摘要
水稻是盐敏感植物,土壤盐渍化对水稻产量影响巨大。发掘并聚合耐盐基因的优异单倍型,创制耐盐种质,对于水稻耐盐品种选育及我国盐碱地的高效利用都具有重要意义。本研究首先对水稻3K数据库的236份核心种质进行苗期及大田耐盐鉴定,筛选出一份来自澳大利亚的强耐盐种质‘71011’,其在150 mmol/L NaCl处理条件下存活天数25.5 d,耐盐等级5.2, 大田盐胁迫浓度为0.3%~0.5%条件下耐盐存活率100%;利用236份核心种质对已报道的、功能清晰的20个耐盐基因进行单倍型分析,筛选出AKT1、CPK12、MYB48、P5CS1、SIK1、SKC1、SNAC1、HKT1共8个与耐盐性状相关联的基因单倍型。然后利用耐盐品种‘盐丰47’与普通品种‘农垦57’作为亲本,分析序列差异、验证表达量并构建重组自交系,最终开发出AKT1、MYB48以及HKT1三个耐盐相关基因的分子标记,并利用分子标记聚合耐盐基因优异单倍型,创制出强耐盐的新品系。研究结果为水稻耐盐育种提供了可利用的分子标记、耐盐品种资源与创新种质。
盐碱地是国家后备的农业耕地资源,具有重要的战略意义。现如今盐渍化影响了全球超过三分之一的灌溉土
国内外育种家进行了大量耐盐碱水稻品种的选育和收集,斯里兰卡在1939年最早培育出一份耐盐水稻品种Pokkali,随后,印度、菲律宾、日本等也相继培育出耐盐水稻品种,如Nona Bokra、Kalarata 1-24、SR 26B、Chin.13、349 Jhona
本研究材料为来自水稻3K数据库的236份水稻核心种质,包括79份粳稻、146份籼稻以及11份其他品种材料,来自33个国家,其中160份来自中国,具体来源信息详见https://doi.org/10.13430/j.cnki.jpgr.20240602001,
指标 Traits | 均值 Mean | 标准差 SD | 范围 Range | 变异系数(%)CV | 峰度 Kurtosis | 偏度 Skewness |
---|---|---|---|---|---|---|
苗期存活天数(d)Seedling survival days | 15.97 | 3.68 | 9.60~25.49 | 23.07 | -0.39 | 0.56 |
苗期耐盐等级Seedling salt-tolerant grade | 7.17 | 1.07 | 4.60~9.00 | 14.90 | -0.87 | -0.03 |
苗期存活率(%)Seedling survival rate | 66 | 30 | 0~100 | 45.36 | -0.89 | -0.55 |
大田存活率(%)Field survival rate | 81 | 20 | 0~100 | 24.52 | 3.85 | -1.85 |
将待鉴定种子在50℃烘箱中处理72 h打破休眠。随机挑选饱满的种子放入垫有滤纸的培养皿中,去离子水浸泡,置于30℃培养箱中催芽48 h。待种子发芽后,随机选取健康且生长状态一致的种子(30粒)移至96孔播种板中,使用Yoshida水稻营养液培养2周左右(两叶一心时期),换为含150 mmol/L NaCl的Yoshida水稻营养液培养7~15 d,再用正常的Yoshida水稻营养液水培恢复7~15 d,每个处理3个重复,每个重复30株。观察表型,拍照并统计存活率;随机选取5株测量株高、根长、地上部鲜重、地下部鲜重、地上部干重和地下部干重并取平均值。具体实验方法为用滤纸吸干地上部或地下部表面的水分及附着物,用电子天平称取鲜重,将称取完成的地上部或地下部装入已知重量的容器中,放入烘箱内,在80℃下烘干48 h,烘干后的地上部或地下部取出放入干燥器内,待冷却至室温时,用电子天平称量其干重。耐盐等级调查标准参照《水稻种质资源描述规范和数据标准
大田耐盐试验在山东东营耐盐鉴定基地进行鉴定,每小区面积4.5
采用DNA提取试剂盒(TIANGEN)对水稻叶片进行DNA提取。采用KOD-FX高保真酶进行PCR扩增,PCR扩增体系为50 µL,包括DNA 2 µL(50 ng),引物(正向+反向)各1.5 µL (10 µmol/L ),Buffer 25 µL,ddH2O 10 µL,dNTP 10 µL。PCR扩增程序为98℃预变性5 min;98℃变性10 s,58℃退火30 s,68℃延伸30 s,35个循环;68℃延伸10 min。PCR反应结束后,取产物于1.0%的琼脂糖凝胶200V电压下电泳分离。
利用RNA提取试剂盒(TIANGEN)对试验材料进行RNA提取,然后使用HiScript IV RT SuperMix for qPCR(+gDNA wiper)(Vazyme)反转录试剂将RNA反转录为cDNA,反转录体系分为两步,第1步体系包含RNase-free ddH2O 7 μL,5 × gDNA wiper Mix 3 μL,模板RNA 5 μL;反应程序为42℃,2 min。第2步体系包含4 × HiScript IV qRT SuperMix 5 μL,第1步的反应液15 μL;反应程序:37℃ 15 min,85℃ 5 s。利用Taq Pro Universal SYBR qPCR Master Mix(Vazyme)进行qRT-PCR实验,反应体系为20 µL,包括2 × Taq Pro Universal SYBR qPCR Master Mix 10 μL,正反向引物(10 μmol/L) 各0.4 μL,cDNA 4 μL,ddH2O 5.2 μL;反应程序95℃ 15 min;95℃ 10 s,60℃ 30 s,72℃ 30 s,40个循环;熔解曲线设定默认为95℃ 15 s,60℃ 1 min,95℃ 30 s,60℃ 15 s。数据分析采用
基于Rice SNP-Seek Database网站(https://snpseekv3.irri-e-extension.com/v2/_download.zul)提供的水稻基因分型数据集3K RG 1M GWAS SNP Dataset下载3024份水稻的SNP数据,根据测序编号利用plink软件包从中提取本研究中用到的236份材料的SNP信息,为保证数据质量和分析结果的准确性,按照样本间SNP缺失率<0.05、次等位基因频率MAF≥0.05进行筛选,共获得338112个SNP 标记用于提取材料中耐盐基因编码区的多态性SNP位点;利用Launch DnaSP6软件进行单倍型分析。
根据单倍型分析以及亲本盐丰47和农垦57基因序列比对的结果,确定优势单倍型携带的特有变异位点,并针对这些位点开发分子标记。本研究开发了AKT1、MYB48、HKT1这3个基因的分子标记。根据存在的SNP位点,利用Primer Premier 3软件设计引物,开发扩增片段在100~300 bp的SNP分子标记。在KASP分子标记开发中,根据目的SNP位点上下游各100 bp的DNA序列,利用网站https://bioinfo.ut.ee/primer3-0.4.0/设计3条分子标记引物,包括一条反向通用引物,两条正向特异性引物,正向引物3′端为SNP位点,5′端加上2种检测探针序列,扩增产物长度一般为70~150 bp。
对于KASP分子标记,PCR扩增体系为50 µL,包括DNA 2 µL(50 ng),引物(正向+反向)各1.5 µL (10 µmol/L),Buffer 25 µL,ddH2O 10 µL,dNTP 10 µL。扩增程序为:预变性阶段95℃反应15 min;循环阶段95℃变性10 s,65℃~55℃退火延伸60 s(每个循环降低1℃,10个循环后退火延伸温度保持在55℃),95℃ 10 s,57℃ 60 s,30个循环;然后对PCR产物进行荧光值检测(PHERAstar PLUS 酶标仪),并根据荧光检测结果判断基因型。
对于SNP分子标记,PCR反应为采用KOD-FX高保真酶进行PCR扩增,PCR扩增体系同KASP分子标记。PCR扩增程序为98℃预变性5 min;98℃变性10 s,58℃退火30 s,68℃延伸30 s,35个循环;68℃延伸10 min。PCR产物利用1.0%的琼脂糖凝胶200 V电压下电泳分离,观察并记录每个样品的带型。
水稻核心种质群体苗期与大田耐盐性鉴定统计结果如
种质类型 Germplasm type | 品种名 Name | 地区 Origin | 分组 Group | 苗期存活 天数(d)Seedling survival days | 苗期耐盐等级Seedling salt-tolerant grade | 苗期存活率(%) Seedling survival rate | 大田存活率 (%) Field survival rate | 大田耐盐等级Field salt-tolerant grade |
---|---|---|---|---|---|---|---|---|
强耐盐种质 Strongly salt-tolerant germplasm | 71011 | 澳大利亚 | XI-1A | 25.50 | 5.2 | 100 | 100 | 3.4 |
加巴拉 | 孟加拉 | XI-1A | 22.15 | 5.4 | 100 | 81 | 4.2 | |
湘晚籼3号 | 中国 | XI-adm | 24.90 | 5.6 | 100 | 100 | 5.0 | |
镇籼232 | 中国 | XI-1A | 25.10 | 4.6 | 100 | 87 | 4.2 | |
献改B | 中国 | XI-adm | 24.40 | 6.1 | 100 | 93 | 5.0 | |
盐敏感种质 Salt-sensitive germplasm | CHANH 148 | 越南 | XI-adm | 10.10 | 9.0 | 2.8 | 0 | 9 |
秕五升 | 中国 | XI-adm | 9.80 | 9.0 | 2.0 | 0 | 9 | |
光壳香糯 | 中国 | GJ-tmp | 9.60 | 9.0 | 1.0 | 0 | 9 | |
一支香 | 中国 | GJ-tmp | 9.60 | 9.0 | 1.0 | 5.0 | 8.5 | |
高丽秋 | 朝鲜 | GJ-tmp | 10.40 | 9.0 | 0 | 0 | 9 |
通过查询国家水稻数据库(http://www.ricedata.cn/gene/),目前发掘到的水稻耐盐相关基因共约300个,分布于12条染色体上。选取已有相关文献报道、具有耐盐功能以及耐盐调控机理清晰的20个基因(详见https://doi.org/10.13430/j.cnki.jpgr.20240602001,

图1 8个耐盐基因在236份核心种质群体中的单倍型分布
Fig. 1 Distribution of haplotypes of eight genes in 236 rice core germplasm
选择强耐盐水稻品种盐丰47(YF47),普通品种农垦57(NK57)作为亲本,测序鉴定上述20个耐盐相关基因在两亲本间的序列差异位点。结果表明,在这两份育成品种中,AKT1、HKT1、MYB48、ONAC02

图2 三个基因序列在两亲本间的变异位点及表达量分析
Fig. 2 Variations and transcriptional patterns of three genes in both parents
A:AKT1、MYB48和HKT1在两亲本间的变异位点分布,其中--代表该位置碱基缺失,红色碱基代表两亲本间变异位点;B:AKT1和MYB48在两亲本间的表达量模式,20 d幼苗分别在150 mmol/L NaCl处理0、 0.5、 2、 4、 8 h后提取叶片RNA, ns:无显著差异, *:在P< 0.05水平差异显著, ***:在P<0.001水平差异极显著, 下同
A:Variation site distribution of AKT1, MYB48 and HKT1 between the two parents, where ‘--’ represents base deletion at that position,the red nucleotide base represents variation site; B:Expression patterns of AKT1 and MYB48 in two parents under salt treatments. 20-days seedlings were treated with 150 mmol/L NaCl, RNA was extracted after treatments 0, 0.5, 2, 4, 8 hours respectively. ns:No significant difference, *:Significant difference at P<0.05 level, ***:Extremely significant difference at the P<0.01 level, the same as below
根据在核心种质中鉴定的存在优异单倍型的基因,以及YF47、NK57之间的基因型差异,最终选择启动子区有变异且表达量差异显著的AKT1、MYB48,以及编码区有非同义突变的HKT1用以开发SNP分子标记和KASP分子标记(
引物名称Primer name | 引物序列(5′-3′)Primer sequence(5′-3′) |
---|---|
AKT1-S-F1 | CCGATTCGTCGCCGCCCAGC |
AKT1-S-R1 | CACAAGGCCCACAAATCTGG |
MYB48-S-F1 | TCAACGTCACAACAAATCTA |
MYB48-S-R1 | AGCAAGTATCAAGGTTAGTA |
HKT1-S-F1 | CAAGTAGTAAGATCCACATC |
HKT1-S-R1 | CGGCTTGTCCTGGCAGATGC |
AKT1-FAM1 | GAAGGTGACCAAGTTCATGCTCTAAATATGATAACTTGGAATTCTGCAGG |
AKT1-HEX1 | GAAGGTCGGAGTCAACGGATTCCTAAATATGATAACTTGGAATTCTGCAGT |
AKT1-COM1 | TGTTCGAACTGTGAATAGCTGAGG |
MYB48-FAM1 | GAAGGTGACCAAGTTCATGCTGCATCGCCCAAGAGCATG |
MYB48-HEX1 | GAAGGTCGGAGTCAACGGATTGCATCGCCCAAGAGCATT |
MYB48-COM1 | GCCAGTAGTTCTTGATCTCGTTGTC |
HKT1-FAM1 | GAAGGTGACCAAGTTCATGCTGCAAGCCAAGTAGTAAGATCCACATT |
HKT1-HEX1 | GAAGGTCGGAGTCAACGGATTGCAAGCCAAGTAGTAAGATCCACATC |
HKT1-COM1 | TGTCTTCTGAAAGATTCTGAGGTGTC |

图3 AKT1、MYB48和HKT1分子标记开发验证
Fig. 3 Development and validation of molecular markers of AKT1, MYB48 and HKT1
A:3个基因SNP标记引物的PCR产物电泳检测, T1~T6为盐丰47(YF47)/农垦57(NK57)重组自交系;B:3个等位基因的KASP标记分型,图中每个圆点代表一个样品,蓝色圆点表示该基因携带HEX标签序列,红色表示该基因携带FAM标签序列,黑色圆点为空白对照
A:PCR product electrophoresis detection of 3 gene SNP marker primers, T1-T6 is a recombinant inbred lines of YF47/NK57, M: Marker;B:KASP marker typing of 3 alleles. Each dot in the figure represents a sample, the blue dots indicate that the gene carries a HEX tag sequence, red indicates that the gene carries the FAM tag sequence, black dots are blank controls
构建YF47/NK57重组自交系至F6,对30份重组自交系进行SNP分子标记鉴定,如


图4 盐丰47与农垦57重组自交系耐盐表型鉴定
Fig. 4 Salt tolerance identification of six recombinant inbred lines from Yanfeng47 and Nongken57
A:YF47、NK57及6个株系耐盐表型;B~G:YF47、NK57及6个株系NaCl处理后复水7天后耐盐相关表型调查,T1-T6为盐丰47(YF47)/农垦57(NK57)重组自交系,**:在P< 0.01水平差异极显著
A:Salt tolerance phenotypes of YF47, NK57, and 6 lines;B-G:Phenotypic investigation related to salt tolerance of YF47, NK57, and 6 other strains following 7 days of recovery after NaCl stress,T1-T6 is a recombinant inbred line of YF47/NK57, **:Extremely significant difference at the P<0.01 level

图5 AKT1和MYB48在6个重组自交系中的表达模式以及耐盐株系T1~T3田间单株产量统计
Fig. 5 The expression patterns of AKT1 and MYB48 in 6 recombinant inbred lines and yield statistics of salt tolerant T1-T3 plants in the field
A:AKT1和MYB48基因在两亲本和6个重组自交系中的表达模式,20 d幼苗150 mmol/L NaCl分别处理0、0.5、2、4、8 h;B:盐丰47与农垦57,以及3个耐盐株系T1~T3在田间的单株产量统计,样本数>20株,各株系单株产量与高产亲本盐丰47比较的P值列于上方
A:The expression patterns of AKT1 and MYB48 genes in two parents and six recombinant inbred lines. After 20 days of treatment with 150 mmol/L NaCl at 0, 0.5, 2, 4, and 8 h;B:The yield statistics of Yanfeng 47 and Nongken 57, as well as three salt tolerant plant lines T1-T3 in the field, showed a sample size of more than 20 plants. The P-values of the yield comparison between each plant line and its high-yielding parent Yanfeng 47 are listed above
随着我国盐渍化土地的不断增加,培育耐盐碱水稻新品种越发重要。目前,国内外创制的耐盐水稻材料很多,但生产中的绝大多数品种耐盐性并不
本研究选择了两个亲本品种,对耐盐基因优异单倍型进行验证并开发分子标记。盐丰47是目前水稻生产中推广面积较大的耐盐品
本研究中聚合了AKT1、HKT1、MYB48三个基因优异基因型的3个株系T1、T2、T3,其耐盐程度高于盐丰47,且单株产量性状并未受到影响。下一步将进一步进行盐胁迫下的大田产量试验,以及测定3个株系的稻米品质等性状,这3个株系作为创新种质,既可以用作育种改良的中间材料,也可以作为耐盐的新品系在生产中推广应用。
本研究通过对国内外的236份水稻核心种质进行苗期、大田耐盐鉴定,筛选出一批耐盐种质,包括一份强耐盐的来自澳大利亚的水稻新种质。通过筛选已报道耐盐基因的优异单倍型,开发了AKT1、HKT1、MYB48的分子标记,并利用耐盐品种盐丰47与常规品种农垦57构建重组自交系,聚合耐盐基因的优异基因型,创制了3个强耐盐的新品系。本研究为水稻耐盐育种提供了可利用的品种资源、分子标记以及创新种质。
参考文献
Zhao C, Zhang H, Song C, Zhu J K, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innovation (Camb), 2020,1(1):100017 [百度学术]
段国康, 刘淼, 梁正伟. 盐碱胁迫水稻根系研究. 土壤与作物, 2024, 13 (1): 119-126 [百度学术]
Duan G K,Liu M,Liang Z W. Rice roots under saline-alkali stress. Soils and Crops,2024,13(1):119 -126 [百度学术]
Qin H, Li Y, Huang R. Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences, 2020,21(21):8385 [百度学术]
Machado R, Serralheiro R. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 2017,3(2):30 [百度学术]
徐培智, 戴文举, 黄旭, 林碧珊, 曾招兵, 张桥, 解开治. 广东省滨海盐土特征及改良策略. 广东农业科学, 2023,50(2):87-94 [百度学术]
Xu P Z, Dai W J, Huang X, Lin B S, Zeng Z B, Zhang Q, Xie K Z. Characteristics of seashore saline soils in guangdong province and improvement strategies. Guangdong Agricultural Sciences, 2023,50(2):87-94 [百度学术]
Pardo J M. Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology, 2010,21(2):185-196 [百度学术]
马国辉, 郑殿峰, 母德伟, 王奉斌, 戴其根, 魏中伟, 冯乃杰, 王才林. 耐盐碱水稻研究进展与展望. 杂交水稻, 2024,39(1):1-10 [百度学术]
Ma G H, Zheng D F, Mu D W, Wang F B, Dai Q G, Wei Z W, Feng N J, Wang C L. Research progress and prospect of salinealkali tolerant rice. Hybrid Rice, 2024,39(1):1-10 [百度学术]
Fageria N K. Salt tolerance of rice cultivars. Plant Soil, 1985, 88(2):237-243 [百度学术]
巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展. 中国水稻科学, 2022, 36(6):551-561 [百度学术]
Wu M M, Zeng W, Zhai R R, Ye J, Zhu G F, Yu F M, Zhang X M, Ye S H. Research progress in molecular mechanism and breeding status of salt tolerance in rice. Chinese Journal of Rice Science, 2022, 36(6):551-561 [百度学术]
王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议. 中国稻米, 2019, 25(1):1-6 [百度学术]
Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C F, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on saltalkali tolerant rice. China Rice, 2019, 25(1):1-6 [百度学术]
陈思蓉, 李晨, 孙炳蕊. 水稻耐盐分子机制研究进展. 广东农业科学, 2023,50(12):29-42 [百度学术]
Chen S R, Li C, Sun B R. Research progress on molecular mechanism of salt tolerance in rice. Guangdong Agricultural Sciences, 2023,50(12):29-42 [百度学术]
Xiao F, Zhou H. Plant salt response: Perception, signaling, and tolerance. Frontiers in Plant Science, 2022,13:1053699 [百度学术]
Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 10, 37(10):1141-1146 [百度学术]
Deng P, Jing W, Cao C, Sun M, Chi W, Zhao S, Dai J, Shi X, Wu Q, Zhang B, Jin Z, Guo C, Tian Q, Shen L, Yu J, Jiang L, Wang C, Chin J H, Yuan J, Zhang Q, Zhang W. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50):e2210338119 [百度学术]
Zhang H L, Zhang D L, Wang M X, Sun J L, Qi Y W,Li J J,Wei X H, Han L Z, Qiu Z G, Tang S X, Li Z C. A core collection and mini core collection of Oryza sativa L. in China. Theoretical and Applied Genetics, 2011, 122: 49-61 [百度学术]
Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo M E B, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J C, Zhang J, Li J, Hamilton R S, Wing R A, Ruan J, Zhang G, Wei C, Alexandrov N, McNally K L, Li Z, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557:43-48 [百度学术]
Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, Cell & Environment, 2015, 38(12): 2766-2779 [百度学术]
韩龙植,魏兴华.水稻种质资源描述规范和数据标准.北京:中国农业出版社,2006:15-18 [百度学术]
Han L Z, Wei X H. Rice germplasm resource description specifications and data standards. Beijng: China Agriculture Press, 2006: 15-18 [百度学术]
Ahmad I, Mian A, Maathuis F J. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. Journal of Experimental Botany, 2016,67(9):2689-2698 [百度学术]
Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant Journal, 2012,69(1):26-36 [百度学术]
Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE, 2014,9(3):e92913 [百度学术]
Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany, 2013,86:94-105 [百度学术]
Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant Journal, 2010,62(2):316-329 [百度学术]
Wang H, Zhang M, Guo R, Shi D, Liu B, Lin X, Yang C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biology, 2012,12(1):194 [百度学术]
Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE, 2014,9(1):e86895 [百度学术]
Wei H, Wang X, He Y, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. EMBO Journal, 2021,40(3):e105086 [百度学术]
Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science, 2016,7:4 [百度学术]
Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 2014,166(2):945-959 [百度学术]
Liu S, Zheng L, Xue Y, Zhang Q, Wang L, Shou H. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 2010,53(6):444-452 [百度学术]
陶维旭, 程生海, 冀俊超, 艾治勇. 水稻品种资源耐盐性综合评价及耐盐指标筛选. 江苏农业科学, 2022,50(18):180-187 [百度学术]
Tao W X, Cheng S H, Ji J C, Ai Z Y. Comprehensive evaluation of salinity tolerance of rice variety resources and screening of salinity tolerance indexes. Jiangsu Agricultural Sciences, 2022,50(18):180-187 [百度学术]
张所兵, 张云辉, 林静, 方先文. 水稻全生育期耐盐资源的初步筛选. 中国农学通报, 2013,29(36):63-68 [百度学术]
Zhang S B, Zhang Y H, Lin J, Fang X W. Primary screening of salt-tolerant rice germplasm in entire growth period. Chinese Agricultural Science Bulletin, 2013,29(36):63-68 [百度学术]
陈思蓉, 李晨, 孙炳蕊. 水稻耐盐分子机制研究进展. 广东农业科学, 2023,50(12):29-42 [百度学术]
Chen S R, Li C, Sun B R. Research progress on molecular mechanism of salt tolerance in rice. Guangdong Agricultural Sciences, 2023,50(12):29-42 [百度学术]
王志兴, 王宇, 李振宇, 陈广红, 王绍林. 水稻盐丰47特征特性及高产栽培技术要点. 垦殖与稻作, 2003(6):6-8 [百度学术]
Wang Z X, Wang Y, Li Z Y, Chen G H, Wang S L. The character and planting keys of the new variety Yanfeng47. Reclaiming and Rice Cultivation, 2003(6):6-8 [百度学术]
谢庆军, 朱立宏. 粳稻若干数量性状的配合力和遗传分析. 江苏农业学报, 1985(4):6-14 [百度学术]
Xie Q J, Zhu L H. Combining ability and genetic analysis of several quantitative traits of Oryza sativa L. subsp. keng. Jiangsu Journal of Agricultural Sciences, 1985(4):6-14 [百度学术]
Li J, Long Y, Qi G N, Li J, Xu Z J, Wu W H, Wang Y. The Os-AKT1 channel is critical for