摘要
油蟠桃‘中油蟠9号’果实套袋后外果皮有花色苷合成呈现色泽微红,此类型桃适宜套袋栽培,满足消费者对色泽品相的追求。本研究以‘中油蟠9号’盛花后89 d和102 d套袋果实外果皮为试验材料,对‘中油蟠9号’果实套袋后色泽形成原因进行转录组、代谢组以及双组学联合分析。结果表明,转录组分析共鉴定2652个显著差异表达基因,其中与花色苷合成相关的差异表达基因有16个,如花色苷合成途径早期结构基因PpPAL,PpC4H,Pp4CLs,PpCHSs,PtpCHIs,PpF3H,PpF3′H,花色苷合成途径晚期结构基因PpDFR,PpANS,PpUFGT,PpGST,以及56个特异性上调表达的转录因子和光受体基因PpCRY3和PpUVR8.3,这些基因均上调表达,表达模式与花色苷含量相关。利用高效液相串联质谱法检测发育阶段外果皮中类黄酮代谢物的相对含量变化,共检测到112种显著差异代谢物,其中矢车菊素-3,5-二-O-葡萄糖苷显著上调,Log2FC差异倍数最高为16.8。矢车菊素-3,5-O-葡萄糖苷是‘中油蟠9号’套袋果实外果皮呈现红色的主要代谢物。结合双组学联合分析和转录因子结果,推测套袋遮光下PpBL、PpNAC1上调表达激活花色苷调节基因PpMYB10.1的表达,促进花色苷结构基因催化合成矢车菊素-3,5-二-O-葡萄糖苷,使‘中油蟠9号’外果皮呈现红色。研究结果有助于分析遮光下桃果实花色苷合成模式,为筛选更多适宜套袋栽培的优质蟠桃品种提供理论依据。
桃[Prunus persica(L.)Batsch]是世界温带地区栽培的重要果树之一,起源于中国,是我国重要落叶果树。作为一种鲜食水果,桃果皮及果肉颜色是影响消费者选择和反映其营养成分的重要指
目前桃果实中花色苷组成、分布以及生物合成代谢途径已基本清
果实套袋积累花色苷这一现象不仅在桃中存在,其他植物中也有发现。如‘京艳’葡萄中发现COP1(CONSTITUTIVELY PHOTOMORPHOGENIC 1)蛋白无论在光下还是黑暗中均定位于细胞质中,不能介导HY5靶蛋白在黑暗中的降解,因此即使套袋仍然积累花色
为了解套袋桃果实果皮色泽形成原因,本研究以‘中油蟠9号’套袋果实为材料,利用转录组学结合代谢组学的方法分析与套袋果实外果皮颜色相关的差异表达基因及显著差异代谢物,同时利用qRT-PCR进行验证。研究结果有助于理解套袋下桃果实花色苷合成模式,为筛选更多适宜套袋栽培的优质蟠桃品种提供理论依据。
试验所用材料种植于中国农业科学院郑州果树研究所新乡基地。盛花后40 d,采用内黑外棕的双层不透明纸袋(150 mm×180 mm)对3棵长势一致的‘中油蟠9号’桃果实进行套袋遮光处理,分别于盛花后89 d和102 d观察套袋果实表型、测定果实外果皮色泽、取样。外果皮液氮速冻-80 ℃保存,用于后续转录组学和代谢组学分析。
选3棵长势健壮的果树,每棵树都取结果部位相同的5个果实。色差仪CR-400在果实赤道位置测定色差值L*(明亮度值)、a*(红绿偏值)、b*(蓝黄偏值
总RNA提取、文库构建与质检、测序工作由北京诺和致源科技股份有限公司参与完成。每个时期使用2个生物学重复,盛花后89 d的‘中油蟠9号’桃外果皮组织分别命名为ZYP9_89_DAFB_1和ZYP9_89_DAFB_2,盛花后102 d的‘中油蟠9号’桃外果皮组织命名为ZYP9_102_DAFB_1和ZYP9_102_DAFB_2,其中DAFB表示盛花后天数。
经数据质控得到高质量clean reads,使用HISAT2将测序结果与参考基因组Prunus persica whole genome assembly v2.0&annotation v2.1(https://www.rosaceae.org/
取‘中油蟠9号’盛花后89 d和102 d套袋桃果实外果皮样品,冻干机真空冷冻干燥后研磨至粉末状,称取50 mg粉末溶解于1.2 mL 70%甲醇提取液中,30 min涡旋一次,每次30s,共6次,12000 r/min离心3 min后,吸取上清,用微孔滤膜(0.22 µm)过滤后保存,用于后期超高效液相色谱串联质谱(UPLC-MS/MS)分析。采用UPLC-MS/MS进行数据采集。基于迈维自建数据库MWDB,根据二级谱信息进行物质定性分析;基于本地代谢数据库HMDB(http://www.hmdb.ca/)、MoToDB(http://www.ab.wur.nl/moto/)和METLIN(http://metlin.scripps.edu/index.php)对其中同一代谢物在不同样本中的质谱出峰进行积分校
为验证数据准确性,对外果皮花色苷合成相关的9个显著差异表达基因进行实时定量PCR验证。以PpActin作为内参基
引物名称 Primer name | 基因名称 Gene ID | 正向引物(5′-3′) Forward primer (5′-3′) | 反向引物(5′-3′) Reverse primer (5′-3′) |
---|---|---|---|
PpActin | Prupe.8G132000 | TGCCATTGAAATCCTGAAAC | ACCAATTGGATCATCCTCCT |
PpPAL | Prupe.6G235400 | CAGAGCAGCACAACCAAGACG | CTCCAAATGCCTCAAATCAATG |
PpC4H | Prupe.6G040400 | GGACGCTCAGCAGAAGGGA | TGGATCTCAGGGTGGTTCACA |
Pp4CL | Prupe.2G326300 | AGATGAGGCTGCTGGTGAAGT | TTGGAATGGCATGGATGAAGT |
PpCHS | Prupe.1G002900 | AACAAGGGTGCTCGTGTTCTC | GCTGCACCATCACCGAATAAG |
PpCHI | Prupe.2G225200 | GAGATCGTTACAGGTCCATTTG | GTGGGAAGTTTTGATCCTTGA |
PpF3H | Prupe.7G168300 | GGACTGGACACAGAGGCATT | AATTGTGCCTGGGTCAGTGT |
PpF3'H | Prupe.5G203600 | CTCTCGCTCAAAGAGGATGC | CCATTCCACTGTGCTTGATG |
PpDFR | Prupe.1G376400 | CGCCTCCAAGACTCTAGCTG | CCAGTGAGTGGGGAAAGTCC |
PpANS | Prupe.5G086700 | AGGAGTTGAAGAAGGCAGCA | GCCTGGTCATTGGCATACTT |
盛花后89 d‘中油蟠9号’果实外果皮色泽开始变红,至盛花后102 d(成熟期)着色稳定,说明套袋遮光后果实外果皮依然有花色苷合成(

图1 ‘中油蟠9号’套袋果实外果皮着色和花色苷含量分析
Fig. 1 Analysis of exocarp coloring and anthocyanin content of 'Zhongyoupan9' under bagging conditions
A:‘中油蟠9号’套袋果实不同发育时期着色情况;B:‘中油蟠9号’不同发育时期花色苷含量和果实外果皮着色区域色泽变化,以桃果皮中主要花色苷(矢车菊素-3,5-二-O-葡萄糖苷)代表花色苷含量变化趋势。ZYP9_89_DAFB :‘中油蟠9号’盛花后89 d果实,ZYP9_102_DAFB :‘中油蟠9号’盛花后102 d果实, 折线表示a*/b*比值,柱形图表示套袋果实外果皮主要花色苷(矢车菊素-3,5-二-O-葡萄糖苷)的相对含量,*表示在P<0.05水平上差异显著
A: Coloring of bagged fruits of 'Zhongyoupan 9' at different developmental periods; B: Changes in anthocyanin content and fruit color at different developmental stages of ‘Zhongyoupan 9’, the main anthocyanins of cyanidi n-3,5-O-glucoside in peach peel were used to represent the change trend of anthocyanin content. ZYP9_89_DAFB: The bagged fruits of 'Zhongyoupan 9' at 89 days after flower bloom; ZYP9_102_DAFB: The bagged fruits of 'Zhongyoupan 9' at 102 days after flower bloom. The line chart represents the a*/b* values. The bar chart illustrates the relative content of the anthocyanin (cyanidin-3,5-di-O-glucoside). *indicates significant difference at the P<0.05 level
对盛花后89 d和盛花后102 d‘中油蟠9号’套袋果实外果皮RNA样品进行cDNA文库构建并测序,raw data经过滤后共获得26.51Gb clean data,各样品clean data均在5.88Gb以上(
样本ID Sample ID | 干净读数(Gb) Clean data | Q20(%) | Q30(%) | GC含量(%)GC content | 错误率(%) Error rate | 总比对率(%) Total map | 特异比对率(%) Unique map |
---|---|---|---|---|---|---|---|
ZYP9_89_DAFB_1 | 6.83 | 98.08 | 94.12 | 45.56 | 0.02 | 97.57 | 95.41 |
ZYP9_89_DAFB_2 | 6.77 | 97.99 | 93.91 | 45.39 | 0.03 | 97.35 | 95.17 |
ZYP9_102_DAFB_1 | 7.03 | 98.00 | 93.95 | 45.28 | 0.03 | 97.89 | 95.46 |
ZYP9_102_DAFB_2 | 5.88 | 98.21 | 94.34 | 45.65 | 0.02 | 97.85 | 94.94 |
_1、_2表示2份重复
_1,_2 represents 2 repetitions
以校正后P<0.05值以及|log2FC|≥1为筛选标准,共筛选到2652个显著差异表达基因,包括上调差异表达基因1153个,下调差异表达基因1499个(

图2 ‘中油蟠9号’不同发育时期套袋果实差异表达基因分析
Fig. 2 Analysis of differentially expressed genes of ‘Zhongyoupan 9’ at different developmental stages under bagging conditions
关键差异 表达基因 The major DEGs | 基因名称 Gene ID | 注释 Annotation | ZYP9_102_DAFB (FPKM) | ZYP9_89_DAFB (FPKM) | Log2FC | 类型 Type |
---|---|---|---|---|---|---|
结构基因Structural genes | Prupe.6G235400 | PpPAL(Phenylalanine ammonia-lyase) | 20.47 | 0.66 | 4.98 | 上调* |
Prupe.6G040400 | PpC4H(Cinnamic acid 4-hydroxylase) | 53.81 | 10.19 | 2.42 | 上调* | |
Prupe.2G326300 | Pp4CL(4-Coumarate:coenzyme A ligase) | 35.38 | 2.84 | 3.66 | 上调* | |
结构基因Structural genes | Prupe.5G154100 | Pp4CL(4-Coumarate:coenzyme A ligase) | 43.91 | 20.45 | 1.12 | 上调* |
Prupe.1G002900 | PpCHS(Chalcone Synthase) | 287.41 | 1.67 | 7.45 | 上调* | |
Prupe.1G003000 | PpCHS(Chalcone Synthase) | 91.15 | 2.10 | 5.46 | 上调* | |
Prupe.I005800 | PpCHS(Chalcone Synthase) | 248.57 | 3.07 | 6.36 | 上调* | |
Prupe.I005700 | PpCHS(Chalcone Synthase) | 23.86 | 0.28 | 6.43 | 上调* | |
Prupe.2G225200 | PpCHI(Chalcone isomerase) | 174.85 | 85.38 | 1.06 | 上调* | |
Prupe.2G263900 | PpCHI(Chalcone isomerase) | 14.22 | 2.34 | 2.62 | 上调* | |
Prupe.7G168300 | PpF3H(Flavanone 3-hydroxylase gene) | 174.67 | 66.19 | 1.42 | 上调* | |
Prupe.5G203600 | PpF3′H(Flavonoid 3'-hydroxylase) | 461.93 | 144.53 | 1.70 | 上调* | |
Prupe.1G376400 | PpDFR(Dihydroflavonol 4-reductase) | 373.64 | 8.62 | 5.46 | 上调* | |
Prupe.5G086700 | PpANS(Anthocyanidin synthase) | 912.98 | 103.04 | 3.17 | 上调* | |
Prupe.2G324700 | PpUFGT(UDP-glucose-flavonoid 3-O-glucosytransferase) | 337.62 | 5.12 | 6.07 | 上调* | |
Prupe.3G013600 | PpGST(Glutathione S-transferase) | 764.23 | 1.16 | 9.38 | 上调** | |
转录因子Transcription factors | Prupe.3G163100 | PpMYB10.1 | 45.57 | 4.07 | 3.51 | 上调* |
Prupe.5G006200 | PpBL(BLOOD) | 6.43 | 0.58 | 3.51 | 上调* | |
Prupe.4G187100 | PpNAC(NAM、ATAF1/2、CUC1/2) | 769.33 | 279.90 | 1.48 | 上调* |
*表示在P<0.05水平上差异显著,**表示在P<0.01水平上差异极显著; 下同
*indicates significant difference at the P<0.05 level, ** indicates extremely significant difference at the P<0.01 level; The same as below
转录因子在花色苷生物合成中起重要调控作用。差异表达基因中筛选出与桃花色苷合成相关的调节基因仅有PpMYB10.1(Prupe.3G163100),Log2 FC约为3.51,表明套袋后仅PpMYB10.1被诱导上调表达(
套袋遮光影响果实花色苷合成,从差异表达基因中筛选出4个与光受体和光信号转导相关的基因(
基因名称 Gene ID | 注释 Annotation | ZYP9_102_DAFB (FPKM) | ZYP9_89_DAFB (FPKM) | Log2FC | 类型 Type |
---|---|---|---|---|---|
Prupe.3G179800 | PpPIF(Phytochrome interacting factor) | 0.21 | 2.82 | -3.40 | 下调** |
Prupe.4G073900 | PpPHYE(Phytochrome E) | 5.30 | 19.42 | -1.82 | 下调** |
Prupe.1G462400 | PpCRY3(Cryptochrome) | 7.92 | 3.45 | 1.07 | 上调** |
Prupe.1G239800 | PpUVR8.3(UV Resistence locus8) | 117.99 | 51.50 | 1.15 | 上调** |
对2652个差异表达基因进行KEGG富集分析,共富集到108条通路,对显著富集通路进行分析。分别为光合作用天线蛋白(Photosynthesis - antenna proteins)、光合作用(Photosynthesis)、植物激素信号转导(Plant hormone signal transduction)、MAPK信号通路(MAPK signaling pathway-plant)、类黄酮生物合成(Flavonoid biosynthesis)、色氨酸代谢(Tryptophan metabolism)、苯丙烷类生物合成(Phenylpropanoid biosynthesis)(

图3 ‘中油蟠9号’不同发育时期套袋果实差异表达基因富集分析
Fig. 3 Enrichment analysis of differentially expressed genes of ‘Zhongyoupan 9’ at different developmental periods under bagging conditions
A:KEGG前20条富集通路,+ 代表显著富集到的KEGG通路,下同;B:GO注释前30个富集结果,数值代表注释到GO编号上的差异表达基因数
A:The top 20 enriched of KEGG pathways, + represents the significant KEGG pathways,the same as below;B:GO annotated of the top 30 biological processes
为进一步分析差异表达基因的生物学功能,对2652个差异表达基因进行GO富集分析,通过Nr注释得到与花色苷生物合成有关基因并将其与GO条目进行对应(
相对于盛花后89 d,盛花后102 d果实共检测到514种差异代谢物,其中显著差异代谢物112种。热图显示上调差异代谢物53种,下调差异代谢物59种(

图4 ‘中油蟠9号’不同发育时期套袋果实显著差异代谢物分析
Fig. 4 Analysis of differential metabolites of 'Zhongyoupan 9' at different developmental periods under bagging conditions
KEGG通路 KEGG pathway | 代谢物名称 Metabolite name | Log2FC | P-value | 类型 Type |
---|---|---|---|---|
花色苷合成 Anthocyanin biosynthesis | 矢车菊素-3,5-二-O-葡萄糖苷 | 16.80 | 0.040 | 上调** |
矢车菊素-3-O-芸香糖苷 | -1.29 | 0.085 | 下调* | |
飞燕草素-3-O-葡萄糖苷 | 1.09 | 0.018 | 上调* | |
飞燕草素-3-O-芸香糖苷 | -1.14 | 0.299 | 下调* | |
天竺葵素-3-O-葡萄糖苷 | 1.55 | 0.017 | 上调** | |
类黄酮合成 Flavonoid biosynthesis | 柚皮素 | -1.70 | 0.597 | 下调 |
柚皮素查耳酮 | -1.42 | 0.625 | 下调 | |
根皮素 | 2.36 | 0.094 | 上调 | |
5-O-对香豆酰奎宁酸 | -1.22 | 0.390 | 下调 | |
表没食子儿茶素 | -1.36 | 0.112 | 下调 | |
花旗松素(二氢槲皮素) | 1.60 | 0.078 | 上调 | |
槲皮素 | -1.11 | 0.175 | 下调 | |
表阿夫儿茶精 | 1.07 | 0.546 | 上调 | |
3,4,2',4',6'-五羟基查耳酮-4'-O-葡萄糖苷 | 4.06 | 0.151 | 上调 | |
香橙素(二氢山柰酚) | -1.38 | 0.632 | 下调 | |
没食子儿茶素 | 2.03 | 0.187 | 上调 |
结合KEGG通路富集结果,5种花色苷被显著富集(

图5 ‘中油蟠9号’不同发育时期套袋果实花色苷显著差异代谢物分析
Fig. 5 Analysis of differential metabolites of anthocyanin of 'Zhongyoupan 9' at different developmental periods under bagging conditions
转录组与代谢组联合分析共同富集到了类黄酮通路(ko00941)和苯丙烷生物合成(ko00940),包含14个差异表达基因和13个显著差异代谢物(

(图6)

A:联合分析富集通路柱状图;B:类黄酮代谢通路差异表达代谢物和差异表达基因;红色表示上调的显著差异代谢物,蓝色表示下调的显著差异代谢物
A:Histogram of enriched pathways for co-analysis; B:Differentially expressed metabolites and genes in the flavonoid metabolic pathway; Red indicates up-regulated differential metabolites, blue indicates down-regulated differential metabolites
图6 转录组与代谢组联合分析
Fig. 6 Integrated analysis of transcriptomic and metabolomics data
结合转录组数据分析中的转录因子结果,推测套袋遮光下PpBL、PpNAC1上调表达激活花色苷调节基因PpMYB10.1的表达,促进花色苷结构基因催化合成矢车菊素-3,5-二-O-葡萄糖苷,使‘中油蟠9号’外果皮呈现红色。
选择联合分析富集到的花色苷合成通路中的9个基因进行qRT-PCR验证。发现花色苷合成途径早期结构基因PpPAL(Prupe.6G23540)、PpC4H(Prupe.2G326300)、Pp4CL(Prupe.6G040400)、PpCHS(Prupe.1G002900)、PpCHI(Prupe.2G225200)和晚期结构基因PpF3H(Prupe.7G168300)、PpF3′H(Prupe.5G203600)、PpDFR(Prupe.1G376400)、PpANS(Prupe.5G086700)在‘中油蟠9号’盛花后102 d均上调表达,qRT-PCR结果与转录组数据表现出相似的表达趋势(

图7 9个关键基因的qRT-PCR验证
Fig. 7 qRT-PCR validation of nine key genes
近年来,随着产业不断升级,桃品种更新换代加速,蟠桃、油蟠桃备受青睐。自然生长的蟠桃果实外观粗糙、易裂果、售价低,套袋后的蟠桃果面干净、食用方便、风味绝佳、品质高端。本研究选择的品种‘中油蟠9号’套袋后外果皮色泽微红,有花青素合成,风味更好,但此种现象还未得到深入研究。研究结果表明‘中油蟠9号’果实套袋积累花色苷现象主要受矢车菊素、天竺葵素和飞燕草素及其衍生物的影响。
很多园艺植物在遮光条件下可以积累花色苷。如茄子中发现套袋条件下依然有花色苷合成的材料‘145’,通过比较转录组分析,鉴定出22个转录因子和4个参与光信号转导的基因可能是调控非光敏感茄子花色苷合成的关键因素,但并未解析这些基因是怎样相互作用影响茄子的光不敏感
桃果实花色苷的合成受多个基因控制。‘中油蟠9号’果实套袋后,花色苷代谢途径中早期结构基因PpPAL、PpC4H、Pp4CL、PpCHS、PpCHI和晚期结构基因PpF3H、PpF3′H、PpDFR、PpFLS、PpANS均上调表达,并与其代谢物含量检测结果一致(
以上结果表明,套袋遮光下PpBL可能与PpNAC1互作上调表达激活花色苷调节基因PpMYB10.1的表达,促进花色苷结构基因催化合成矢车菊素-3,5-二-O-葡萄糖苷,使‘中油蟠9号’套袋果实果皮呈现红色。本研究中检测到的花色苷及其相关基因为花色苷生物合成途径在油蟠桃果皮着色中发挥重要的代谢和功能作用提供了依据。研究结果将有助于分子育种工作者改良油蟠桃果实品质。
参考文献
Hara-Kitagawa M,Unoki Y,Hihara S,Oda K. Development of simple PCR-based DNA marker for the red-fleshed trait of a blood peach ‘Tenshin-suimitsuto’. Molecular Breeding,2020,40(1):5 [百度学术]
王力荣. 我国桃产业现状与发展建议. 中国果树,2021,216(10):1-5 [百度学术]
Wang L R. Current situation and development suggestions of peach industry in China. China Fruit Trees,2021,216(10):1-5 [百度学术]
王力荣.中国桃品种改良历史回顾与展望. 果树学报,2021,38(12):2178-2195 [百度学术]
Wang L R. Historical review and prospect of peach variety improvement in China. Journal of Fruit Science,2021,38(12):2178-2195 [百度学术]
赵云. 两品种桃外果皮花色苷积累差异及光照调控机制. 杭州:浙江大学,2019 [百度学术]
Zhao Y. Differences in anthocyanosises' accumulation in peach pericarp of two varieties and light regulation mechanism. Hangzhou:Zhejiang University,2019 [百度学术]
Kapoor L,Simkin A J,George Priya Doss C,Siva R. Fruit ripening:Dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology,2022,22(1):27 [百度学术]
Li Y X,Lu Y P,Tang D G,Hu B,Zhang Z Y,Wu H W,Fan L J,Cai K W,Tang C,Zhang Y Q,Hong L,Dong J J,Guan B Z,Yin L H,Dai Y,Bai W B,Zheng Z H,Zhu T. Anthocyanin improves kidney function in diabetic kidney disease by regulating amino acid metabolism. Journal of Translational Medicine,2022,20(1):510 [百度学术]
Zhang Y,Butelli E,Martin C. Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology,2014,19:81-90 [百度学术]
Chen L,Wang X S,Cui L,Li Y B,Liang Y H,Wang S S,Chen Y B,Zhou L,Zhang Y B,Li F. Transcriptome and metabolome analyses reveal anthocyanins pathways associated with fruit color changes in plum(Prunus salicina Lindl.). PeerJ,2022,10:e14413 [百度学术]
Zhao Y,Dong W Q,Wang K,Zhang B,Allan A C,Lin-Wang K,Chen K S,Xu C J. Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars. Frontiers in Plant Science,2017,8:282287 [百度学术]
Ma C Q,Liang B W,Chang B,Yan J Y,Liu L,Wang Y,Yang Y Z,Zhao Z Y. Transcriptome profiling of anthocyanin biosynthesis in the peel of 'Granny Smith' apples(Malus domestica) after bag removal. BMC Genomics,2019,20:353 [百度学术]
Winkel-Shirley B. Flavonoid biosynthesis a colorful model for genetics,biochemistry,cell biology,and biotechnology. Plant Physiology,2001,126(2):485-493 [百度学术]
Tsuda T,Yamaguchi M,Honda C,Moriguchi T. Expression of anthocyanin biosynthesis genes in the skin of peach and nectarine fruit. Journal of The American Society for Horticultural Science,2004,129(6):857-862 [百度学术]
Zhao Y,Dong W Q,Zhu Y C,Allan A C,Wang L K,Xu C J. PpGST1,an anthocyanin-related glutathione S-transferase gene,is essential for fruit coloration in peach. Plant Biotechnology Journal,2020,18(5):1284-1295 [百度学术]
Zhao L,Sun J L,Cai Y M,Yang Q R,Zhang Y Q,Ogutu C O,Liu J J,Zhao Y,Wang F R,He H Q, Zheng B B,Han Y P. PpHYH is responsible for light-induced anthocyanin accumulation in fruit peel of Prunus persica. Tree Physiology,2022,42(8):1662-1677 [百度学术]
郭少剑.去光条件下葡萄果皮中VvHY5和VvCOP1的转录和蛋白表达分析. 武汉:中国科学院研究生院(武汉植物园),2016 [百度学术]
Guo S J. Transcription and protein expression analysis of VvHY5 and VvCOP1 in grape peel under light-removing conditions. Wuhan:Graduate University of Chinese Academy of Sciences(Wuhan Botanical Garden),2016 [百度学术]
Guo X,Wang Y T,Zhai Z F,Huang T J,Zhao D,Peng X,Feng C,Xiao Y H,Li T H. Transcriptomic analysis of light-dependent anthocyanin accumulation in bicolored cherry fruits. Plant Physiology and Biochemistry,2018,130:663-677 [百度学术]
Zhu Y F,Su J,Yao G F,Liu H N,Gu C,Qin M F,Bai B,Cai S S,Wang GM,Wang R Z,Shu Q,Wu J. Different light-response patterns of coloration and related gene expression in red pears(Pyrus L.). Scientia Horticulture,2018,229:240-251 [百度学术]
Shi B,Wu H X,Zheng B,Qian M J,Gao A P,Zhou K B. Analysis of light-independent anthocyanin accumulation in mango(Mangifera indica L.). Horticulturae,2021,7(11):423 [百度学术]
Tang B Y,L L,Hu Z L,Chen Y N,Tan T T,Jia Y H,Xie Q L,Chen G P. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple pepper. Journal of Agricultural and Food Chemistry,2020,68(43):12152-12163 [百度学术]
He Y J,Chen H,Zhou L,Liu Y,Chen H Y. Comparative transcription analysis of photosensitive and non-photosensitive eggplants to identify genes involved in dark regulated anthocyanin synthesis. BMC Genomics,2019,20:1-14 [百度学术]
Hu J T,Chen G P,Zhang Y J,Cui B L,Yin W C,Yu X H,Zhu Z G,Hu Z L. Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. Plant Physiology and Biochemistry,2015,97:304-312 [百度学术]
Wang X Z,Wang Y,Chen B W,Kawabata S,Fang Z Y,Li Y H. Construction and genetic analysis of anthocyanin-deficient mutants induced by T-DNA insertion in 'Tsuda' turnip(Brassica rapa). Plant Cell,Tissue and Organ Culture,2017,131:431-443 [百度学术]
Yang J F,Chen Y Z,Saneyuki K,Li Y H,Yu W. Identification of light-independent anthocyanin biosynthesis mutants induced by ethyl methane sulfonate in turnip "Tsuda"(Brassica rapa). International Journal of Molecular Sciences,2017,18(7):1288 [百度学术]
Huang H,Li Y,Dai S. Investigation of germplasm in chrysanthemum cultivars with light-independent coloration. Acta Horticulturae,2016,1185(9):55-64 [百度学术]
Nakatsuka A,Yamagishi M,Nakano M,Tasaki K,Kobayashi N. Light-induced expression of basic helix-loop-helix genes involved in anthocyanin biosynthesis in flowers and leaves of Asiatic hybrid lily. Scientia Horticulturae,2009,121(1):84-91 [百度学术]
Hu W,Figueroa-Balderas R,Chi-Ham C,Lagarias J C. Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. Plant Direct,2020,4(4):e00210 [百度学术]
Yao G F,Ming M L,Allan A C,Gu C,Li,L T,Wu X,Wang R Z,Chang Y J,Qi K J,Zhang S L,Wu J. Map‐based cloning of the pear gene MYB 114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. The Plant Journal,2017,92(3):437-451 [百度学术]
Daccord N,Celton J,Linsmith G,Becker C,Choisne N,Schijlen E,Geest H,Bianco L,Micheletti D,Velasco R,Erica Adele Di Pierro E,Gouzy J,D J G,Guérif P,Muranty H,Durel C,Laurens F,Lespinasse Y,Gaillard S,Aubourg S,Quesneville H,Weigel D,Weg E,Troggio M,Bucher E. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics,2017,49(7):1099-1106 [百度学术]
Fraga C G,Clowers B H,Moore R J,Zink E M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry,XCMS,and chemometrics. Analytical Chemistry,2010,82(10):4165-4173 [百度学术]
Zhao L,Zhang Y Q,Sun J L,Yang Q R,Cai Y M,Zhao C P,Wang F R,He H P,Han Y P. PpHY5 is involved in anthocyanin coloration in the peach flesh surrounding the stone. The Plant Journal,2023,114(4):951-964 [百度学术]
Zhou H,Wang K L,Wang H L,Gu C,Dare A P,Espley R V,He H P,Allan A C,Han Y P. Molecular genetics of blood‐fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal,2015,82(1):105-121 [百度学术]