摘要
镉、铅等重金属对土壤的污染越来越严重,它们不仅干扰植物的生命周期,而且降低作物产量,甚至导致植物死亡。因此,植物自身进化出一系列防御机制来抵抗重金属胁迫。植物的转录因子MYB是逆境胁迫的关键调控因子,它可与下游靶基因共调控来应对重金属胁迫,从而赋予植物对重金属的耐受性,减少重金属对植物的危害。了解植物应对重金属胁迫(尤其是镉胁迫)的分子机制是植物生物技术研究和农业育种的首要目标。本文主要从MYB家族成员的鉴定和特征、MYB的功能及调控靶基因的机制、MYB如何通过光合、激素等调控靶基因参与重金属胁迫应答等方面进行综述;深入探讨在植物对重金属胁迫的适应机制中,MYB转录因子通过信号通路(活性氧稳态、脱落酸、赤霉素信号转导、光合作用等)结合靶基因或启动子元件,参与植物对重金属的吸收调节、运输和螯合的机理。本文为进一步开发和利用MYB转录因子以增强植物对重金属胁迫耐受性提供了理论基础。
近年来,由于过度开采矿石、排放废气废水等因素,重金属污染土壤越来越严重,导致越来越多的有毒有害物质进入植物中。遭受重金属毒害的植物通常表现出生长迟缓、叶面积减少、叶片黄化坏
转录因子(TFs,transcription factors)是关键调控因子,在植物应答逆境胁迫方面具有重要作用。转录因子可与下游胁迫相关靶基因的特定转录调控区域结合,从而调节基因的表达。MYB转录因子家族是植物中最大的转录因子家族之一,根据结构域可分为4类,其中大部分在调控植物逆境胁迫响应方面起着关键作用。MYB通过与信号通路中的分子互作来积累大量的渗透调节物质,并通过改变叶片细胞壁组成成分以及调节植物叶片气孔运动等多种途径来维持渗透压平衡,从而调控植物响应逆境胁
本文基于近年来的研究,主要介绍了MYB家族成员、结构特征以及MYB相关的生物学功能,总结并讨论了MYB调控靶基因应答重金属胁迫的过程和机制,最后提出重金属胁迫相关领域可能存在的问题和未来的研究方向。本文为进一步开发和利用重金属抗性基因,在分子水平上解析它们的重金属解毒机制,培育重金属耐受植物,解决重金属污染带来的生态问题提供了重要途径。
植物中各类MYB转录因子的结构和功能已被广泛研究,作为植物转录调控中的DNA结合蛋白,MYB结构域的N端可与目的基因特异性结合,MYB结构域的C端可调控蛋白质的活
序号 No. | 物种 Species | 拉丁学名 Latin name | MYB转录因子数量 Number of MYB TFs | 参考文献 References |
---|---|---|---|---|
1 | 拟南芥 | Arabidopsis thaliana L. | 198 |
[ |
2 | 水稻 | Oryza sativa L. | 151 |
[ |
3 | 大豆 | Glycine max L. | 304 |
[ |
4 | 菠菜 | Spinacia oleracea L. | 76 |
[ |
5 | 辣椒 | Capsicum annuum L. | 172 |
[ |
6 | 番茄 | Solanum lycopersicum L. | 139 |
[ |
7 | 桑树 | Morus alba L. | 128 |
[ |
8 | 胡萝卜 | Daucus carota var. sativa Hoffm. | 146 |
[ |
TF: Transcription factors
植物MYB蛋白结构通常包括两个部分,分别是DNA结合区(DNA-binding domain)和转录调控区(Transcription regulation domain),转录调控区域由激活区(Activation domain)和负调控区(Repression domain)组成。MYB转录因子在N末端含有高度保守的MYB结构域(

图 1 MYB的分类(A)与基本结构(B)
Fig. 1 Classification(A) and basic structure(B) of MYB
红色箭头表示激活作用,带有蓝色叉号的蓝色箭头表示抑制作用,蓝线表示MYB与靶基因启动子的结合作用
The red arrow indicates activating effect, the blue arrow with a blue cross indicates inhibiting effect, the blue line indicates role of MYB binding to target gene promoters
MYB转录因子家族可根据MYB结构域的数量划分成4类(
MYB转录因子通常和下游靶基因的启动子或顺式作用元件相结合,进而激活或抑制胁迫基因的表达,在植物的防御分子机制中发挥着关键作用,尤其是各种非生物胁
物种 Species | MYB | 靶基因 Target gene | 调控机制 Regulatory mechanism | 功能 Function | 参考文献 References |
---|---|---|---|---|---|
水稻 Rice | SiMYB30 | OsGOGAT2 | 激活氮吸收、氮同化相关基因 | 通过调节氮吸收、氮同化相关基因的表达正调控植株对低氮胁迫的耐受性 |
[ |
水稻 Rice | OsMYB84 | OsCOPT2、OsHMA5 | 激活重金属相关基因 |
促进铜的吸收和转运,提高 水稻产量 |
[ |
小麦 Wheat | TaMpc1-D4 | DREBI、DREB3、ERF3、ERF4b等 | 调节抗氧化酶系统 |
通过调控胁迫和抗氧化相关基因的表达来降低过表达 植株对干旱的耐受性 |
[ |
玉米 Corn | ZmMYB-CC10 | ZmAPX4 | 调节抗氧化酶的活性 |
减少氧化损伤,降低H2O2含量,增强过表达植株对干旱 胁迫的耐受性 |
[ |
水稻 Rice | OsMYB102 | AtCYP707A3,AtCYP707A4 | ABA信号反应 | 通过调节ABA信号反应延缓拟南芥叶片衰老并降低耐盐性和耐旱性 |
[ |
水稻 Rice | SiMYB56 | NCED5、ABIL2、P5CS1等 |
木质素生物合成和ABA 信号通路 | 通过调控木质素生物合成和ABA信号通路增强了转基因水稻的抗旱性 |
[ |
拟南芥 Arabidopsis thaliana | MYB43 | HMA2、HMA3、HMA4 |
CULLIN-RING E3连接酶 调控系统 | 通过转录抑制HMAs负调控拟南芥对镉的耐受性 |
[ |
大豆 Soybean | GmMYB81 | GmSGF141 | 生长素信号途径 | 在种子萌发过程中通过生长素信号途径正向响应盐分和干旱胁迫 |
[ |
大豆 Soybean | GmMYB183 | GmMATE75 | 激活编码柠檬酸转运蛋白 |
通过促进柠檬酸盐的分泌 赋予对铝的耐受性 |
[ |
大豆 Soybean | GmMYB14 | GmBEN1 | 芸苔素类固醇途径 |
调控大豆植株结构、高密度 产量和耐旱性 |
[ |
MYB转录因子通过激活胁迫相关的基因并促进其表达,来增强植物对胁迫的耐受性。Zhang
研究表明,MYB可调节抗氧化酶系统,改变抗氧化酶活性,协助植物应对非生物胁迫。TaMpc1-D4过表达转基因拟南芥株系的叶片严重卷曲,表现出更高的失水率,与野生型相比丙二醛含量提高了约40%;在小麦(Triticum aestivum L.)中,TaMpc1-D4的沉默显著增强了小麦的相对含水量、脯氨酸含量和抗氧化酶活性,并通过激活胁迫相关和抗氧化相关基因(DREBI、DREB3、ERF3、ERF4b等)来增强突变体小麦对干旱的抗
MYB通过调节ABA信号通路,上调或下调相关基因的表达来调控植物对胁迫的耐受性。AtCYP707A3和AtCYP707A4与脱落酸生物合成相关,水稻MYB102(OsMYB102)可激活ABA信号反应,下调两者的表达进而调节叶片衰老和降低植物耐盐、耐旱
MYB除了激活激素信号、平衡抗氧化系统、直接调控胁迫基因外,还能促进功能蛋白合成从而赋予植物对胁迫的抵抗能力。GmMATE75是一种编码柠檬酸的转运蛋白。在拟南芥和大豆(Glycine max L.)毛根中,GmMYB183可直接结合GmMATE75启动子中的P3片段区域,而GmMATE75的表达取决于GmMYB183中Ser36残基的磷酸化和GmMATE75启动子P3片段中的两个MYB位点;过表达GmMYB183可促进转基因拟南芥中柠檬酸的分泌,减少铝的积累,增强植物对铝的耐受
为了应对重金属胁迫,植物进化产生了各种重金属适应机制,如重金属的吸收、调节、运输和螯合,以降低重金属的毒

图 2 MYB调控靶基因应答重金属胁迫的相关分子机制
Fig. 2 Molecular mechanisms associated with MYB regulation of target genes in response to heavy metal stress
MYB:MYB类转录因子;ROS:活性氧;ARS:抗氧化系统;SOD:超氧化物歧化酶;POD:过氧化物酶;APX:抗坏血酸还原酶;Target gene:靶基因;ABA:脱落酸;GSH:谷胱甘肽;PC:植物螯合素;Flavone:类黄酮;Anthocyanidin:花青素;PCS:植物螯合肽合成酶;ABI5:植物脱落酸不敏感蛋白;Myb、MYBCORE、CTGTTG:MYB的结合元件及基序;带有红色加号的蓝色箭头和细黑色箭头表示直接的相互作用或激活作用,带有蓝色叉号的粗黑色箭头表示抑制作用,橘色箭头表示上调或下调作用,黑色虚线箭头表示植物应答重金属的分子机制
MYB: MYB-like transcription factors; ROS: Reactive oxygen species; ARS: Antioxidant system; SOD: Superoxide dismutase; POD: Peroxidase; APX: Ascorbate peroxidase; ABA: Abscisic acid; GSH: Glutathione; PC: Phytochelatin; Flavone: Flavonoids; PCS: Phytochelatin synthase; ABI5: Abscisic acid-insensitive 5; Myb, MYBCORE, CTGTTG: Binding elements and motifs of MYB; Blue arrows with a red plus and thin black arrows indicate direct interactions or activations, thick black arrows with a blue cross indicate inhibiting effect, orange arrows indicate up-regulation and down-regulation, black dotted arrows indicate molecular mechanisms of plants in response to heavy metals
当植物遭受重金属胁迫时,会诱导活性氧的产生,破坏细胞的氧化还原稳态,从而导致细胞死
过表达SbMYB15的转基因烟草中过氧化氢酶和超氧化物歧化酶的清除速度加快,并减少了H2O2、和H2O的产生,因此增强了转基因植物对镉的耐受
除镉和砷外,MYB转录因子也参与锌、铁、铝等多种元素的动态平衡。MYB72可参与拟南芥的金属动态平衡。与野生型相比,MYB72的敲除突变体对过量缺乏锌或铁更敏
在受到胁迫时,植物通过代谢途径产生大量次生代谢物质,这些次生代谢物质有多种防御功能,可抵御重金属胁
MYB转录因子能通过脱落酸、赤霉素(GA,gibberellins )、茉莉酸(JA,jasmonate )等信号通路赋予植物对重金属的耐受性(
从多年生豆科紫花苜蓿(Medicago sativa L.)中分离出MsNRAMP2基因,其表达由铁过量特异性诱导。MsNRAMP2的过表达增强了转基因烟草对过量铁的抗性。而且,MsMYB的表达也是由过量的铁诱导。虽然MsNRAMP2启动子中没有已知的脱落酸反应元件,但MsNRAMP2和MsMYB都对脱落酸有反应。此外,MsMYB蛋白可与MsNRAMP2启动子的“CTGTTG”顺式元件结合。因此可以推断MsNRAMP2在铁转运中的表达可能受MsMYB调控,且过表达MsNRAMP2对铁耐受能力的增强可能与铁的转运等有
MYB还可以同时调控多个基因并影响多个基因的表达,如MYB49可以直接结合bHLH38、bHLH101、HIPP22和HIPP44的启动子,从而正向调节植物中镉的积累;而且,过表达MYB49还能促进转基因植物对镉的吸收和积累。在镉胁迫中,脱落酸上调ABI5的表达,ABI5蛋白与MYB49相互作用并抑制MYB49与下游基因启动子的结合,进而减少镉的积
重金属胁迫可对光合作用产生显著影响,主要体现在叶绿体的形态、叶绿素的生物合成和酶的活性等变
研究表明,花青素参与植物对非生物逆境胁迫的耐受
植物螯合素是植物光合作用中不可缺少的微量元素,能促进叶绿体的形成和增强酶的活性,加速植物光合作用。谷胱甘肽主要存在于叶绿体中,对保护植物免受氧化胁迫至关重
本文就MYB转录因子与靶基因之间的调控机制及其参与重金属胁迫应答过程进行了深入的探讨,MYB不仅可以通过与靶基因结合来调控下游基因的功能,还可以激活抗氧化系统,改变抗氧化酶的活性,调控花青素、类黄酮等非酶促抗氧化剂相关基因的表达来维持活性氧的动态平衡,并参与激素信号转导和光合作用等,直接或间接的在植物应答重金属胁迫中发挥功能。尽管如此,对该基因家族的研究仍需进一步深入。虽然MYB家族是植物中最大的转录因子家族之一,但由于R1R2R3-MYB和4R-MYB在植物中存在较少,所以在植物中鲜有报道。同时它们作为MYB家族成员中必不可少的类型,可能在调控重金属修复机制中具有重要的作用,所以今后可在不同植物中挖掘R1R2R3-MYB和4R-MYB在重金属胁迫中的功能。另外,虽然一些MYB是逆境响应因子,响应多种胁迫信号。但这类转录因子仍停留在抗逆表型的鉴定方面,对重金属污染具体的修复机理还需进一步探索。此外,对MYB作用机理的探索主要集中在通过激活抗氧化酶提高抗逆性方面,但其具体的应答网络及其分子调控过程方面的研究还较少。同时,作为转录因子,对MYB与上下游基因的交互作用,以及它们在重金属胁迫信号级联反应中所扮演的角色也需要深入研究。
因此,未来的研究重点包括以下三个方面:(1)结合MYB与上下游基因在不同非生物胁迫之间的联系,探索MYB在重金属胁迫下的分子调控机制。利用多组学对MYB在不同非生物胁迫之间的抗逆信号转导、激素信号调节等深入研究,从而找到核心MYB,针对性的选择关键基因,再结合通路对整个分子机制进行解析。(2)由于不同植物在多种胁迫下的功能复杂性,传统的分子生物学方法较难解析MYB的作用机制,可结合基因编辑、多组学等手段从不同角度和不同层面上解析其调控网络。(3)由于大多数转基因植物的前期研究都在实验室中开展,后续可将转基因和基因编辑MYB运用到田间试验中,理论与实际结合,利用MYB转基因植物改良其重金属耐受性,培育可用于重金属植物修复的新种质,对植物抗性育种和环境修复具有重要意义。
参考文献
Sharma P, Dubey R S. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports, 2007, 26(11): 2027-2038 [百度学术]
Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environmental Chemistry Letters, 2018, 16(4): 1169-1192 [百度学术]
Wang P T, Chen X, Xu X, Lu C N, Zhang W, Zhao F J. Arsenate induced chlorosis 1/translocon at the outer envolope membrane of chloroplasts 132 protects chloroplasts from Arsenic toxicity. Plant Physiology, 2018, 178(4): 1568-1583 [百度学术]
Ghori N H, Ghori T, Hayat M Q, Imadi S R, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828 [百度学术]
Wang H Q, Xuan W, Huang X Y, Mao C Z, Zhao F J. Cadmium inhibits lateral root emergence in rice by disrupting ospin-mediated auxin distribution and the protective effect of OsHMA3. Plant and Cell Physiology, 2021, 62(1): 166-177 [百度学术]
Sharma S S, Dietz K J. The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 2009, 14(1): 43-50 [百度学术]
Kolahi M, Kazemi E M, Yazdi M, Goldson-Barnaby A. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiology and Biochemistry, 2020, 146: 71-89 [百度学术]
Zhao H X, Yao P F, Zhao J L, Wu H, Wang S, Chen Y, Hu M F, Wang T, Li C L, Wu Q. A novel R2R3-MYB transcription factor FtMYB22 negatively regulates salt and drought stress through ABA-dependent pathway. International Journal of Molecular Sciences, 2022, 23(23): 14549 [百度学术]
Wang S, Wu H L, Cao X X, Fan W J, Li C L, Zhao H X, Wu Q. Tartary buckwheat FtMYB30 transcription factor improves the salt/drought tolerance of transgenic Arabidopsis in an ABA-dependent manner. Physiologia Plantarum, 2022, 174(5): e13781 [百度学术]
Hsu P K, Dubeaux G, Takahashi Y, Schroeder J. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal, 2021, 105(2): 307-321 [百度学术]
Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J F, Lutts S, Cai G, Guerriero G. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 2019, 161: 98-106 [百度学术]
Ghori N H, Ghori T, Hayat M Q, Imadi S R, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828 [百度学术]
Emamverdian A, Ding Y L, Mokhberdoran F, Ahmad Z. Mechanisms of selected plant hormones under heavy metal stress. Polish Journal of Environmental Studies, 2021, 30(1): 497-508 [百度学术]
Mathur P, Tripathi D K, Balus F, Mukherjee S. Auxin-mediated molecular mechanisms of heavy metal and metalloid stress regulation in plants. Environmental and Experimental Botany, 2022, 196: 104796 [百度学术]
Asgher M, Per T S, Anjum S, Khan M I R, Masood A, Verma S, Khan N A. Contribution of glutathione in heavy metal stress tolerance in plants//Khan M I R, Khan N A. Reactive oxygen species and antioxidant systems in plants: Role and regulation under abiotic stress. Singapore:Springer Singapore,2017: 297-313 [百度学术]
Ramya M, Kwon O K, An H R, Park P M, Baek Y S, Park P H. Floral scent:Regulation and role of MYB transcription factors. Phytochemistry Letters, 2017, 19: 114-120 [百度学术]
冯盼盼, 陈鹏, 洪文杰, 赵小英, 刘选明. 拟南芥MYB转录因子家族研究进展. 生命科学研究, 2016, 20(6): 555-560 [百度学术]
Feng P P, Chen P, Hong W J, Zhao X Y, Liu X M. Research progress of MYB transcription factor family in Arabidopsis thaliana. Life Science Research, 2016, 20(6): 555-560 [百度学术]
向征. 水稻MYB家族转录因子OsMYB112的功能研究. 重庆:重庆大学,2016 [百度学术]
Xiang Z. Functional analysis of transcription factors OsMYB112 in rice (Oryza sativa). Chongqing:Chongqing University,2016 [百度学术]
成舒飞, 端木慧子, 陈超, 刘艾林, 肖佳雷, 朱延明. 大豆MYB转录因子的全基因组鉴定及生物信息学分析. 大豆科学, 2016, 35(1): 52-57 [百度学术]
Cheng S F, Duanmu H Z, Chen C, Liu A L, Xiao J L, Zhu Y M. Whole genome identification of soybean MYB transcription factors and bioinformatics analysis. Soybean Science, 2016, 35(1): 52-57 [百度学术]
王晓珊, 葛晨辉, 康亚妮, 王全华, 徐晨曦. 菠菜转录因子MYB基因家族的鉴定及表达分析. 上海师范大学学报:自然科学版, 2020, 49(6): 677-691 [百度学术]
Wang X S, Ge C H, Kang Y N, Wang Q H, Xu C X. Identification and expression analysis of MYB transcription factor family in spinach. Journal of Shanghai Normal University: Natural Sciences, 2020, 49(6): 677-691 [百度学术]
居利香, 雷欣, 赵成志, 舒黄英, 汪志伟, 成善汉. 辣椒MYB基因家族的鉴定及与辣味关系分析. 园艺学报, 2020, 47(5): 875-892 [百度学术]
Ju L X, Lei X, Zhao C Z, Shu H Y, Wang Z W, Cheng S H. Identification of MYB family genes and its relationship with pungency of pepper. Acta Horticulturae Sinica, 2020, 47(5): 875-892 [百度学术]
刘淑君. 番茄MYB转录因子的鉴定及其表达分析. 金华:浙江师范大学, 2012 [百度学术]
Liu S J. Identification and expression analysis of MYB transcription factors in Solanum lycopersicum.Jinhua:Zhejiang Normal University, 2012 [百度学术]
陈泓宇. 桑树MYB转录因子家族的生物信息学及黄酮合成相关基因的表达分析. 重庆:西南大学, 2015 [百度学术]
Chen H Y. Genome-wide analysis and expression involved in flavonoids synthesis of themulberry MYB transcription factor. Chongqing:Southwest University, 2015 [百度学术]
Duan A Q, Tan S S, Deng Y J, Xu Z S, Xiong A S. Genome-wide identification and evolution analysis of R2R3-MYB gene family reveals s6 subfamily R2R3-MYB transcription factors involved in anthocyanin biosynthesis in carrot. International Journal of Molecular Sciences, 2022, 23(19): 11859 [百度学术]
Jia L, Clegg M T, Jiang T. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiology, 2004, 134(2): 575-585 [百度学术]
Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura Y, Ishii S, Sarai A. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nature Structural Biology, 1996, 3(2): 178-187 [百度学术]
Stracke R, Holtgräwe D, Schneider J, Pucker B, Sörensen T R, Weisshaar B. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biology, 2014, 14: 249 [百度学术]
Du H, Yang S S, Liang Z, Feng B R, Liu L, Huang Y B, Tang Y X. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology, 2012, 12(106): 1471-2229 [百度学术]
Hu Y J, Cheng H, Zhang Y, Zhang J, Niu S Q, Wang X S, Li W J, Zhang J, Yao Y C. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytologist, 2021, 231(3): 1105-1122 [百度学术]
Tiwari P, Indoliya Y, Chauhan A S, Pande V, Chakrabarty D. Over-expression of rice R1-type-MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis. Ecotoxicology and Environmental Safety, 2020, 206: 111361 [百度学术]
Feng G Q, Burleigh J G, Braun E L, Mei W B, Barbazuk W B. Evolution of the 3R-MYB gene family in plants. Genome Biology and Evolution, 2017, 9(4): 1013-1029 [百度学术]
Wang X P, Niu Y L, Zheng Y. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences, 2021, 22(11): 6125 [百度学术]
Zhang Y W, He Z, Qi X, Li M M, Liu J, Le S, Chen K, Wang C X, Zhou Y B, Xu Z S, Chen J, Guo C H, Tang W S, Ma Y Z, Chen M. Overexpression of MYB-like transcription factor SiMYB30 from foxtail millet (Setaria italica L.) confers tolerance to low nitrogen stress in transgenic rice. Plant Physiology and Biochemistry, 2023, 196: 731-738 [百度学术]
Ding J L, Ji C C, Yu L, Wang C, Ding G D, Wang S L, Shi L, Xu F S, Cai H M. OsMYB84, a transcriptional regulator of OsCOPT2 and OsHMA5, modulates copper uptake and transport and yield production in rice. Crop Journal, 2024, 12(2): 456-469 [百度学术]
Li X R, Tang Y, Li H L, Luo W, Zhou C J, Zhang L X, Lyu J Y. A wheat R2R3-MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. Plant Science, 2020, 299: 110613 [百度学术]
Zhang G F, Li G D, Xiang Y, Zhang A Y. The transcription factor ZmMYB-CC10 improves drought tolerance by activating ZmAPX4 expression in maize. Biochemical and Biophysical Research Communications, 2022, 604: 1-7 [百度学术]
Piao W, Kim S H, Lee B D, An G, Sakuraba Y, Paek N C. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. Journal of Experimental Botany, 2019, 70(10): 2699-2715 [百度学术]
Xu W Y, Tang W S, Wang C X, Ge L H, Sun J C, Qi X, He Z, Zhou Y B, Chen J, Xu Z S, Ma Y Z, Chen M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Frontiers in Plant Science, 2020, 11: 785 [百度学术]
Zheng P P, Cao L, Zhang C, Pan W C, Wang W, Yu X, Li Y P, Fan T T, Miao M, Tang X F, Liu Y S, Cao S Q. MYB43 as a novel substrate for CRL
Bian S M, Jin D H, Sun G Q, Shan B H, Zhou H N, Wang J Y, Zhai L L, Li X Y. Characterization of the soybean R2R3-MYB transcription factor GmMYB81 and its functional roles under abiotic stresses. Gene, 2020, 753: 144803 [百度学术]
Wei Y M, Han R R, Yu Y X. GmMYB183, a R2R3-MYB transcription factor in tamba black soybean (Glycine max. cv. Tamba), conferred aluminum tolerance in Arabidopsis and soybean. Biomolecules, 2024, 14(6): 724 [百度学术]
Chen L M, Yang H L, Fang Y S, Guo W, Chen H F, Zhang X J, Dai W J, Chen S L, Hao Q N, Yuan S L, Zhang C J, Huang Y, Shan Z H, Yang Z L, Qiu D Z, Liu X R, Tran L S P, Zhou X N, Cao D. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnology Journal, 2021, 19(4): 702-716 [百度学术]
Yang Z, Yang F, Liu J L, Wu H T, Yang H, Shi Y, Liu J, Zhang Y F, Luo Y R, Chen K M. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. Science of the Total Environment, 2022, 809: 151099 [百度学术]
Jalmi S K, Bhagat P K, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha A K. Traversing the links between heavy metal stress and plant signaling. Frontiers in Plant Science, 2018, 9: 12 [百度学术]
Li S C, Han X J, Lu Z C, Qiu W M, Yu M, Li H Y, He Z Q, Zhuo R Y. MAPK cascades and transcriptional factors: Regulation of heavy metal tolerance in plants. International Journal of Molecular Sciences, 2022, 23(8): 4463 [百度学术]
Mondal S. Heavy metal stress-induced activation of mitogen-activated protein kinase signaling cascade in plants. Plant Molecular Biology Reporter, 2023, 41(1): 15-26 [百度学术]
De S S, Cuypers A, Vangronsveld J, Remans T. Gene networks involved in hormonal control of root development in Arabidopsis thaliana: A framework for studying its disturbance by metal stress. International Journal of Molecular Sciences, 2015, 16(8): 19195-19224 [百度学术]
Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology,2014, 232: 1-44 [百度学术]
Sytar O, Kumar A, Latowski D, Kuczynska P, Strzalka K, Prasad M N V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 2013, 35(4): 985-999 [百度学术]
Sapara K K, Khedia J, Agarwal P, Gangapur D R, Agarwal P K. SbMYB15 transcription factor mitigates cadmium and nickel stress in transgenic tobacco by limiting uptake and modulating antioxidative defence system. Functional Plant Biology, 2019, 46(8): 702-714 [百度学术]
Gao W D, Liu B C, Phetmany S, Li J H, Wang D N, Liu Z Y, Gao C Q. ThDIV2, an R2R3-type MYB transcription factor of Tamarix hispida, negatively regulates cadmium stress by modulating ROS homeostasis. Environmental and Experimental Botany, 2023, 214: 105453 [百度学术]
Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L. OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Science, 2017, 264: 1-8 [百度学术]
Agarwal P, Mitra M, Banerjee S, Roy S. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Science, 2020, 297: 110501 [百度学术]
Ai T N, Naing A H, Yun B W, Lim S H, Kim C K. Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia. Frontiers in Plant Science, 2018, 9: 1388 [百度学术]
Tiwari P, Indoliya Y, Chauhan A S, Singh P, Singh P K, Singh P C, Srivastava S, Pande V, Chakrabarty D. Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. Journal of Hazardous Materials, 2020, 399: 122811 [百度学术]
Wang F Z, Chen M X, Yu L J, Xie L J, Yuan L B, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J, Qiu R, Shu W, Xiao S, Chen Q F. OsARM1, an R2R3-MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Frontiers in Plant Science, 2017, 8: 1868 [百度学术]
Chen Y, Wang H Y, Chen Y F. The transcription factor MYB40 is a central regulator in arsenic resistance in Arabidopsis. Plant Communications, 2021, 2(6): 100234 [百度学术]
De Mortel J E V, Schat H, Moerland P D, Van Themaat E V L, Van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts M G M. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell and Environment, 2008, 31(3): 301-324 [百度学术]
Chen Y H, Wu X M, Ling H Q, Yang W C. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Cell Research, 2006, 16(10): 830-840 [百度学术]
Wang H, Yin X, Du D, Liang Z, Han Z, Nian H, Ma Q. GsMYB7 encoding a R2R3-type MYB transcription factor enhances the tolerance to aluminum stress in soybean (Glycine max L.). BMC Genomics, 2022, 23(1): 529 [百度学术]
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B S. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecular Plant Pathology, 2019, 24(13): 2452 [百度学术]
Landi M, Agati G, Fini A, Guidi L, Sebastiani F, Tattini M. Unveiling the shade nature of cyanic leaves: A view from the "blue absorbing side" of anthocyanins. Plant Cell and Environment, 2021, 44(4): 1119-1129 [百度学术]
Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F, Tattini M. Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants, 2020, 9(11): 1098 [百度学术]
Gouot J C, Smith J P, Holzapfel B P, Walker A R, Barril C. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 2019, 70(2): 397-423 [百度学术]
Zheng T, Lu X B, Yang F, Zhang D W. Synergetic modulation of plant cadmium tolerance via MYB75-mediated ROS homeostasis and transcriptional regulation. Plant Cell Reports, 2022, 41(7): 1515-1530 [百度学术]
Ahammed G J, Li X, Yu J. Introduction to plant hormones and climate change//Ahammed G J, Yu J. Plant hormones and climate change. Singapore: Springer Nature Singapore, 2023: 1-16 [百度学术]
Xu Z G, Ge Y, Zhang W, Zhao Y L, Yang G Y. The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC Plant Biology, 2018, 18: 19 [百度学术]
Li R T, Yang Y J, Liu W J, Liang W W, Zhang M, Dong S C, Shu Y J, Guo D L, Guo C H, Bi Y D. MsNRAMP2 enhances tolerance to iron excess stress in Nicotiana tabacum and MsMYB binds to its promoter. International Journal of Molecular Sciences, 2023, 24(14): 11278 [百度学术]
Zhang P, Wang R L, Ju Q, Li W Q, Tran L S P, Xu J. The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiology, 2019, 180(1): 529-542 [百度学术]
Xu Z G, Wang T Y, Hou S Y, Ma J Y, Li D P, Chen S W, Gao X Q, Zhao Y L, He Y, Yang G Y. A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. Journal of Hazardous Materials, 2024, 463: 132871 [百度学术]
Gu P, Li Q, Zhang W Z, Zheng Z, Luo X Z. Effects of different metal ions (Ca, Cu, Pb, Cd) on formation of cyanobacterial blooms. Ecotoxicology and Environmental Safety, 2020, 189: 109976 [百度学术]
Elhiti M, Yang C C, Chan A, Durnin D C, Belmonte M F, Ayele B T, Tahir M, Stasolla C. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Journal of Experimental Botany, 2012, 63(12): 4447-4461 [百度学术]
Melis A. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 2009, 177(4): 272-280 [百度学术]
Ying R R, Qiu R L, Tang Y T, Hu P J, Qiu H, Chen H R, Shi T H, Morel J L. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology, 2010, 167(2): 81-87 [百度学术]
Cirillo V, D'Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, Maggio A. Anthocyanins are key regulators of drought stress tolerance in tobacco. Biology, 2021, 10(2): 139 [百度学术]
Lea˜o G A, de Oliveira J A, Felipe R T A, Farnese F S, Gusman G S. Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. Journal of Plant Interactions, 2014, 9(1): 143-151 [百度学术]
Naing A H, Kim C K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 2021, 172(3): 1711-1723 [百度学术]
Selim S, Abuelsoud W, Al-Sanea M M, AbdElgawad H. Elevated CO2 differently suppresses the arsenic oxide nanoparticles-induced stress in C3 (Hordeum vulgare) and C4 (Zea maize) plants via altered homeostasis in metabolites specifically proline and anthocyanin metabolism. Plant Physiology and Biochemistry, 2021, 166: 235-245 [百度学术]
Mi Y Z, Tong K, Zhu G S, Zhang X, Liu X H, Si Y B. Surface spraying of anthocyanin through antioxidant defense and subcellular sequestration to decrease Cd accumulation in rice (Oryza sativa L.) grains in a lead-zinc mine area. Environmental Geochemistry and Health, 2021, 43(5): 1855-1866 [百度学术]
Ma X, Yu Y N, Jia J H, Li Q H, Gong Z H. The pepper MYB transcription factor CaMYB306 accelerates fruit coloration and negatively regulates cold resistance. Scientia Horticulturae, 2022, 295: 110892 [百度学术]
Mittler R. ROS are good. Trends in Plant Science, 2017, 22(1): 11-19 [百度学术]
Yan X X, Huang Y, Song H, Chen F, Geng Q L, Hu M, Zhang C, Wu X, Fan T T, Cao S Q. A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis. PLoS Genetics, 2021, 17(6): e1009636 [百度学术]