摘要
大豆对光周期的敏感性限制了优良大豆品种的推广种植。本研究通过降低大豆对光周期的敏感性,创制早熟且产量稳定的大豆新品种,扩大优良品种的种植范围。利用CRISPR/Cas9技术获得3个大豆GmphyA2基因纯合突变体。创制的GmphyA2突变体由于碱基缺失导致移码突变,均编码无PHY结构域的截短蛋白。本研究比较了GmphyA2突变体和野生型‘Jack’的生育期、株系和产量相关性状。与野生型相比,GmphyA2突变体在开花前期的GmFT2a和GmFT5a基因表达量显著提高,导致其开花时间提前5~6 d,成熟期也提前了6~11 d。尽管整体生育期有所缩短,但GmphyA2突变体的有效分枝数和单株粒数都显著增加,且单株粒重与野生型相比没有明显差异。这些结果表明,利用CRISPR/Cas9技术编辑GmphyA2创制了生育期缩短单株产量不变的大豆新种质,为早熟高产育种提供了新的基因资源。
大豆的种植范围广泛,其适宜种植的纬度范围从北纬50°延伸至南纬35
大豆生育期的缩短主要是通过降低或丧失对短日照的敏感性来实现的。迄今为止,通过正向遗传学已确定了主要的生育期遗传位点E1~E11和J
Wan
本研究利用CRISPR/Cas9基因编辑技术敲除大豆中的E4基因,并分析E4基因编辑材料在生育期、产量方面的表型,获得了生育期缩短且产量稳定的大豆新材料。这对于高纬度地区的大豆种植尤为重要,因为这些地区的生长季节较短,需要早熟品种以避免霜冻风险。通过挖掘和利用优异基因资源,未来有望进一步提升大豆的产量和适应性,为大豆生产提供有力支持。
供试大豆品种为‘Jack’,由中国农业科学院作物科学研究所提供。大肠杆菌DH5α、农杆菌菌株EHA105均购自北京全式金生物公司。植物CRISPR/Cas9表达载体pBSE401-13由安徽农业大学王晓波老师构建提供。本研究中所用引物由北京博迈德生物技术有限公司合成,引物序列见
引物名称 Primer name | 引物序列(5′-3′) Sequence(5′-3′) | 用途 Purpose |
---|---|---|
DT1-BsF | ATATATGGTCTCGATTGGAGATCAAGACGTAGTGCTA GTT | 载体构建引物 |
DT1-BsR | ATTATTGGTCTCGAAACGAGATGCGCACCGAACTGGCAA | |
DT1-F0 | TGGAGATCAAGACGTAGTGCTAGTTTTAGAGCTAGAAATAGC | |
DT1-R0 | AACGAGATGCGCACCGAACTGGCAATCTCTTAGTCGACTCTAC | |
U626-F | TGTCCCAGGATTAGAATGATTAGGC | 菌检及测序 |
U629-R | AGCCCTCTTCTTTCGATCCATCAAC | |
Cas9-F | CTCCCGGATGAACACTAAGTAC | 转基因成分检测 |
Cas9-R | CAGGGTAATCTCGGTCTTGAAA | |
Bar-F | AAGCACGGTCAACTTCCGTA | |
Bar-R | GAAGTCCAGCTGCCAGAAAC | |
GmphyA2-F | ATTGTTTTGTCGGCTCGTAGTT | 靶点位置基因序列扩增 |
GmphyA2-R | TCATACTACCAGTGACACGATG | |
OFF-10G-F | CTTGAGGAATGCGTTGGAAA | 脱靶位点基因序列扩增 |
OFF-10G-R | ACTGGCTCAAAGTCAACGAT | |
OFF-18G-F | CAAATGCCCCACTAATCAGA | |
OFF-18G-R | AGACCTCTCCTCCTGATTCG | |
OFF-19G-F | CAGTGAGTAAGGATGATGTGAA | |
OFF-19G-R | GATTTTCTGTGTCTGATGGAGG | |
qGmActin-F | GTGTCAGCCATACTGTCCCCATTT | qRT-PCR检测引物 |
qGmActin-R | GTTTCAAGCTCTTGCTCGTAATCA | |
qGmFT2a-F | ATCCCGATGCACCTAGCCCA | |
qGmFT2a-R | ACACCAAACGATGAATCCCCA | |
qGmFT5a-F | AGCCCGAACCCTTCAGTAGGGA | |
qGmFT5a-R | GGTGATGACAGTGTCTCTGCCCA |
根据‘Jack’的GmphyA2基因外显子序列,利用CRISPR-P 2.0网站(http://crispr.hzau.edu.cn/CRISPR2)在第一外显子处设计2个19 bp的sgRNA,sgRNA1(5′-GAGATCAAGACGTAGTGC TA-3′)的3′端具有PAM(Protospacer adjacent motif)序列“GGG”;sgRNA2(5′-CCAGTTCGG TGCGCATCTC-3')的3′端具有PAM(Protospacer adjacent motif)序列“TGG”(

图1 GmphyA2基因靶点位置和基因编辑载体构建
Fig. 1 GmphyA2 target site and gene editing vector construction
A:GmphyA2基因结构及sgRNA序列, 绿色方框:5′非编码区, 蓝色方框:外显子, 黑色横线:内含子, 粉色方框:3′非编码区, 下划线:PAM序列; B:pBSE401-Cas9-GmphyA2-2gRNA载体结构示意, RB:T-DNA右边界, LB:T-DNA左边界, AtU6:拟南芥U6启动子, 35S:花椰菜花叶病毒35S启动子, BlpR:抗草铵膦基因Bar
A: GmphyA2 structure and sgRNA sequence, green box: 5′ non-coding region, blue box: Exons, black horizontal line: Introns, pink box: 3′ non-coding region, underlined: Sequence of PAM; B: Schematic diagram of pBSE401-Cas9-GmphyA2-2gRNA vector structure, RB: Right border of T-DNA, LB: Left border of T-DNA, AtU6: Arabidopsis thaliana U6 promoter, 35S: Cauliflower mosaic virus 35S promoter, BlpR: Glufosinate ammonium resistance gene Bar
参考Wang
提取转基因阳性株系的基因组DNA,用GmphyA2-F/R、OFF-10G-F/R、OFF-18G-F/R、OFF-19G-F/R引物扩增GmphyA2基因靶点及潜在脱靶位点区域,将PCR产物送中国农业科学院作物科学研究所测序部进行Sanger法测序,测序引物分别为GmphyA2-R、OFF-10G-F、OFF-18G-F和OFF-19G-F。利用SnapGene查看基因靶点位置的峰图,确定靶点位置具体的碱基突变情况。潜在脱靶位点信息见
编号 Number | 脱靶位点的位置 Position of off-target site | 脱靶位点基因 Off-target genes | 错配碱基数 Number of mismatched bases | 脱靶概率 Off-score probability |
---|---|---|---|---|
1 | Chr.10:+36963993 | Glyma.10G141400 | 2 | 0.477 |
2 | Chr.18:-3833600 | Glyma.18G044800 | 4 | 0.171 |
3 | Chr.19:+47512575 | Glyma.19G224200 | 4 | 0.105 |
+、- 分别表示该位置在染色体的正义链、反义链上
+,- indicate that the position is on the sense strand ,the antisense strand of the chromosome, respectively
取出苗后40 d(V5期)的大豆叶片,用TRIzol试剂(Invitrogen,美国)分离RNA,并用Nanodrop(Thermo Fisher Scientific,美国)定量。使用HiScript IV逆转录酶(诺唯赞,中国)将RNA逆转录为cDNA。使用Universal SYBR qPCR Master Mix Kit(诺唯赞,中国)在7300 实时荧光定量PCR仪(ABI,美国)上进行qRT-PCR,取3次重复的平均值。qRT-PCR程序为:95 ℃ 30 s;95 ℃ 10 s,60 ℃ 30 s,40个循环;95 ℃ 15 s,60 ℃ 60 s,95 ℃ 15 s作融解曲线。数据以GmActin4(Glyma.12G063400)作为内参基
利用农杆菌介导法将pBSE401-Cas9-GmphyA2- 2gRNA转化受体品种‘Jack’后,共得到21株T0代草铵膦抗性植株。利用GmphyA2-F/R引物对对T0代草铵膦抗性植株进行靶点突变检测,Sanger测序结果表明有7株T0代植株靶点存在突变,靶点突变的比例约为33%,将这些材料种植在人工气候室直至获得T1代。为了获得不含转基因成分的GmphyA2突变株,在田间条件下种植7个T1株系并进行GmphyA2基因型鉴定,利用Cas9-F/R和Bar-F/R引物对进行Cas9和Bar等转基因成分检测,结果显示,共得到3种类型的无外源基因插入的纯合株系:gmphya2-1在靶点区域出现93 bp缺失,编码1093个氨基酸的截短蛋白;gmphya2-2在靶点区域出现104 bp碱基缺失导致移码突变,编码34个氨基酸的截短蛋白;gmphya2-3在靶点区域出现3+2 bp碱基缺失,编码20个氨基酸的截短蛋白。gmphya2-2和gmphya2-3的GmphyA2基因突变都造成了基因序列的移码突变和转录提前终止,编码产生的截短蛋白缺少PHY结构域。
此外,用OFF-10G-F/R、OFF-18G-F/R、OFF-19G-F/R引物对分别对3种类型的无外源基因插入纯合株系的潜在脱靶基因(Glyma.10G141400、Glyma.18G044800和Glyma.19G224200)进行测序分析,所有GmphyA2突变体株系中均无脱靶现象存在。

图2 GmphyA2纯合突变体类型分析
Fig. 2 Analysis of GmphyA2 pure mutants without transgenic components
A:GmphyA2基因突变类型, 白色方框:非编码区, 黑色方框:外显子, 黑色横线:内含子, 黑色下划线:PAM位点, 黑色虚线:缺失的DNA片段; B:GmphyA2突变体及野生型‘Jack’的编码蛋白, 彩色方框:GmphyA2的结构域, PHY:植物色素特有结构域
A: GmphyA2 mutation types, white boxes: Non-coding regions, black boxes: Exons, black horizontal lines: Introns, black underlines: PAM sites, black dashed lines: Deleted DNA fragments; B: Truncated proteins in GmphyA2 mutants and WT, colored boxes: Structural domains of GmphyA2, PHY: Phytochrome-specific structural domains
在北京长日照条件下,野生型‘Jack’和GmphyA2突变体的开花时间,即R1期(主茎的任一节点有开放的花)存在差异,GmphyA2突变体均提前开花,gmphya2-3在出苗后31 d开花,相比野生型提前6 d开花;gmphya2-1和gmphya2-2突变体株系在出苗后32 d开花,相比野生型提前5 d开花(

图3 GmphyA2突变体和野生型开花时间表型观察及下游开花相关基因表达分析
Fig. 3 Observation of flowering schedule phenotypes of mutant and WT and downstream flowering-related genes expression analysis
A~D:野生型和GmphyA2突变体在出苗后31 d的主茎开花节点;E、F:GmphyA2突变体和野生型开花时间和成熟时间的比较,n=18;G、H:大豆开花前期(V5期)GmphyA2下游的开花核心整合因子GmFT2a和GmFT5a的相对表达量,n=3;***表示差异极显著(P<0.001)
A-D: Main stem flowering nodes of WT (wild type)and GmphyA2 mutants after 31 d post emergence; E,F: Comparison of flowering schedule between GmphyA2 mutant and WT, n=18; G,H: Gene expression of soybean V5 stage flowering core integrators GmFT2a and GmFT5a, n=3; ***indicates a highly significant difference with P<0.001
进一步考察了GmphyA2突变体和野生型的成熟时间,即R8期(95%的豆荚成熟)(
对野生型‘Jack’和GmphyA2突变体株系的有效分枝数、单株粒数、株高、主茎节数、单株粒重、百粒重等重要农艺性状进行了考察(

图4 GmphyA2突变体株型和产量相关性状分析
Fig. 4 Analysis of plant type and yield-related agronomic traits in GmphyA2 mutants
A:野生型和GmphyA2突变体的成熟期表型,标尺为10 cm;B~G:野生型和GmphyA2突变体的有效分枝数、株高、单株粒数、主茎节数、百粒重和单株粒重,n=5;*表示差异显著(P<0.05),**表示差异显著(P<0.01),*** 表示差异极显著(P<0.001)
A: Agronomic traits of maturity in WT and GmphyA2 mutants, bar is 10 cm;B-G: Effective number of branches, plant height, number of grains per plant, number of main stem nodes, 100-grain weight, and grain weight per plant for the wild type and GmphyA2 mutants, n=5; * indicates a significant difference with P<0.05, ** indicates a significant difference with P<0.01, and *** indicates a highly significant difference with P<0.001
适当缩短大豆生育期可以提高作物适应性以应对不同气候条件,降低因季节性天气变化带来的风险,促进多样化作物轮作,减少病虫害影响,提高土地和水资源利用效率,适应市场早期需求,降低生产成
大豆是一种古多倍体物种,具有大量重复序列和基因多样
GmphyA2与大豆的产量和品质性状有关联,GmEID1作为连接GmphyA2/A3与生物钟夜间复合物的桥梁,参与调控大豆生育期的分子机制,其基因编辑突变体显示出显著的增产潜
本研究利用基因编辑技术CRISPR/Cas9创制了大豆GmphyA2基因突变体,GmphyA2基因均存在大片段缺失或移码突变,其突变位点与已报道均不相同,在开花时间、成熟期、有效分枝数、单株粒数等方面表现出显著优势。不仅开花时间提前5~6 d,成熟期也相应提前6~11 d,这意味着在相同的季节内,农民可以更早地收获大豆,从而提高土地的利用效率。尽管成熟期提前,但GmphyA2基因突变体通过增加单株粒数保持了产量的稳定,这有助于拓宽大豆的种植范围。总的来说,本研究展示了GmphyA2在作物改良中的潜力,为培育适应性强、产量高的大豆品种提供了新的途径。
参考文献
Zhang L, Liu W, Tsegaw M, Xu X, Qi Y, Sapey E, Liu L, Wu T, Sun S, Han T. Principles and practices of the photo-thermal adaptability improvement in soybean. Journal of Integrative Agriculture, 2020, 19(2): 295-310 [百度学术]
Han Y, Zhao X, Liu D, Li Y, Lightfoot D A, Yang Z, Zhao L, Zhou G, Wang Z, Huang L, Zhang Z, Qiu L, Zheng H, Li W. Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytologist, 2016, 209(2): 871-884 [百度学术]
Lin X, Liu B, Weller J, Abe J, Kong F. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 2021, 63(6): 981-994 [百度学术]
Cober E R, Morrison M J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theoretical and Applied Genetics, 2010, 120(5): 1005-1012 [百度学术]
Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Monthly Weather Review, 1920, 48(7): 415-415 [百度学术]
Dong L, Li S, Wang L, Su T, Zhang C, Bi Y, Lai Y, Kong L, Wang F, Pei X, Li H, Hou Z, Du H, Du H, Li T, Cheng Q, Fang C, Kong F, Liu B. The genetic basis of high-latitude adaptation in wild soybean. Current Biology, 2023, 33(2): 252-262 [百度学术]
Carpentieri-Pípolo V, Almeida L A, Kiihl R A. Inheritance of a long juvenile period under short-day conditions in soybean. Genetics and Molecular Biology, 2002,25 (4):463-469 [百度学术]
王源才. 超早熟、高蛋白大豆新品种“东农36”. 种子, 1983 (3): 84 [百度学术]
Wang Y C. New ultra-early-maturing, high-protein soybean variety ‘Dongnong 36’. Seed, 1983 (3): 84 [百度学术]
Dong L, Cheng Q, Fang C, Kong L, Yang H, Hou Z, Li Y, Nan H, Zhang Y, Chen Q, Zhang C, Kou K, Su T, Wang L, Li S, Li H, Lin X, Tang Y, Zhao X, Lu S, Liu B, Kong F. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Molecular Plant, 2022, 15(2): 308-321 [百度学术]
Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(32): E2155-E2164 [百度学术]
Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188(2): 395-407 [百度学术]
Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182(4): 1251-1262 [百度学术]
Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome a gene. Genetics, 2008, 180(2): 995-1007 [百度学术]
Zhao C, Takeshima R, Zhu J, Xu M, Sato M, Watanabe S, Kanazawa A, Liu B, Kong F, Yamada T, Abe J. A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biology, 2016, 16(1): 20 [百度学术]
Samanfar B, Molnar S J, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober E R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theoretical and Applied Genetics, 2017, 130(2): 377-390 [百度学术]
Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller J L, Kong F. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 2020, 52(4): 428-436 [百度学术]
Cao D, Li Y, Lu S, Wang J, Nan H, Li X, Shi D, Fang C, Zhai H, Yuan X, Anai T, Xia Z, Liu B, Kong F. GmCOL1a and GmCOL1b function as flowering repressors in soybean under long-day conditions. Plant and Cell Physiology, 2015, 56(12): 2409-2422 [百度学术]
Xia Z J, Zhai H, Liu B H, Kong F J, Yuan X H, Wu H Y, Cober E R, Harada K. Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Plant Systematics and Evolution, 2012, 298(7): 1217-1227 [百度学术]
Casal J J, Candia A N, Sellaro R. Light perception and signalling by phytochrome A. Journal of Experimental Botany, 2014, 65(11): 2835-2845 [百度学术]
Zhang Y, Lin X, Ma C, Zhao J, Shang X, Wang Z, Xu B, Gao N, Deng X W, Wang J. Structural insights into plant phytochrome A as a highly sensitized photoreceptor. Cell Research, 2023, 33(10): 806-809 [百度学术]
Sheerin D J, Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signalling. Plant, Cell & Environment, 2017, 40(11): 2509-2529 [百度学术]
Casal J, Sanchez R, Yanovsky M. The function of phytochrome A. Plant, Cell & Environment, 1997, 20: 813-819 [百度学术]
Cober E R, Tanner J W, Voldeng H D. Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop Science, 1996, 36(3): 601-605 [百度学术]
Kong F, Liu B, Xia Z, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiology, 2010, 154(3): 1220-1231 [百度学术]
Singh N, Wu S, Tiwari V, Sehgal S, Raupp J, Wilson D, Abbasov M, Gill B, Poland J. Genomic analysis confirms population structure and identifies inter-lineage hybrids in Aegilops tauschii. Frontiers in Plant Science, 2019, 10:9 [百度学术]
Martínez-Lüscher J, Brillante L, Kurtural S K. Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Frontiers in Plant Science, 2019, 10:10 [百度学术]
Zhang X, Zhai H, Wang Y, Tian X, Zhang Y, Wu H, Lü S, Yang G, Li Y, Wang L, Hu B, Bu Q, Xia Z. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes. Scientific Reports, 2016, 6(1): 29548 [百度学术]
Thakare D, Kumudini S, Dinkins R D. The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis. Planta, 2011, 234(5): 933-943 [百度学术]
Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M. Isolation and characterization of rice phytochrome a mutants. The Plant Cell, 2001, 13(3): 521-534 [百度学术]
Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell, 2005, 17(12): 3311-3325 [百度学术]
Lin C. Photoreceptors and regulation of Flowering Time1. Plant Physiology, 2000, 123(1): 39-50 [百度学术]
Weller J L, Murfet I C, Reid J B. Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiology, 1997, 114(4): 1225-1236 [百度学术]
Lin X, Dong L, Tang Y, Li H, Cheng Q, Li H, Zhang T, Ma L, Xiang H, Chen L, Nan H, Fang C, Lu S, Li J, Liu B, Kong F. Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(41): e2208708119 [百度学术]
Cober E R, Tanner J W, Voldeng H D. Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Science, 1996, 36(3): 606-610 [百度学术]
Kanazawa A, Liu B, Kong F, Arase S, Abe J. Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-Like retrotransposon in soybean. Journal of Molecular Evolution, 2009, 69(2): 164-175 [百度学术]
Tsubokura Y, Matsumura H, Xu M, Liu B, Nakashima H, Anai T, Kong F, Yuan X, Kanamori H, Katayose Y, Takahashi R, Harada K, Abe J. Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy, 2013, 3(1):117-134 [百度学术]
Wan Z, Liu Y, Guo D, Fan R, Liu Y, Xu K, Zhu J, Quan L, Lu W, Bai X, Zhai H. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. Frontiers in Plant Science, 2022, 13:1066820 [百度学术]
Zhao F, Lyu X, Ji R, Liu J, Zhao T, Li H, Liu B, Pei Y. CRISPR/Cas9-engineered mutation to identify the roles of phytochromes in regulating photomorphogenesis and flowering time in soybean. The Crop Journal, 2022, 10(6): 1654-1664 [百度学术]
Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y, Liu B, Wang X C, Chen Q J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 2014, 14(1): 327 [百度学术]
Wang Y, Li Z, Chen X, Gu Y, Zhang L, Qiu L. An efficient soybean transformation protocol for use with elite lines. Plant Cell, Tissue and Organ Culture, 2022, 151(3): 457-466 [百度学术]
Wang X,Chang X, Jing Y, Zhao J, Fang Q, Sun M, Zhang Y, Li W, Li Y. Identification and functional prediction of soybean CircRNAs involved in low-temperature responses. Journal of Plant Physiology, 2020, 250: 153188 [百度学术]
Guo S, Zhang Z, Guo E, Fu Z, Gong J, Yang X. Historical and projected impacts of climate change and technology on soybean yield in China. Agricultural Systems, 2022, 203: 103522 [百度学术]
Tan Q, Liu Y, Dai L, Pan T. Shortened key growth periods of soybean observed in China under climate change. Scientific Reports, 2021, 11(1): 8197 [百度学术]
Bueno A F, Sutil W P, Jahnke S M, Carvalho G A, Cingolani M F, Colmenarez Y C, Corniani N. Biological control as part of the soybean integrated pest management (IPM): Potential and challenges. Agronomy, 2023,13(10): 2532 [百度学术]
Kofsky J, Zhang H, Song B-H. Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean. Scientific Reports, 2021, 11(1): 7967 [百度学术]
Qin C, Li H, Zhang S, Lin X, Jia Z, Zhao F, Wei X, Jiao Y, Li Z, Niu Z, Zhou Y, Li X, Li H, Zhao T, Liu J, Li H, Lu Y, Kong F, Liu B. GmEID1 modulates light signaling through the evening complex to control flowering time and yield in soybean. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(15): e2212468120 [百度学术]
Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, Abe J. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biology, 2013, 13: 91 [百度学术]