差异
** indicate significant difference at P<0.01 level
利用花序浸染法转化野生型拟南芥,在含有潮霉素的培养基上进行两代筛选,于T2代种子中选择全抗植株,进行阳性植株鉴定,结果显示,OE-1、OE-2、OE-8株系在817 bp位置有条带,野生型没有(

图2 CmMYB15-like转基因拟南芥的鉴定
Fig. 2 Identification of CmMYB15-like transgenic Arabidopsis
A:T2代CmMYB15-like转基因拟南芥鉴定;B:CmMYB15-like转基因拟南芥半定量鉴定;M:DL5000 DNA marker;WT: 野生型植株;OE-1、OE-2、OE-8:3个CmMYB15-like转基因株系
A: Identification of T2 generation CmMYB15-like transgenic Arabidopsis; B: Semi-quantitative identification of CmMYB15-like transgenic Arabidopsis; WT:Wild type plant;OE-1、OE-2、OE-8:Three CmMYB15-like transgenic strains
为了直观地对转基因和野生型拟南芥进行抗旱性评估,于盆栽条件下自然失水14 d及复水3 d后进行表型观察。失水胁迫处理前,野生型和过表达株系生长状况良好,胁迫处理14 d后,野生型叶片失水严重、叶片萎蔫发黄,受胁迫损伤程度更深(

图3 野生型与CmMYB15-like过表达拟南芥抗旱性表型鉴定
Fig. 3 Phenotypic identification of drought resistance in wild type and CmMYB15-like overexpressing Arabidopsis thaliana

图4 CmMYB15-like转基因拟南芥在干旱胁迫下的存活率及相对含水量
Fig. 4 Survival rate and relative water content of CmMYB15-like transgenic Arabidopsis thaliana under drought stress
A:胁迫处理14 d各株系存活率;B:不同处理下各株系相对含水量;不同小写字母表示显著性差异,误差线代表生物学重复之间的标准误,n=3;下同
A: Survival rate of each strain after 14 d of stress treatment; B: Relative water content of each strain under different treatments; Different lowercase letters indicate significant differences,and error line represents biological duplication,n=3;The same as below
为进一步分析过表达CmMYB15-like提高拟南芥抗旱性的原因,分析了各株系在胁迫处理前后的丙二醛、可溶性糖含量及超氧化物歧化酶活性变化。结果显示,在干旱胁迫前,转基因和野生型株系中丙二醛含量无显著性差异;OE-1株系的可溶性糖含量较野生型显著下降,OE-2和OE-8株系较野生型无显著性差异;转基因株系的超氧化物歧化酶活性较野生型无显著性差异。在干旱胁迫后,CmMYB15-like转基因株系OE-1、OE-2、OE-8的丙二醛含量分别为0.72 μmol/g、0.31 μmol/g、0.30 μmol/g,OE-2、OE-8较野生型显著下降,分别减少了61%、59%(

图5 干旱处理前后野生型和CmMYB15-like过表达拟南芥植株生理指标测定
Fig. 5 Physiological indices of Arabidopsis thaliana plants of wild type and CmMYB15-like overexpression before and after drought treatment
为了观测过表达CmMYB15-like对拟南芥地下部分形态的影响,进一步分析CmMYB15-like如何提高植株的抗旱性,对植株的根系生长情况进行观察。在MS培养基中,CmMYB15-like转基因株系与野生型相比,其生长状况(

图6 甘露醇处理对野生型与CmMYB15-like过表达拟南芥生长状况及根系形态的影响
Fig. 6 Effects of mannitol treatment on root morphology, taproot length and lateral root number of wild type and CmMYB15-like overexpressed Arabidopsis thaliana
A、B: MS和200 mmol/L甘露醇培养基中生长7 d的表型;C、D: MS和200 mmol/L甘露醇培养基中生长7 d的根长及侧根
A, B: Phenotype grown in MS and 200 mmol/L mannitol medium for 7 d; C, D: The root length and lateral root grown in MS and 200 mmol/L mannitol medium for 7 d

图7 CmMYB15-like转基因拟南芥在甘露醇处理后的主根长度及侧根数目
Fig. 7 The main root length and lateral root number of CmMYB15-like transgenic Arabidopsis thaliana after mannitol treatment
A:不同处理各株系主根长度;B:不同处理各株系侧根数目
A: Root length of different strains under different treatments; B: The number of first order lateral roots of each strain under different treatments
在前期的研究中发现,过表达CmMYB15-like基因可以提高菊花体内的木质素含

图8 木质素生物合成路径基因相对表达量
Fig. 8 Gene relative expression of lignin biosynthesis pathway
采集野生型及CmMYB15-like转基因拟南芥植株基部茎组织部位进行盐酸-间苯三酚染色观察分析,其结果显示,CmMYB15-like转基因过表达株系OE-1、OE-2、OE-8中木质部着色程度较野生型明显加深(

图9 野生型与CmMYB15-like过表达拟南芥木质素含量
Fig. 9 Lignin content in wild type and CmMYB15-like overexpressing Arabidopsis
A:不同植株中茎组织的木质素沉积;B:不同植株中茎组织的木质素含量
A: The lignin deposition in stem tissue of different plants; B: The lignin content in stem tissues of different plants
目前研究表明,干旱胁迫是影响植物正常生长的主要因素之一,植物面对胁迫采取的防御措施大多数与自身内部的基因调控有关,其中MYB转录因子是植物在干旱防御体系中非常重要的一类蛋白。如小麦TaODORANT1过表达降低了活性氧的积累,并且上调胁迫相关基因的表达,提高了烟草的抗旱
丙二醛是植物细胞膜脂过氧化的重要指标之一,可作为干旱指标来评估质膜损伤程度和植物对干旱胁迫的耐受能力。有研究发现苦荞FtMYB13、FtMYB41转化拟南芥,过表达植株丙二醛含量降低,过氧化物酶活性增加,转基因植物的抗旱性显著增
可溶性糖作为一种调节渗透压的重要溶质,在植物受到干旱胁迫时,其含量会增加,来降低体内的渗透势,进而抵抗胁迫伤
有研究表明植物在干旱条件下会通过改变根系的形态来抵御干旱胁迫带来的伤
木质素广泛存在于植物的细胞壁中,能够增强植物的机械强度,维持细胞内的水分运输及渗透平衡,并参与植物胁迫反应。据报道,水稻次生细胞壁中木质素含量降低可减少叶片中水分含量,导致抗旱性减
通过前期的研究,初步推测CmMYB15-like可以提高植物的抗旱性。于拟南芥中异源表达菊花CmMYB15-like基因,发现过表达株系在干旱胁迫下的存活率、相对含水量显著高于野生型;超氧化物歧化酶活性以及可溶性糖、丙二醛含量对比发现,过表达植株在干旱胁迫下活性氧清除能力更强且细胞膜稳定性更高;甘露醇培养基生长状况和根系对比发现,过表达株系在干旱胁迫下绿叶更多,主根更长且一级侧根数目显著增多;相比野生型,CmMYB15-like过表达株系木质素生物合成相关基因发生不同程度上调以及木质素含量升高。基于试验结果,提出菊花CmMYB15-like过表达提高了拟南芥体内的抗氧化物酶活性、可溶性糖含量、木质素合成相关基因表达以及木质素积累,并促进根系发育来提高植株维持水分的能力,共同促进了CmMYB15-like转基因拟南芥对干旱胁迫的耐受性。但CmMYB15-like在菊花抗旱中是否起作用,还需进一步在菊花中验证其功能。
参考文献
Li J L, Han G L, Sun C F, Sui N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signaling &Behavior,2019,14 (8):1613131 [百度学术]
Jiang C K, Rao G Y. Insights into the diversification and evolution of R2R3-MYB transcription factors in plants. Plant Physiology,2020,183(2):637-655 [百度学术]
Wang X, Niu Y, Zheng Y. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences,2021, 22(11):6125 [百度学术]
Zhu L,Li S S, Ma Q Y,Yan K Y,Wen J,Li Q Z,Ren J,Chen Z. An acer palmatum R2R3-MYB gene, ApMYB77, confers freezing and drought tolerance in Arabidopsis thaliana.Journal of Plant Growth Regulation,2023,42:1017-1030 [百度学术]
Yao C Y, Li W H, Liang X Q, Ren C K, Liu W D, Yang G H, Zhao M F, Yang T Y, Li X G, Han D G. Molecular cloning and characterization of MbMYB108, a Malus baccata MYB transcription factor gene, with functions in tolerance to cold and drought stress in transgenic Arabidopsis thaliana. International Journal of Molecular Sciences,2022,23(9):4846 [百度学术]
Shi K, Liu J, Liang H, Dong H B, Zhang J L, Wei Y H, Zhou L, Wang S P, Zhu J H, Cao M S, Jones C S, Ma D M, Wang Z. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation. Journal of Integrative Plant Biology,2024,66(4):683-699 [百度学术]
Luo Y Y, Bai R, Li J, Yang W D, Li R X, Wang Q Y, Zhao G F, Duan D. The transcription factor MYB15 is essential for basal immunity (PTI) in Chinese wild grape. Planta,2019,249(6):1889-1902 [百度学术]
Zhang L Y, Jiang X C, Liu Q Y, Ahammed G J, Lin R, Wang L Y, Shao S J, Yu J Q, Zhou Y H. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway. Plant Cell and Environment,2020,43(11):2712-2726 [百度学术]
An C, Sheng L P, Du X P, Wang Y J, Zhang Y, Song A P, Jiang J F, Guan Z Y, Fang W M, Chen F D, Chen S M. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. Horticulture Research,2019,11(6):84 [百度学术]
Li F, Zhang Y, Tian C, Wang X H, Zhou L J, Jiang J F, Wang L K, Chen F D, Chen S M. Molecular module of CmMYB15-like-Cm4CL2 regulating lignin biosynthesis of chrysanthemum (Chrysanthemum morifolium) in response to aphid (Macrosiphoniella sanborni) feeding.Newphytologist,2023,237 (5):1776-1793 [百度学术]
孔洁玙,杨妮,罗微,胡志航,王雅慧,庄静.茶树NAC转录因子基因CsNAC79和CsNAC9鉴定及其对非生物胁迫的响应.西北植物学报,2024,44(4):572-581 [百度学术]
Kong J Y, Yang N, Luo W, Hu Z H, Wang Y H, Zhuang J.Identification of NAC transcription factor genes CsNAC79 and CsNAC9 in tea plants and their response to abiotic stress. Acta Botanica Boreali-Occidentalia Sinica, 2024,44(4):572-581 [百度学术]
Xiao N, Ma H Z, Wang W X, Sun Z K, Li P P, Xia T. Overexpression of ZmSUS1 increased drought resistance of maize (Zea mays L.) by regulating sucrose metabolism and soluble sugar content. Planta,2024,259(2):43 [百度学术]
刘保国,张艳文,姚珂心,史志坤,李菲,李永华,张开明.四季秋海棠BsMYB62的抗旱性功能研究.西北农林科技大学学报:自然科学版,2024, 52(4):95-104 [百度学术]
Liu B G,Zhang Y W,Yao K X,Shi Z K,Li F,Li Y H,Zhang K M. Drought tolerance functions of BsMYB62 in Begonia semperfloren. Journal of Northwest A&F University: Natural Science Edition,2024,52(4):95-104 [百度学术]
Wang X,Wu Z,Zhou Q,Wang X,Song S,Dong S K.Physiological response of soybean plants to water deficit. Frontiers in Plant Science,2022,31(12):809692 [百度学术]
Li T,Huang Y,Khadr A,Wang Y H,Xu Z S,Xiong A S.DcDREB1A, a DREB-binding transcription factor from Daucus carota, enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes.Environmental and Experimental Botany,2020, 169:103896 [百度学术]
Sun Y, Jiang C, Jiang R, Wang F, Zhang Z, Zeng J. A novel NAC transcription factor from Eucalyptus, EgNAC141, positively regulates lignin biosynthesis and increases lignin deposition. Frontiers in Plant Science,2021,8(12):642090 [百度学术]
Chen Q, Peng L, Wang A H, Yu L Z, Liu Y, Zhang X R, Wang R L, Li X Y, Yang Y, Li X F, Wang J M. An R2R3-MYB FtMYB11 from Tartary buckwheat has contrasting effects on abiotic tolerance in Arabidopsis. Journal of Plant Physiology,2023,280:153842 [百度学术]
Bang S W, Choi S , Jin X J, Jung S E, Choi J W, Seo J S, Kim J K. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots.Plant Biotechnology Journal,2022,20(4):736-747 [百度学术]
Wei Q H, Luo Q C, Wang R B, Zhang F, He Y, Zhang Y, Qiu D, Li K X, Chang J L, Yang G X, He G Y. A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic Tobacco plants. Front in Plant Science, 2017 (8):1374 [百度学术]
Liu T L, Chen T Z, Kan J L, Yao Y, Guo D S, Yang Y W, Ling X T, Wang J Y, Zhang B L. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnol Journal,2022,20(4):722-735 [百度学术]
Li K Q, Xing C H, Yao Z H, Huang X S. PbrMYB21, a novel MYB protein of pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol Journal,2017,15(9):1186-1203 [百度学术]
Huang Y J, Zhao H X, Gao F, Yao P F, Deng R Y, Li C L, Chen H, Wu Q. A R2R3-MYB transcription factor gene, FtMYB13, from tartary buckwheat improves salt/drought tolerance in Arabidopsis. Plant Physiology and Biochemistry,2018,132:238-248 [百度学术]
康珍,杨迪,郝彦蓉,卢翔,周美亮,方正武.苦荞转录因子FtMYB41的克隆及功能分析. 植物遗传资源学报,2022,23(3):895-905 [百度学术]
Kang Z,Yang D,Hao Y R,Lu X,Zhou M L,Fang Z W.Cloning and functional analysis of tartary buckwheat transcription factor FtMYB41.Journal of Plant Genetic Resources,2022,23(3):895-905 [百度学术]
Zhu N, Duan B L, Zheng H L, Mu R R, Zhao Y Y, Ke L P, Sun Y Q. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. Plant Physiology and Biochemistry,2023,197:107648 [百度学术]
Pan R, Buitrago S, Feng Z B, Abou-Elwafa S F, Xu L, Li C D, Zhang W X. HvbZIP21, a novel transcription factor from wild barley confers drought tolerance by modulating ROS scavenging. Frontiers in Plant Science,2022,22(13):878459 [百度学术]
Liu L J, Zhang Y H, Tang C, Shen Q Q, Fu J Y, Wang Q. Maize transcription factor ZmHsf28 positively regulates plant drought tolerance. International Journal of Molecular Sciences,2023,24(9):8079 [百度学术]
Cui X Y, Tang M H, Li L, Chang J G, Yang X Q, Chang H L, Zhou J Y, Liu M, Wang Y, Zhou Y, Sun F J, Chen Z Y. Expression patterns and molecular mechanisms regulating drought tolerance of soybean [Glycine max (L.) Merr.] conferred by transcription factor gene GmNAC19. International Journal of Molecular Sciences,2024,25(4):2396 [百度学术]
Cao L R, Ma C C, Ye F Y, Pang Y Y, Wang G R, Fahim A M, Lu X M. Genome-wide identification of NF-Y gene family in maize (Zea mays L.) and the positive role of ZmNF-YC12 in drought resistance and recovery ability. Frontiers in Plant Science,2023,14:1159955 [百度学术]
Liu Y H, Shen Y, Liang M, Zhang X Y, Xu J W, Shen Y, Chen Z D. Identification of peanut AhMYB44 transcription factors and their multiple roles in drought stress responses. Plants (Basel),2022,11(24):3522 [百度学术]
Qin T Y, Kazim A, Wang Y H, Richard D, Yao P F, Bi Z Z, Liu Y H, Sun C, Bai J P. Root-related genes in crops and their application under drought stress resistance-a review. International Journal of Molecular Sciences,2022,23(19):11477 [百度学术]
Li W Q, Zhang M J, Gan P F, Qiao L, Yang S Q, Miao H, Wang G F, Zhang M M, Liu W T, Li H F, Shi C H, Chen K M. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant Journal,2017,92(5):904-923 [百度学术]
Xie J Q, Cao B L, Xu K. Uncovering the dominant role of root lignin accumulation in silicon-induced resistance to drought in tomato. International Journal of Biological Macromolecules,2024,259(1):129075 [百度学术]
Yan Y, Wang P, Lu Y, Bai Y J, Wei Y X, Liu G Y, Shi H T. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. Plant Journal,2021,107(3):847-860 [百度学术]
Zhang Q Y,Ahmad N,Li Z L,He J Z,Wang N,Naeem M,Jin L B,Yao N,Liu X M.CtCYP71A1 promotes drought stress tolerance and lignin accumulation in safflower and Arabidopsis. Environmental and Experimental Botany,2023,213: 105430 [百度学术]
Li D D, Yang J L, Pak S, Zeng M Z, Sun J L, Yu S, He Y T, Li C H. PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of populus ussuriensis. New Phytologist,2022,233(1):390-408 [百度学术]
Tu M X, Wang X H, Yin W C, Wang Y, Li Y J, Zhang G F, Li Z, Song J Y, Wang X P. Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes. Horticulture Research,2020,7:150 [百度学术]