摘要
为挖掘油茶含油量及脂肪酸代谢的关键基因,对3个关键发育时期的油茶种仁进行转录组分析,并对富集的脂肪酸代谢关键基因表达量、含油量和各脂肪酸组分比例进行相关性分析。转录组分析表明,共获得17772个差异表达基因,其中11006个基因上调表达,6766个基因下调表达。GO分析表明,3个比较组共有的1302个差异表达基因富集到195个GO条目,每个比较组特有的差异表达基因分别富集到14个、1个和17个GO条目。KEGG分析显示,3个比较组共有的差异表达基因富集在类黄酮生物合成、苯丙烷生物合成、二芳基庚烷和姜酚生物合成、黄酮和黄酮醇生物合成以及谷胱甘肽代谢5条通路中。此外,在脂肪酸合成关键时期的Em0707vsEm1003比较组中,差异表达基因富集在脂肪酸生物合成、脂肪酸代谢、生物素代谢和丙酮酸代谢4条通路中,其中12个差异表达基因参与脂肪酸代谢通路;进一步测定不同时期种仁含油量和脂肪酸组分,并进行相关性分析,表明ACC、KASIII、PATE、KAT2和SAD基因的表达量与种仁含油量和油酸呈极显著正相关,KASIII、ACC、PATE和KAT2基因与棕榈酸呈极显著负相关,可能是调控油茶含油量及脂肪酸代谢相关的关键基因。上述研究为油茶遗传改良提供了科学依据。
油茶(Camellia oleifera Abel)是中国特有的木本食用油料树种,与油橄榄(Olea europaea L.)、油棕(Elaeis guineensis Jacq.)和椰子(Cocos nucifera L.)并称为世界四大木本油料植物,与油桐(Vernicia fordii)、乌桕(Sapium sebiferum L.)和核桃(Juglans regia L.)并称为中国四大木本油料植物。茶油含有90%以上的不饱和脂肪酸,主要成分油酸和亚油酸是人体不可或缺但自身不能合成的多不饱和脂肪酸,具有调节血压和抗氧化的作用,还能有效地预防高血压、冠心病等疾病,是世界上最优质的食用植物油之
在高等植物中,脂肪酸从头生物合成主要发生在质体中。乙酰-CoA 羧化酶(ACC,acetyl-CoA carboxylase)作为脂肪酸生物合成的起始酶,将乙酰-CoA羧化成丙二酸单酰-CoA,丙二酸单酰CoA-ACP 转酰基酶(MCAT,malonyl-CoA∶ACP transacylase)催化丙二酸单酰-CoA生成丙二酸单酰- ACP。丙二酸单酰-ACP在酮脂酰-ACP合酶(KAS,ketoacyl-ACP synthase)和酮脂酰-ACP还原酶(KAR,ketoacyl-ACP reductase)作用下生成羟丁醇-ACP和NAD
目前,关于油茶脂肪酸代谢的研究越来越多。Zeng
本研究采集‘长林40号’3个不同发育时期油茶种仁进行转录组分析,同时对富集获得的脂肪酸代谢相关差异基因表达量、3个发育时期的种仁含油量和各脂肪酸组分比例进行相关性分析,挖掘分析油茶脂肪酸合成与代谢关键基因,为油茶遗传改良、新品种选育和分子育种提供理论依据。
研究材料采集于湖北省黄冈市黄梅县湖北省林业科学研究院油茶林基地(115°59′E,30°9′N),试验材料 ‘长林40号’作为湖北省长林系列主栽品种,具有长势旺、抗性强,高产、稳产且极少染病的特点。2023年7月7日、8月14日和10月3日,分别采集‘长林40号’油茶植株不同方向树冠上中下3层各5个油茶果混合,设置3个重复,将其分别命名为Em0707、Em0814和Em1003,剥去果皮和种壳,液氮速冻,保存于-80 ℃中用于转录组测序、含油量和脂肪酸组分分析。
剥去油茶果实果皮和种子种壳,采集3个时期的油茶种仁,送往北京贝瑞和康生物技术有限公司进行RNA提取、文库构建与质检和测序工作。FASTq格式的原始数据使用Perl脚本进行处理以确定数据的质量,包括GC含量、Q20比例和Q30比例。过滤并消除低质量数据,过滤后的数据用于后续分析。从二倍体油茶数据库下载基因模型注释文件(https://github.com/Hengfu-Yin/CON_genome_data)作为参考基因组。HTSeq v0.9.
使用Cluster Profler R软件(http:// www. bioco nduct or. org/packa ges/relea se/bioc/html/clust erPro fler. html)进行GO功能富集分析,利用二倍体油茶数据库(https://github.com/Hengfu-Yin/CON_genome_ data)对差异表达基因进行功能注释,qvalue<0.05作为样本中GO功能显著富集的筛选标准。通过KOBAS 2.0软件(http://bioinfo.org/kobas)对KEGG富集通路进行分析,以拟南芥(Arabidopsis thaliana)TAIR10版本数据库(https://www.arabidopsis.org/)对差异表达基因进行近源Blast和富集通路注释。以qvalue<0.05作为KEGG通路显著富集的阈值, 满足上述条件的通路定义为显著富集,挑选qvalue值富集程度排名前20的通路统计作图。使用OmicShare Tools软件(https://www.omicshare.com/tools/home/report/reporticabg.html)绘制基因表达量热图。
使用Trizol试剂提取不同发育时期种仁总RNA,利用NCBI Primer-BLAST在线软件设计特异性引物(
引物名称 Primer name | 正向引物序列(5′-3′) Forward primer sequence (5′-3′) | 反向引物序列(5′-3′) Reverse primer sequence (5′-3′) |
---|---|---|
CoEF1α | CACGATCACTGGTACCTCACAG | ACCCACCCAATGAAGGCAAG |
SAD | TACCTATCTGGGCGTGTGGA | ATGGAACGGTGCGTACTTGT |
KASIII | CACCAGAGCGGGTCATTTCT | TGATTGCACCTTCCCACCTC |
PATE | TGGAGCTGTTAGCACCACAG | CCTGATGCTCCAACCCATGT |
KAR | GAGCTTCCATGGCTGCTTCT | GCCGGTGATCGGAGAGAAAT |
ACC | CGGAGGTTTTGGATCAGCCT | CCTGCCTTAGCAACCTCCAA |
SDR | GAAGGTACGGCCAACCAGAA | GGGCCTGCACAAACCTCTAT |
试剂配制:5%(体积百分比)浓硫酸/甲醇溶液;5 mg/mL碳十七脂肪酸甲酯/石油醚(90~120 ℃)溶液;0.9%(质量百分比)NaCl/水溶液。
对不同发育时期的种仁进行清洁、干燥和研磨。通过0.5 mm筛过筛后,称重1 g样品粉末转移至提取瓶中,加入 5 mg/mL碳十七脂肪酸甲酯/石油醚溶液100 μL,再加入5%浓硫酸/甲醇溶液2 mL,甲苯300 μL。用压盖器将顶空瓶用带聚四氟乙烯垫的铝盖封好,将上述混合物轻微晃动混匀,然后于恒温水浴锅中95 ℃水浴1.5 h提取脂肪酸;提取结束后取出冷却至室温,加入0.9% NaCl 溶液2 mL,稍微振荡,用1 mL正己烷萃取,离心(5000 r/min,5 min)分层,取上清于上样瓶中进行气相色谱分析。气相色谱仪的工作条件:FID氢火焰离子化检测器,DB-FastFAME色谱柱,进样口温度250 ℃,分流比20∶1,检测器温度260 ℃,色谱柱初温80 ℃,保持0.5 min, 以40 ℃/min程序升温至165 ℃,保持1 min,以4 ℃/min程序升温至230 ℃,并在此温度下维持6 min。油脂含量=(S1/S2)×N/M,S1为总峰面积,S2为内标峰面积,N为内标用量,M为样本质量。利用SPSS 11.5软件对数据进行相关性分析。
对9个文库(3个发育时期×3个生物重复) 测序的原始数据进一步精细过滤,共产生416635122个过滤后的数据,过滤后的碱基数共62495268300 bp,GC含量的平均值为46.26%,Q20和Q30平均比例分别为96.81%和92.15% (
样品 Sample | 过滤后数据 Clean reads | 过滤后碱基数(bp) Clean bases | GC含量(%) GC content | Q20比例(%) Q20 ratio | Q30比例(%) Q30 ratio |
---|---|---|---|---|---|
Em0707-1 | 39335052 | 5900257800 | 45.69 | 96.86 | 92.17 |
Em0707-2 | 50018672 | 7502800800 | 45.74 | 96.74 | 91.84 |
Em0707-3 | 49993570 | 7499035500 | 45.71 | 96.76 | 92.05 |
Em0814-1 | 45610422 | 6841563300 | 45.22 | 96.98 | 92.50 |
Em0814-2 | 43330344 | 6499551600 | 45.30 | 96.96 | 92.43 |
Em0814-3 | 48184132 | 7227619800 | 45.31 | 96.86 | 92.28 |
Em1003-1 | 48376708 | 7256506200 | 47.73 | 96.72 | 91.99 |
Em1003-2 | 45230518 | 6784577700 | 47.70 | 96.94 | 92.48 |
Em1003-3 | 46555704 | 6983355600 | 47.92 | 96.46 | 91.65 |
总计Total | 416635122 | 62495268300 | 46.26 | 96.81 | 92.15 |
Em0707、Em0814和Em1003分别表示2023年7月7日、8月14日和10月3日油茶种仁样品; 1、2和3分别表示3个生物学重复
Em0707, Em0814 and Em1003 represent Camellia oleifera kernel samples from July 7th, August 14th, and October 3rd, 2023; 1, 2 and 3 represent three biological replicates, respectively

图1 样本之间皮尔逊相关系数热图和主成分分析
Fig. 1 Heat map of Pearson correlation coefficient and principal component analysis between samples
A:样本之间皮尔逊相关系数热图;B:样本之间主成分分析
A: Heat map of Pearson correlation coefficient between samples; B: Principal component analysis between samples
利用DESeq软件分析差异表达基因显著性,分析参数为|log2 (Fold Change)|≥2且qvalue<0.05。3个不同发育时期种仁中,共获得17772个差异表达基因,其中,上调表达的基因有11006个(61.93%),下调表达的基因有6766个(38.07%)。各时期上调表达的差异表达基因数量均高于下调表达的差异表达基因数量。与Em0707vsEm0814和Em0814vsEm1003相比,Em0707vsEm1003中差异表达基因数量最多(

图2 差异表达基因的数量和分布
Fig. 2 The number and distribution of differentially expressed genes
A:种仁3个发育时期上调或下调的差异表达基因数量;B:在不同种仁发育时期共有的差异表达基因或每个发育阶段特有的差异表达基因,vs表示后者相对于前者
A: The number of differentially expressed genes that were up-regulated or down-regulated in the three seed kernel development stages; B: Differentially expressed genes overlapping in different seed kernel development stages or unique to each developmental stage, vs represents the latter relative to the former
以qvalue<0.05为筛选标准,对3个比较组共有的差异表达基因和每个比较组特有的差异表达基因进行GO富集分析。3个比较组共有的1302个差异表达基因富集于195个GO条目,选取富集最显著的20条GO条目进行分析,结果显示,生物过程方面主要富集半纤维素代谢过程(Hemicellulose metabolic process)、木聚糖代谢过程(Xylan metabolic process)、细胞壁大分子代谢过程(Cell wall macromolecule metabolic process)、细胞壁多糖代谢过程(Cell wall polysaccharide metabolic process)和次生代谢过程(Secondary metabolic process)等代谢过程;细胞组分方面主要富集于外部封装结构(External encapsulating structure)、植物型细胞壁(Plant-type cell wall)、细胞壁(Cell wall)、单层包围脂质储存体(Monolayer-surrounded lipid storage body)和质外体(Apoplast)等;分子功能主要富集在葡萄糖基转移酶(Glucosyltransferase activity)、转移酶活性(Transferase activity)、UDP葡糖基转移酶活性(UDP-glucosyltransferase activity)、木聚糖O-乙酰转移酶活性(Xylan O-acetyltransferase activity)和茉莉酰基-异亮氨酸-12-羟化酶活性(Jasmonoyl-isoleucine-12-hydroxylase activity)等催化活性方面 (

图3 种仁3个比较组共有差异表达基因的基因本体分类
Fig. 3 Gene ontology classification of common differentially expressed genes in three comparison groups of seed kernel
样品 Sample | GO类别 GO category | GO编号 GO number | 通路描述 Terms description | 基因数目 Number of genes | q值 q value |
---|---|---|---|---|---|
Em0707vsEm0814 | 生物过程 | GO:0050896 | 刺激反应 | 209 | 0.0431 |
GO:0055046 | 刺激微配子发生 | 9 | 0.0431 | ||
GO:0090358 | 色氨酸代谢过程的正调控 | 4 | 0.0431 | ||
GO:0022410 | 昼夜节律/周期循环过程 | 2 | 0.0431 | ||
GO:0042745 | 昼夜节律/周期循环 | 2 | 0.0431 | ||
GO:0042749 | 昼夜节律/周期循环的调节 | 2 | 0.0431 | ||
Em0707vsEm0814 | 生物过程 | GO:0045187 | 昼夜节律/周期循环的调节 | 2 | 0.0431 |
GO:0050802 | 昼夜节律/周期循环 | 2 | 0.0431 | ||
GO:0033240 | 细胞胺代谢过程的正调控 | 4 | 0.0431 | ||
GO:0045764 | 细胞氨基酸代谢过程的正调控 | 4 | 0.0431 | ||
分子功能 | GO:0016594 | 甘氨酸结合 | 3 | 0.0243 | |
GO:0042165 | 神经递质结合 | 3 | 0.0243 | ||
GO:0033759 | 黄酮合酶活性 | 2 | 0.0243 | ||
GO:0034722 | γ-谷氨酰肽酶活性 | 3 | 0.0307 | ||
Em0707vsEm1003 | 分子功能 | GO:0004316 | 3-氧酰基-酰基载体蛋白还原酶 | 6 | 0.0079 |
Em0814vsEm1003 | 生物过程 | GO:0009725 | 响应激素 | 172 | 0.0005 |
GO:0050896 | 刺激反应 | 338 | 0.0005 | ||
GO:0009719 | 内源性刺激反应 | 174 | 0.0005 | ||
GO:0010033 | 有机物反应 | 198 | 0.0006 | ||
GO:0006952 | 防御反应 | 136 | 0.0038 | ||
GO:0033993 | 脂质反应 | 109 | 0.0065 | ||
GO:1901700 | 含氧化合物反应 | 176 | 0.0074 | ||
GO:0042221 | 化学物质反应 | 234 | 0.01099 | ||
GO:0048825 | 子叶发育 | 18 | 0.0189 | ||
GO:0048366 | 叶片发育 | 56 | 0.0273 | ||
分子功能 | GO:0016298 | 脂肪酶活性 | 14 | 0.0437 | |
GO:0008477 | 嘌呤核苷酶活性 | 3 | 0.0437 | ||
GO:0038023 | 信号受体活性 | 29 | 0.0437 | ||
GO:0008782 | 腺苷同型半胱氨酸核苷酶活性 | 2 | 0.0437 | ||
GO:0008930 | 甲硫腺苷核苷酶活性 | 2 | 0.0437 | ||
GO:0050203 | 草酸辅酶A连接酶活性 | 2 | 0.0437 | ||
GO:0019199 | 跨膜受体蛋白激酶活性 | 20 | 0.0437 |
为了进一步分析差异表达基因功能,选择富集程度排名前20的通路进行KEGG分析作图,以qvalue<0.05作为KEGG通路显著富集的阈值。结果表明,对3个比较组共有的和每个比较组特有的差异表达基因分析发现,3个比较组共同有的差异表达基因显著富集于5条KEGG通路,主要为类黄酮生物合成、苯丙烷生物合成、二芳基庚烷和姜酚的生物合成、黄酮和黄酮醇的生物合成及谷胱甘肽代谢(

图4 三个时期共有差异表达基因的KEGG通路分析
Fig. 4 KEGG pathway analysis of common differentially expressed genes in three stages

图5 Em0707vsEm1003中差异表达基因的KEGG通路分析
Fig. 5 KEGG pathway analysis of differentially expressed genes in Em0707vsEm1003
脂肪酸生物合成和脂肪酸代谢通路分别有10个和12个差异表达基因,进一步分析发现,其中10个差异表达基因为2个通路中共有,2个差异表达基因为脂肪酸代谢特有。12个差异表达基因中,4个基因编码NADPH依赖性醛还原酶(NADPH-dependent aldehyde reductase, ALR1、ALR2、ALR3、ALR4);其余8个基因分别编码3-氧代酰基-ACP合酶3 (KASIII,3-oxoacyl-ACP synthase3)、短链脱氢酶(SDR,short-chain dehydrogenase)、烯醇辅酶A水合酶1 (ECH,enoyl-CoA hydratase)

图6 三个不同时期种仁中脂肪酸代谢相关差异表达基因表达网络
Fig. 6 Expression network of differentially expressed genes related to fatty acid metabolism in three different stages of seed kernels
热图从左至右依次为Em0707、Em0814和Em1003时期
The heatmap from left to right shows the stages of Em0707, Em0814 and Em1003, respectively
为了进一步验证转录结果的准确性,使用qRT-PCR分析转录组结果中鉴定的差异表达基因。选取脂肪酸代谢中表达量逐渐升高的4个差异表达基因和表达量先上升后下降的2个差异表达基因进行qRT-PCR分析,结果表明,qRT-PCR和转录组中6个差异表达基因表达量的变化趋势基本一致(

图7 脂肪酸代谢6个差异表达基因的相对表达分析
Fig. 7 Relative expression analysis of six differentially expressed genes in fatty acid metabolism
柱状图表示qRT-PCR中基因的相对表达量,折线图表示转录组中FPKM值
The histogram represents the relative expression levels of genes in qRT-PCR, line chart represents FPKM values in transcriptome
测定种仁含油量发现,3个时期含油量分别为31.29 mg/g、188.06 mg/g和307.69 mg/g,表明随着种仁的发育,含油量逐渐增加(
组分 Components | Em0707 | Em0814 | Em1003 |
---|---|---|---|
含油量(mg/g)Oil content | 31.29 ± 6.04 | 188.06 ± 14.36 | 307.69 ± 9.24 |
棕榈酸(C16∶0)(%)Palmitic acid (C16∶0) | 19.16 ± 1.38 | 13.18 ± 1.08 | 9.23 ± 0.12 |
棕榈油酸(C16∶1)(%)Palmitoleic acid (C16∶1) | 0.32 ± 0.07 | 0.14 ± 0.04 | 0.12 ± 0.03 |
硬脂酸(C18∶0)(%)Stearic acid (C18∶0) | 1.09 ± 0.13 | 1.47 ± 0.32 | 1.88 ± 0.08 |
油酸(C18∶1n-9c)(%)Oleic acid (C18∶1n-9c) | 59.94 ± 1.39 | 71.72 ± 1.56 | 81.67 ± 1.39 |
亚油酸(C18∶2n-6c)(%)Linoleic acid (C18∶2n-6c) | 16.24 ± 1.53 | 12.45 ± 1.58 | 6.44 ± 0.28 |
α-亚麻酸(C18∶3n-3)(%)α-linolenic acid (C18∶3n-3) | 2.33 ± 0.20 | 0.71 ± 0.12 | 0.34 ± 0.11 |
花生烯酸(C20∶1)(%)Cis-11-Eicosenoicacid (C20∶1) | 0.92 ± 0.19 | 0.33 ± 0.07 | 0.32 ± 0.07 |
对脂肪酸代谢相关差异表达基因表达量、含油量和各脂肪酸组分比例进行相关性分析表明,所有基因表达量与种仁的含油量、硬脂酸和油酸均呈正相关,与其余脂肪酸组分均呈负相关。其中ACC、ECH、SAD、KASIII、PATE和KAT2基因与含油量呈极显著正相关(P< 0.001),ACC、KASIII、PATE、SAD和KAT2基因与油酸均呈极显著正相关(P<0.001);PATE、ACC、KASIII和KAT2基因与棕榈酸呈极显著负相关(P< 0.001)(

图8 油茶种仁脂肪酸代谢差异表达基因表达量、含油量和脂肪酸组分相关性
Fig. 8 Correlation between differentially expressed gene expression levels, oil content, and fatty acid composition in Camellia oleifera seed kernel
无标记表示相关不显著,*表示在P< 0.05水平上相关显著,**表示在P<0.01水平上相关显著,***表示在P<0.001水平上相关显著
Unmarked represents no significant correlation, * represents significant correlation at the P<0.05 level, ** represents significant correlation at the P<0.01 level, *** represents significant correlation at the P<0.001 level
油茶果实发育主要经历3个增长高峰期,第1个高峰期是6月中下旬至7月中下旬果实生长期,第2个高峰期是8月上旬至9月上旬营养物质和脂肪酸积累时期,第3个高峰期是9月中下旬至10月下旬果实成熟
油茶基因组数据的公布,对油茶重要性状基因的发掘及遗传改良具有指导意
本研究对油茶3个关键发育时期种仁进行转录组分析,在KEGG通路中富集到12个差异表达基因,并对这些基因的表达量与种仁含油量及各脂肪酸组分比例进行相关性分析,发现ACC、KASIII、PATE、KAT2和SAD基因的表达量与种仁含油量和油酸呈极显著正相关,表明这5个关键基因在油茶种仁含油量积累和脂肪酸代谢中具有重要作用,上述结果可为油茶脂肪酸代谢调控机制和基因功能研究提供参考。
参考文献
Yang C Y, Liu X M, Chen Z Y, Lin Y S, Wang S Y. Comparison of oil content and fatty acid profile of ten new Camellia oleifera cultivars. Journal of Lipids, 2016, 2016 (1):3982486 [百度学术]
Lee W T, Tung Y T, Wu C C, Tu P H, Yen G C. Camellia oil (Camellia oleifera Abel.) modifies the composition of gut microbiota and alleviates acetic acid-induced colitis in rats. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7384-7392 [百度学术]
Lee C P, Yen G C. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. Journal of agricultural and food chemistry, 2006, 54(3): 779-784 [百度学术]
Ma L H, Cheng X Q, Wang C, Zhang X Y, Xue F, Li Y J, Zhu Q H, Sun J, Liu F. Explore the gene network regulating the composition of fatty acids in cottonseed. BMC Plant Biology, 2021, 21(1): 177 [百度学术]
Zeng Y L, Tan X F, Zhang L, Jiang N, Cao H P. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera). PLoS ONE, 2014, 9(9): e107422 [百度学术]
林萍, 周长富, 姚小华, 曹永庆. 普通油茶两
Lin P, Zhou C F, Yao X H, Cao Y Q. Sequence and expression characterization of two genes encoding
吕晓杰, 潘德灼, 李健, 陈世品, 陈伟.油茶种仁成熟过程油脂合成代谢的转录组分析. 森林与环境学报, 2018, 38(2): 156-163 [百度学术]
Lyu X J, Pan D Z, Li J, Chen S P, Chen W. Transcriptomic analysis of lipid synthesis metabolism in Camellia oleifera seed kernel during its maturation period. Journal of Forest and Environment, 2018, 38(2): 156-163 [百度学术]
Lin P, Wang K L, Zhou C F, Xie Y H, Yao X H, Yin H F. Seed transcriptomics analysis in Camellia oleifera uncovers genes associated with oil content and fatty acid composition. International Journal of Molecular Sciences, 2018, 19(1): 118 [百度学术]
张帆航. 油茶4个主栽品种果实和种子发育比较研究. 长沙: 中南林业科技大学, 2020: 48-52 [百度学术]
Zhang F H. Comparative study on fruit and seed development of four Camellia oleifolia cultivars. Changsha: Central South University of Forestry and Technology, 2020: 48-52 [百度学术]
Wu B, Ruan C J, Han P, Ruan D, Xiong C W, Ding J, Liu S H. Comparative transcriptomic analysis of high- and low-oil Camellia oleifera reveals a coordinated mechanism for the regulation of upstream and downstream multigenes for high oleic acid accumulation. 3 Biotech, 2019, 9(7): 257 [百度学术]
Wang Z W, Huang B, Ye J S, He Y C, Tang S J, Wang H L, Wen Q. Comparative transcriptomic analysis reveals genes related to the rapid accumulation of oleic acid in Camellia chekiangoleosa, an oil tea plant with early maturity and large fruit. Plant Physiology and Biochemistry, 2022, 171: 95-104 [百度学术]
沈军, 邱智敏, 余玉云, 李志真, 陈伟, 陈世品. 油茶籽成熟过程中油脂代谢的蛋白质组学分析. 植物生理学报, 2023, 59(7): 1398-1406 [百度学术]
Shen J, Qiu Z M, Yu Y Y, Li Z Z, Chen W, Chen S P. Proteomic analysis of lipid metabolism in Camellia oleifera seeds during maturation. Plant Physiology Journal, 2023, 59(7): 1398-1406 [百度学术]
Anders S, Pyl P T, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31(2): 166-169 [百度学术]
Trapnell C, Pachter L, Salzberg S L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25(9): 1105-1111 [百度学术]
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28(5): 511-515 [百度学术]
宋志波, 刘敏, 贾宝光, 田雷,曾艳玲,周俊琴,谭晓风,张琳. 油茶总RNA的提取与内参基因的初选. 经济林研究, 2014, 32(2): 93-98 [百度学术]
Song Z B, Liu M, Jia B G, Tian L, Zeng Y L, Zhou J Q, Tan X F, Zhang L. RNA extraction and primary screening of reference genes in Camellia oleifera. Nonwood Forest Research, 2014, 32(2): 93-98 [百度学术]
陈永忠, 肖志红, 彭邵锋, 杨小胡, 李党训, 王湘南, 段玮. 油茶果实生长特性和油脂含量变化的研究. 林业科学研究, 2006, 19(1): 9-14 [百度学术]
Chen Y Z, Xiao Z H, Peng S F, Yang X H, Li D X, Wang X N, Duan W. Study of fruit growing specialties and its oil content in Oil-Tea Camellia. Forest Research, 2006, 19(1): 9-14 [百度学术]
Wang S Y, Chen H, Camp M J, Ehlenfeldt M K. Flavonoid constituents and their contribution to antioxidant activity in cultivars and hybrids of rabbiteye blueberry (Vaccinium ashei Reade). Food Chemistry, 2012, 132(2): 855-864 [百度学术]
Miles T D, Vandervoort C, Nair M G, Schilder A C. Characterization and biological activity of flavonoids from ripe fruit of an anthracnose-resistant blueberry cultivar. Physiological and Molecular Plant Pathology, 2013, 83: 8-16 [百度学术]
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 2022(30): 383 [百度学术]
Lin P, Wang K L, Wang Y P, Hu Z K, Yan C, Huang H, Ma X J, Cao Y Q, Long W, Liu W X, Li X L, Fan Z Q, Li J Y, Ye N, Ren H D, Yao X H, Yin H F. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biology, 2022, 23(1): 14 [百度学术]
Gong W F, Xiao S X, Wang L K, Liao Z Y, Chang Y H, Mo W J, Hu G X, Li W Y, Zhao G, Zhu H G, Hu X M, Ji K, Xiang X F, Song Q L, Yuan D Y, Jin S X, Zhang L. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility. Plant Journal, 2022, 110(3): 881-898 [百度学术]
Shen T F, Huang B, Xu M, Zhou P Y, Ni Z X, Gong C, Wen Q, Cao F L, Xu L A. The reference genome of camellia chekiangoleosa provides insights into camellia evolution and tea oil biosynthesis. Horticulture Research, 2022, 9: uhab083 [百度学术]
Zhu H G, Wang F Q, Xu Z P, Wang G Y, Hu L S, Cheng J Y, Ge X H, Liu J X, Chen W, Li Q, Xue F, Liu F, Li W Y, Wu L, Cheng X Q, Tang X X, Yang C C, Lindsey K, Zhang X L, Ding F, Hu H Y, Hu X M, Jin S X. The complex hexaploid oil-Camellia genome traces back its phylogenomic history and multi-omics analysis of Camellia oil biosynthesis. Plant Biotechnology Journal, 2024, 22(10): 2890-2906 [百度学术]
李洁琼, 郑世学, 喻子牛, 张吉斌. 乙酰辅酶A羧化酶: 脂肪酸代谢的关键酶及其基因克隆研究进展. 应用与环境生物学报, 2011, 17(5): 753-758 [百度学术]
Li J Q, Zheng S X, Yu Z N, Zhang J B. Acetyl-coenzyme A Carboxylase: A key metabolic enzyme of fatty acid and progress of its gene clone. Chinese Journal of Applied and Environmental Biology, 2011, 17(5): 753-758 [百度学术]
Pereira A, Tcacenco F A, Klabunde G H F, de Andrade A. Detecting acetyl-coenzyme a carboxylase resistance gene in rice (Oryza sativa L.). Molecular Biology Reports, 2019, 46(6): 6271-6276 [百度学术]
Yanniccari M, Gigón R. Cross-resistance to acetyl-CoA carboxylase-inhibiting herbicides conferred by a target-site mutation in perennial ryegrass (Lolium perenne) from Argentina. Breast Cancer, 2020, 68(2): 116-124 [百度学术]
Wang M, Garneau M G, Poudel A N, Lamm D, Koo A J, Bates P D, Thelen J J. Overexpression of pea α-carboxyltransferase in Arabidopsis and camelina increases fatty acid synthesis leading to improved seed oil content. Plant Journal, 2022, 110(4): 1035-1046 [百度学术]
Li J, Li M R, Wu P Z, Tian C E, Jiang H W, Wu G J. Molecular cloning and expression analysis of a gene encoding a putative beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III) from Jatropha curcas. Tree Physiology, 2008, 28(6): 921-927 [百度学术]
Ye G B, Qin Z H, Bin X Y, Mou J H, Lin C S K, Li H Y, Wang X. 3-Oxoacyl acyl carrier protein reductase overexpression reveals its unprecedented roles in biofuel production and high-temperature tolerance in diatom. Fuel, 2022, 325: 124844 [百度学术]
Ghulam-kadir A P, Othman A, Ramin N, Bohari B. Functional analysis of oil palm palmitoyl-acyl-ACP thioesterase (FatB) gene via down-regulation in a model plant: Arabidopsis thaliana. Journal of Oil Palm Research, 2010, 22(2): 803-813 [百度学术]
周延清, 张永华, 张喻, 陈艳梅, 白妍妍, 魏海方, 段红英, 周春娥. 怀地黄3-酮酯酰CoA-硫解酶基因的克隆、序列特征和时空表达分析. 中草药, 2013, 44(1): 76-84 [百度学术]
Zhou Y Q, Zhang Y H, Zhang Y, Chen Y M, Bai Y Y, Wei H F, Duan H Y, Zhou C E. Gene cloning, features of sequence, and analysis on temporal and spatial expression of Rehmannia glutinosa f. hueichingensis 3-ketoacyl CoA-thiolase. Chinese Traditional and Herbal Drugs, 2013, 44(1): 76-84 [百度学术]
Sreeja S, Shylaja M R, Nazeem P A, Mathew D. Peroxisomal KAT2 (3-ketoacyl-CoA thiolase 2) gene has a key role in gingerol biosynthesis in ginger (Zingiber officinale Rosc.). Journal of Plant Biochemistry and Biotechnology, 2023, 9: 1-16 [百度学术]
Jiang T, Zhang X F, Wang X F, Zhang D P. Arabidopsis 3-ketoacyl-CoA thiolase-2 (KAT2), an enzyme of fatty acid β-oxidation, is involved in ABA signal transduction. Plant and Cell Physiology, 2011, 52(3): 528-538 [百度学术]
Zaborowska Z, Starzycki M, Femiak I, Swiderski M, Legocki A B. Yellow lupine gene encoding stearoyl-ACP desaturase-organization, expression and potential application. Acta Biochimica Polonica, 2002, 49(1): 29-42 [百度学术]
Liu Q, Singh S, Green A. High-oleic and high-stearic cottonseed oils: Nutritionally improved cooking oils developed using gene silencing. Journal of the American College of Nutrition, 2002, 21(3): 205S-211S [百度学术]
Salas J J, Youssar L, Martínez-Force E, Garcés R. The biochemical characterization of a high-stearic acid sunflower mutant reveals the coordinated regulation of stearoyl-acyl carrier protein desaturases. Plant Physiology and Biochemistry, 2008, 46(2): 109-116 [百度学术]
Ruddle P IInd, Whetten R, Cardinal A, Upchurch R G, Miranda L. Effect of a novel mutation in
李闻娟, 齐燕妮, 王利民, 党照, 赵利, 赵玮, 谢亚萍, 王斌, 张建平, 李淑洁. 不同胡麻品种TAG合成途径关键基因表达与含油量、脂肪酸组分的相关性分析. 草业学报, 2019, 28(1): 138-149 [百度学术]
Li W J, Qi Y N, Wang L M, Dang Z, Zhao L, Zhao W, Xie Y P, Wang B, Zhang J P, Li S J. Correlation between oil content or fatty acid composition and expression levels of genes involved in TAG biosynthesis in flax. Acta Prataculturae Sinica, 2019, 28(1): 138-149 [百度学术]
Tan Z D, Peng Y, Xiong Y, Xiong F, Zhang Y T, Guo N, Tu Z, Zong Z X, Wu X K, Ye J, Xia C J, Zhu T, Liu Y M, Lou H X, Liu D X, Lu S P, Yao X, Liu K D, Snowdon R J, Golicz A A, Xie W B, Guo L, Zhao H. Comprehensive transcriptional variability analysis reveals gene networks regulating seed oil content of Brassica napus. Genome Biology, 2022, 23(1): 233 [百度学术]