摘要
根系是水稻植株的重要组成部分,在植物固定、水分和营养物质获取等生长发育过程中起重要作用。本研究发现oself3-1突变体的根系显著变短,将突变体与野生型笹锦杂交构建F2分离群体进行遗传分析,表明突变性状由一个隐性单基因调控。通过图位克隆将OsELF3-1定位在6号染色体一段50.9 kb的区间内,该区间内共有4个开放阅读框(ORF),通过序列比对发现突变体仅在ORF4(OsELF3-1)的第二个外显子上缺失7个碱基,导致基因发生移码并提前终止,推测OsELF3-1为目标基因。OsELF3-1的CRISPR/Cas9敲除突变体的根系显著短于野生型笹锦,验证OsELF3-1参与根系长度调控。为进一步阐明OsELF3-1的调控网络,利用酵母双杂交筛选到OsELF3-1的互作蛋白OsARID3,OsARID3具有ARID功能结构域(ARID3 DNA binding domain)、α-晶体蛋白/热休克蛋白20结构域(α-crystallin/Hsp_domain)及热休克蛋白20(HsP20)等结构域,以及依靠钾离子的钠离子/钙离子交换的结构域(
水稻是重要的粮食作物,为我国超过半数的人口提供主食。近年来耕地面积减少,温室气体排放增加,全球气温升高,气候灾害频发,增加了绿色农业可持续发展和保障粮食安全的难度。因此提高水稻单产以满足逐年增长的人口粮食需求,对维护国家粮食安全战略具有重要的意
水稻根系是由主根、不定根、侧根和根毛组成的须根系,在正常条件下水稻根长、根数和根体积在各生育期均与产量呈极显著正相
水稻OsELF3基因家族与拟南芥AtELF3家族同源,水稻基因组中存在两个OsELF3家族基因,分别为OsELF3-1/Hd17/Ef7及OsELF3-2。前人已经对基因OsELF3-1进行了克隆,其在水稻昼夜节律和光周期途径开花方面发挥重要功能。OsELF3-1通过正调控OsLHY的表达进而影响水稻昼夜节律,通过激活Ehd1和抑制Ghd7在长短日照条件下均促进水稻开
从实验室的笹锦EMS诱变突变体库筛选得到根系变短的oself3-1突变体。试验以笹锦为野生型材料,再利用CRISPR/Cas9载体构建新的oself3-1突变体,RNA干扰技术构建OsARID3-RNAi株系,oself3-1突变体与野生型杂交获得的F1及F2群体(124株),突变体与丰锦杂交构建包含1344个植株的F2群体用于突变基因精细定位。野生型笹锦、oself3-1突变体、oself3-1突变体与野生型笹锦杂交获得的F1材料、OsARID3-RNAi株系均于2022年种植于沈阳农业大学水稻所研究基地,行长5 m,行距30 cm,株距13.5 cm,其中野生型笹锦、oself3-1突变体和OsARID3-RNAi株系均种植5行,3次重复,栽培方式均与大田生产相同,小区纯氮施用量为150 kg/h
利用突变体oself3-1与野生型笹锦杂交得到F1植株,F1植株自交得到包含124个植株的F2群体。水培条件下在培养箱内(14 h光照30℃/ 10 h黑暗22℃)播种4 d后,将突变体、野生型笹锦、F1植株和F2群体根系摆放在盛有一薄层水的透明塑料器皿(30 cm×30 cm)中,用扫描仪(Epson Expression 1680 Scanner)进行图像扫描,再用根系分析系统(WinRHIZO)进行分析,计算根长,分析突变体根系长度差异性状是否受单隐性核基因控制。另将突变体与丰锦杂交构建包含1344个植株的F2群体进行突变基因精细定位,明确目的基因的定位区间。利用水稻基因组注释数据库(http://rice.plantbiology.msu.edu/)预测定位区间内的开放阅读框(ORF,open reading frames)。试验DNA均采用CTAB法提取,水稻材料播种后14 d取嫩叶提取DNA,使用在线软件Primer 5.0设计定位用引物(
引物名称 Primer name | 上游引物(5′-3′) Forward primer(5′-3′) | 下游引物(5′-3′) Reverse primer(5′-3′) | 作用 Function |
---|---|---|---|
P1 | ACACAGGGATCGATCGAGAG | GACCATCGCTTCTGCAGTTC | 精细定位 |
P2 | TTTTTATACGCTAGTAAATTGG | TTTTCAAACTCAACAAATTAAGA | 精细定位 |
P3 | GTGTCGCCCTTCATCCTAGA | AGATCGTGCGGTCAAGAAAT | 精细定位 |
P4 | TGGGTTCATCACTGGTATGC | TGGAGCCAAGTCTACAGCAA | 精细定位 |
P5 | CCTCGAGCATCTCCACCAC | GCTACGGTCTCGTTCTGCTC | 精细定位 |
P6 | TTTCCTTGGTGGCTAAGAGTC | GGATACGTCGCATTTCGTTT | 精细定位 |
oself3-1-Cas9 | GGCATTCAGAACCCTCCAATGAGAA | AAACTTCTCATTGGAGGGTTCTGAA | CRISPR/Cas9靶位点 |
oself3-1 | TTCAGAACCCTCCAATGAGAA | TCATCGATGGTTGCGACTAA | CRISPR/Cas9鉴定 |
OsARID3-RNAi-positive | ATAAAGGAAAGGCCATCGTTGAA | AGCTGGACTGGACGCATACAT | RNAi |
OsARID3-RNAi-reverse | TATATGTATGCGTCCAGTCCAG | ATAAAAACCCATCTCATAAATAAC | RNAi |
Actin | TCCATCTTGGCATCTCTCAG | GTACCCGCATCGGCATCTG | qRT-PCR |
OsELF3-1 | CATGATCGTCGTCGACCTCCTC | TCATCGTCCCGACAGGTAGGAG | qRT-PCR |
OsARID3 | TTGCCCTCCCGCATTG | CGAATGGTGCACGGACAA | qRT-PCR |
OsARID3-RNAi | GTTCGGAGAACCAAAGATTG | GTCCATGGAGAGTGACAACTGCCGA | qRT-PCR |
OsELF3-1-BD | CGGGATCCATGGCGACGAGGGGAGGAGGCGGAGGAG | GAGCTCTCAATCATCTCGTTGCCGTTCCATTTGT | 酵母双杂 |
OsARID3-AD | CGGGATCCATGGCCCAGTTTAGGTCTGCGCCTGTGG | GAGCTCTTACTTTGACTGCTCGAATGGTGCACGG | 酵母双杂 |
根据OsELF3-1的基因组序列,在CRISPR-GE(http://skl.scau.edu.cn/targetdesign/)进行靶位点设计(
根据OsARID3序列进行RNAi载体构建,分别通过Kpn Ⅰ/Sal Ⅰ和 BamH Ⅰ/Sac Ⅰ限制性内切酶将同一特异性片段以正向和反向连接到RNAi表达载体上,根据载体和基因的CDS序列设计引物(
利用在线工具InterPro(https://www.ebi.ac.uk/interpro/)对蛋白质结构域进行预测。在数据库(https://snp-seek.irri.org/index.zul)查找目标基因在3010份种质资源中的SN
为了解析OsELF3-1的基因功能,对OsELF3-1进行酵母双杂交,筛选出与OsELF3-1互作的OsARID3。利用SnapGene软件设计带有BamH Ⅰ和Sac Ⅰ酶切位点的引物(
前期于筛选笹锦突变体库发现突变体oself3-1根系较野生型笹锦的根系明显变短(

图1 突变体根部表型分析及精细定位
Fig. 1 Root phenotype of the mutant and its fine mapping
A: 野生型笹锦(Sasa)与oself3-1突变体根系长度差异;B: F2群体根系长度与植株数量;C: 定位区间内预测的ORF及候选基因OsELF3-1(LOC_Os06g05060)的基因结构及在丰锦(Toyo)和oself3-1的序列差异,红色箭头表示候选ORF,红色字母表示ORF4在丰锦和oself3-1突变体之间的序列变异,-为碱基缺失
A: Differences in the root system of wild type Sasaishiki (Sasa) and oself3-1 mutant; B: Root length and number of plants in F2 population; C: Predicted ORFs in the location interval and gene structure of the candidate gene OsELF3-1 (LOC_Os06g05060) and the sequence difference between Toyonishiki (Toyo) and oself3-1, the red arrow indicates the candidate ORF, the letters in red color indicate the sequence variation of ORF4 between Toyonishiki and oself3-1 mutant, - is the missing base
为了验证OsELF3-1参与调控水稻根系生长,在粳稻品种野生型笹锦遗传背景下通过CRISPR/Cas9技术构建了OsELF3-1敲除突变体(T-cr1和T-cr2),测序结果表明T-cr1和T-cr2分别在第3个外显子上有2个碱基和1个碱基的缺失(

图2 CRISPR/Cas9技术构建OsELF3-1敲除突变体的验证及根系表型变化
Fig. 2 Validation of OsELF3-1 knockout mutant constructed by CRISPR/Cas9 technology and root phenotypic changes
A: OsELF3-1的基因结构及在野生型笹锦和oself3-1突变体中的序列差异,T-cr1、T-cr2分别为oself3-1的两个突变体;B: 野生型笹锦及oself3-1突变体的幼苗根系性状对比;C: 野生型笹锦及突变体根系长度的变化,不同字母表示差异显著 (P < 0.05),下同;D: 野生型笹锦不同器官中OsELF3-1的相对表达量
A: Gene structure of the candidate gene OsELF3-1 and the sequence difference between wild type Sasaishiki and oself3-1, T-cr1 and T-cr2 are two mutants of oself3-1, respectively; B: Comparison of seedling root traits between Sasaishiki and oself3-1 mutants; C: Changes in root length in Sasaishiki and mutant organisms, different letters indicate significant differences (P<0.05),the same as below; D: Relative expression of OsELF3-1 in different organs of Sasaishiki
为了解析OsELF3-1调控水稻根系生长的基因网络,通过酵母双杂交筛库筛选OsELF3-1的互作蛋白。四缺培养基酵母自激活结果显示OsELF3-1没有自激活现象(

图3 OsELF3-1酵母双杂交筛选互作蛋白
Fig. 3 OsELF3-1 yeast two-hybrid screening of interacting proteins
A: OsELF3-1的自激活验证,QDO:四缺培养基;B: OsELF3-1与OsARID3的互作验证,1
A: Self-activation verification of OsELF3-1, QDO: Synthetic dextrose minimal medium without adenine, histidine, leucine, tryptophan;B: Identification of interaction between OsELF3-1 and OsARID3, 1
基因结构分析发现OsARID3有15个外显子,采用InterPro对蛋白质功能结构域进行分析,蛋白质结构域中含有ARID功能结构域(ARID3 DNA binding domain)、α-晶体蛋白/热休克蛋白20结构域(α-crystallin/Hsp_domain)、热休克蛋白20(HsP20)等结构域,OsARID3结构域中还存在依靠钾离子的钠离子/钙离子交换的结构域(

图4 OsARID3结构域预测及OsARID3-RNAi突变体的根系变化
Fig. 4 Domain prediction of OsARID3 and root changes of OsARID3-RNAi mutants
A: OsARID3蛋白功能结构域预测;B: 野生型笹锦不同器官中OsARID3的相对表达量;C: 野生型笹锦、T-RNAi-1及 T-RNAi-2中OsARID3的相对表达量,T-RNAi-1、T-RNAi-2为OsARID3的RNAi植株;D: 野生型笹锦与OsARID3-RNAi根系性状比较
A: Prediction of functional conserved domain of OsARID3 protein; B: Relative expression levels of OsARID3 in different organs of wild type Sasanishiki; C: Expression of OsARID3 in Sasaishik, T-RNAi-1 and T-RNAi-2, T-RNAi-1 and T-RNAi-2 are the RNAi plants of OsARID3; D: Comparison of Sasaishiki and OsARID3-RNAi root traits
为了进一步分析OsARID3的自然变异分布和其进化规律,对3010份水稻种质资源测序数据进行分析,发现OsARID3的基因组DNA区域在3010份种质资源种中存在丰富的多态性,包括50个SNP和11个InDel(

图5 OsARID3的序列单倍型分析
Fig. 5 Sequence haplotype analysis of OsARID3
A: SNP和InDel的多态性分布;B: OsARID3的聚类分析,Aus:孟加拉稻,XI_Admix:籼稻混合类型,XI-Ⅰ/ XI-Ⅱ/ XI-Ⅲ:籼稻亚群,Intermediate: 中间类型,GJ_Admix:粳稻混合类型,Tem_GJ:粳稻亚群温带粳稻,Tro_GJ:热带粳稻;C: OsARID3的单倍体分析,Ⅰ~ⅩⅤ: 不同单倍型类型
A: SNP and InDel polymorphism distribution; B: Cluster analysis of OsARID3, Aus: Aus, XI_Admix:Indica admix, XI-Ⅰ/ XI-Ⅱ/ XI-Ⅲ:Indica, Intermediate: Intermediate type, GJ_Admix:Japonica admix, Tem_GJ:Temperate japonica, Tro_GJ:Tropical japonica; C: Haploid analysis of OsARID3, Ⅰ-ⅩⅤ: Different haplotype types
水稻根系的发育是一个复杂的生物学过程,参与该过程的基因众多,因此目前已经克隆的根系发育调控基因往往具有一因多效性。OsELF3-1是拟南芥AtELF3的同源基因,在拟南芥中,ELF3、ELF4和LUX形成晚间复合体(EC,evening complex),直接调节植物生
水稻中ELF3的另一个同源基因编码蛋白为 OsELF3-2,OsELF3-2的T-DNA插入突变体与OsELF3-1敲除突变体表型相似,在长短日照下都通过延长基础营养生长期来延迟抽
参考文献
Stephanie S, Ive D S. Root system architecture: Insights from Arabidopsis and cereal crop. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1441-1452 [百度学术]
王留艳. 缺氮胁迫下细胞分裂素对水稻幼苗氮素分配及叶片衰老的调控作用.武汉:华中农业大学, 2017 [百度学术]
Wang L Y. The regulation of cytokinin on nitrogen distribution and leaf senescence in rice seedlings under nitrogen deficiency. Wuhan:Huazhong Agricultural University, 2017 [百度学术]
褚光. 不同水分、养分利用效率水稻品种的根系特征及其调控技术.扬州:扬州大学, 2016 [百度学术]
Chu G. Roots traits for rice varieties with different water and nitrogen use efficiencies and their regulation techniques.Ynagzhou: Agricultural College Yangzhou University, 2016 [百度学术]
Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109: 7-13 [百度学术]
谷娇娇, 胡博文, 贾琰, 沙汉景, 李经纬, 马超, 赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响. 作物杂志, 2019 (4): 176-182 [百度学术]
Gu J J, Hu B W, Jia Y, Sha H J, Li J W, Ma C, Zhao H W. Effects of salt stress on root related traits and yield of rice. Crops, 2019 (4): 176-182 [百度学术]
Rebouillat J, Dievart A, J. Verdeil L, Escoute J, Giese G, Breitler J C, Gantet P, Espeout S, Guiderdoni E, Périn C. Molecular genetics of rice root development. Rice, 2009, 2(1): 15-34 [百度学术]
E Z G, Ge L, Wang L. Molecular mechanism of adventitious root formation in rice. Plant Growth Regulation, 2012, 68(3): 325-331 [百度学术]
Yu P, Gutjahr C, Li C J, Hochholdinger F. Genetic control of lateral root formation in cereals. Trends in Plant Science, 2016, 21(1): 951-961 [百度学术]
Li J, Zhu S H, Song X W, Shen Y, Chen H M, Yu J, Yi K K, Liu Y F, Valerie J K, Wu P, Deng X W. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. The Plant Cell, 2006, 18(2): 340-349 [百度学术]
Yusaku U, Kazuhiko S, Satoshi O, Jagadish R, Manabu I, Naho H, Yuka K, Yoshiaki I, Kazuko O, Noriko K, Haruhiko I, Hinako T, Ritsuko M, Yoshiaki N, Wu J Z, Takashi M, Toshiyuki T, Kazutoshi O, Masahiro Yano. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45: 1097-1102 [百度学术]
王萌冉, 秦俭, 吴凡, 王学春, 黎腊梅, 胡瑶, 赵长坤, 陈婷, 杨国涛, 陈永军, 胡运高. 不同基因型杂交水稻根系分布特征及其对水稻耐旱能力的影响. 东 北 师 大 学 报 :自 然 科 学 版,2021, 53(4): 84-92 [百度学术]
Wang M R, Qin J, Wu F, Wang X C, Li L M, Hu Y, Zhao C K, Chen T, Yang G T, Chen Y J, Hu Y G. Root distribution characteristics of hybrid rice with different genotypes and their effects on drought tolerance of rice. Journal of Northeast Normal University: Natural Science Edition, 2021, 53(4): 84-92 [百度学术]
Song M Q, Fan X R, Chen J G, Qu H Y, Luo L, Xu G H. OsNAR2.1 interaction with OsNIT1 and OsNIT2 functions in root-growth responses to nitrate and ammonium. Plant Physiology, 2020, 183(1): 289-303 [百度学术]
Huang S J, Chen S, Liang Z H, Zhang C M, Yan M, Chen J G, Xu G H, Fan X R, Zhang Y L. Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner. Scientific Reports, 2015, 5: 18192 [百度学术]
Kazuki M, Eri O T, Kiyosumi H, Kaworu E, Tsuyu A, Masahiro Y. Natural variation in Hd17, a homolog of arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant & Cell Physiology, 2012, 53(4): 709-716 [百度学术]
Hiroki S, Eri O T, Yutaka O, Yoshihiro Y, Haruka I, Takayuki Y, Kazuki M, Kiyosumi H, Masahiro Y, Hiromo I, Takatoshi T. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant & Cell Physiology, 2012, 53(4): 717-728 [百度学术]
Wang X L, He Y Q, Wei H, Wang L. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell & Environment, 2021, 44: 3283-3301 [百度学术]
Ning Y S, Shi X T, Wang R Y, Fan J B, Chan H P, Zhang C Y, Zhang T, Ouyang X H, Li S G, Wang G L. OsELF3-2, an Ortholog of Arabidopsis ELF3, interacts with the E3 ligase APIP6 and negatively regulates immunity against magnaporthe oryzae in rice. Molecular Plant, 2015, 8: 1679-1682 [百度学术]
Yi H, Shi H, Mao W, Yin J J, Ma Y Y, Xu L, Jing L J, He M, Zhu X B; Lu X, Xiong Q, Tang Y Y, Hou Q Q, Song L, Wang L, Li W T, Yu H, Chen X W, Li J Y, Wang J. E3 ubiquitin ligase IPI1 controls rice immunity and flowering via both E3 ligase-dependent and -independent pathways. Developmental Cell, 2024, 59(20):2719-2730 [百度学术]
Xu X, Shi X T, You X M, Hao Z Y, Wang R Y, Wang M, He F, Peng S S, Tao H, Liu Zheng, Wang J S, Zhang C Y, Feng Q, Wu W X, Wang G L, Ning Y S. A pair of E3 ubiquitin ligases control immunity and flowering by targeting different ELF3 proteins in rice. Developmental Cell, 2024,59(20):2731-2744 [百度学术]
Sun Q, Yu Z W, Wang X C, Chen H, Lu J H, Zhao C F, Jiang L L, Li F C, Xu Q, Ma D R. EARLY FLOWERING 3-1 represses Grain number, plant height, and heading date7 to promote ABC1 REPRESSOR1 and regulate nitrogen uptake in rice. Plant Physiology, 2024, 196(3): 1857-1868 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the
Locedie M, Roven R F, Dmytro C, Frances N B, Jeffrey D, Juan M A S, Kevin P, Alexandre P, Inna D, Victor S, Ruaraidh S H, Kenneth L M, Nickolai A, Ramil M. SNP-Seek II: A resource for allele mining and analysis of big genomic data in Oryza sativa. Current Plant Biology, 2016, 7-8: 16-25 [百度学术]
Zhao H, Yao W, Ouyang Y D, Yang W N, Lian G W, Lian X M, Xing Y Z, Chen L L, Xie W B. RiceVarMap:A comprehensive database of rice genomic variations. Nucleic Acids Research, 2015, 43: 1018-1022 [百度学术]
Dmitri A N, Anne H, Elizabeth E H, Jasmine J K, Takato I, Thomas F S, Eva M F, Steve A K. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011, 475(7356): 398-402 [百度学术]
徐艳. 水稻 OsSKIPa互作蛋白OsTMF和 OsARID3在抗逆和发育中的功能鉴定. 武汉:华中农业大学, 2015 [百度学术]
Xu Y. Functional characterization of OsSKLPa-interacting proteins OsTMF and OsARID3 in stress resistance and development. Wuhan:Huazhong Agricultural University, 2015 [百度学术]
Kortschak R D, Tucker P W, Saint R. ARID proteins come in from the desert. Trends in Biochemical Sciences, 2000, 25(6): 294-299 [百度学术]
Deborah W, Antonia P, Peter B D, Elizabeth M. ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell growth & Differentiation, 2002, 13(3): 95-106 [百度学术]
Xu Y, Zong W, Hou X, Yao J L, Liu H B, Li X H, Zhao Y D, Xiong L Z. OsARID3, an AT-rich Interaction Domain-containing protein, is required for shoot meristem development in rice. The Plant Journal, 2015, 83(5): 806-817 [百度学术]
项聪英. HSP20基因的克隆及功能初步分析. 杭州:浙江师范大学, 2016 [百度学术]
Xiang C Y. Cloning and preliminary function on analysis of HSP20 gene. Hangzhou: Zhejiang Normal University, 2016 [百度学术]
Hicks K A, Albertson T M, Wagner D R. EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. The Plant Cell, 2001, 13: 1281-1292 [百度学术]
褚越洋. 拟南芥 AtHD2D 基因对根系发育的影响初探. 杨凌:西北农林科技大学, 2021 [百度学术]
Chu Y Y. A basic study on effect of AtHD2D gene on root development in Arabidopsis thaliana. Yangling:Northwest A & F University, 2021 [百度学术]
吴玲玲. OsPIN1同源基因对水稻根系发育的影响. 杭州:浙江大学, 2021 [百度学术]
Wu L L. Effect of OsPIN1 paralogous genes on the development of rice root system. Hangzhou:Zhejiang University, 2021 [百度学术]
Fu C, Yang X O, Chen X, Chen W, Ma Y, Hu J, Li S. OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Plant Biology, 2009, 11: 751-757 [百度学术]
Wang Q, Su Q M, Nian J Q, Zhang J, Guo Meng, Dong G J, Hu J, Wang R S, Wei C H, Li G W, Wang W, Guo H S , Lin S Y, Qian W F , Xie X Z, Qian Q, Chen F, Zuo J R. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14(6): 1012-1023 [百度学术]