摘要
甘蓝类蔬菜是重要的蔬菜作物,主要包含结球甘蓝、花椰菜、青花菜、苤蓝、抱子甘蓝和芥兰等多个变种。在生产和制种过程中,该类蔬菜常发生未熟抽薹和亲本花期不遇等现象,利用分子设计育种改良甘蓝的耐抽薹性,可以有效地解决这些问题。然而甘蓝类蔬菜变种丰富,开花习性差异大,抽薹开花调控相关基因的研究相对分散。本文在简述了高等植物抽薹开花5种调控途径的基础上,归纳了诱导甘蓝类蔬菜抽薹开花所需的最适环境条件,总结了在春化途径、赤霉素途径和光周期途径中影响甘蓝类蔬菜抽薹开花的调控基因及其变异,构建了甘蓝类蔬菜的抽薹开花调控基因网络,并对甘蓝类蔬菜抽薹开花调控方面的后续研究提出了展望。本文为甘蓝类蔬菜耐抽薹性的改良提供参考。
开花是植物完成生命周期、繁衍后代的重要过程。自20世纪初开始,科学家们针对植物开花的机理开展了系列研究,并在不同物种中发现了大量开花调控基因。模式植物拟南芥的开花调控网络基本清
在春化途径中,中心调控基因FLOWERING LOCUS C (FLC)通过抑制促花基因SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1)和FLOWERING LOCUS T (FT)的表达而抑制花芽分
在光周期途径中,植物通过光敏色素(phyA、phyB、phyC) 和隐花色素(CRY1、CRY2)感知红光、远红光和蓝光等光信
在赤霉素途径中,赤霉素(GAs,gibberellins)通过调节其信号转导途径的各类蛋白,影响植物生长发育。赤霉素广泛存在于植物中,目前已鉴定出130多种,但仅有GA1、GA3、GA4和GA7具生物活性。异戊二烯焦磷酸(IPP,isopentenyl pyrophosphate )经细胞色素P450酶及GA13ox、GA20ox、GA3ox等GA氧化酶作用,形成具生物活性的GAs,发挥作用后由GA2ox降
自主途径是植株缺乏光、温信号诱导,经历足够营养生长后仍能自主调控开花的途径。自主途径主要由FLOWERING LOCUS CA(FCA)、FLOWERING LOCUS Y(FY)、FLOWERING LOCUS KH DOMAIN(FLK)、FLOWERING LOCUS PA(FPA)、LUMINIDEPENDENS(LD)、FLOWERING LOCUS D(FLD)和FLOWERING LOCUS VE(FVE)等7个基因构成,它们通过抑制FLC的表达来促进开
年龄途径发现较晚,是植物体内miR156丰度随植物生长而由高降低,最终影响开花的途径。在miR156下降过程中,miR156标靶基因SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs(SPLs) 的抑制逐渐被解
甘蓝类蔬菜是世界上重要的蔬菜作物之一,包含不同的变种,如结球甘蓝、花椰菜、青花菜、苤蓝、抱子甘蓝和芥兰等。我国甘蓝类蔬菜产量较大,据联合国粮农组织( FAO,Food and Agriculture Organization of the United Nations)统计数据(https://www.fao.org/faostat/en/#rankings/countries_by_commodity),2022年我国结球甘蓝产量近3500万吨,花椰菜和青花菜产量近960万吨,均居于世界首位。然而我国在甘蓝类蔬菜育种和生产过程中,仍有许多问题亟待解决,抽薹开花调控是育种家们重点关注的问题之一。以结球甘蓝为例,结球甘蓝是绿体春化型植物,生产过程中如遇低温,可能造成未熟抽薹,严重影响产量和品质,导致巨大的经济损失。目前甘蓝类蔬菜主要利用杂种优势育种,在甘蓝品种繁育过程中,如两亲本花期不遇,就难以获得稳定的杂交种,严重影响育种进
甘蓝类蔬菜是十字花科芸薹属植物,包含多个变种类型,不同变种表现不同的开花习性。以叶球或肉质茎等营养器官为商品的结球甘
目前,甘蓝类蔬菜抽薹开花调控基因的研究主要集中在春化途径上,赤霉素途径和光周期途径也有一定研究,而自主途径和年龄途径研究极少。本文主要针对甘蓝类蔬菜的春化途径、赤霉素途径和光周期途径展开集中论述。
在甘蓝类蔬菜的春化途径中,BoFLCs是目前研究最为深入的基因。甘蓝类蔬菜中共发现5个FLC同源基因,分别被命名为BoFLC
除BoFLC2外,BoFLC1和BoFLC3对春化也有影响。Itabashi
拟南芥中,FLC的反义转录本lncRNA COOLAIR参与开花途径。青花菜中也发现了由BoFLC1、BoFLC2和BoFLC3反义转录生成的COOLAIR。BoFLC1、BoFLC2生成的I类COOLAIR均受低温诱导,且BoFLC2生成的I类COOLAIR转录量大,II类COOLAIR仅在温暖环境下表达;但BoFLC3生成的2类COOLAIR均在温暖条件下表达,在低温下未测出;II类COOLAIR中,靠近5′端的数个结构域是保守的,这可能与它们的功能相
在FLC沉默过程中,蛋白复合体Polycomb Repressive Complex 2(PRC2)负责招募H3K27me3富集在FLC染色质上,并催化FLC沉
基因名称 Gene name | BRAD数据库序号 Number in BRAD database | 染色体位置(bp) Chr. location | 与拟南芥基因一致度(%) Identity with Arabidopsis thaliana gene | 参考文献 Reference |
---|---|---|---|---|
BoFLC1 | BolC09g062620.2J | 63395901~63399910 | 85.427 |
[ |
BoFLC2 | BolC02g004040.2J | 2542284~2545548 | 82.741 |
[ |
BoFLC3 | BolC03g004550.2J | 2244866~2248179 | 83.417 |
[ |
BoVIN3-1 | BolC03g013830.2J | 7260993~7263556 | 68.960 |
[ |
BoVIN3-2 | BolC02g015310.2J | 10887788~10892097 | 58.013 |
[ |
BoFRIa | BolC03g017480.2J | 9633856~9636028 | 57.241 |
[ |
BoFRIb | BolC09g037260.2J | 40382470~40384598 | 59.011 |
[ |
目前虽已从各种植物中鉴定出百余种赤霉素,但从甘蓝中获得的仅有GA1、GA4、GA12和GA15等9种,其中GA4对甘蓝花芽发育的影响相对较
基因名称 Gene name | BRAD数据库序号 Number in BRAD database | 染色体位置(bp) Chr. location | 与拟南芥基因一致度(%) Identity with A. thaliana gene | 参考文献 Reference |
---|---|---|---|---|
BoGID1a | BolC05g060470.2J | 55275185~55276562 | 84.770 |
[ |
BoGID1b-1 | BolC08g045880.2J | 43466928~43468248 | 91.389 |
[ |
BoGID1b-2 | BolC04g030280.2J | 31287613~31288803 | 89.118 |
[ |
BoGID1b-3 | BolC06g027340.2J | 29529812~29531056 | 87.778 |
[ |
BoGID1c | BolC07g039220.2J | 42725133~42726810 | 92.754 |
[ |
BoRGA1 | BolC07g031500.2J | 36431939~36433669 | 82.412 |
[ |
BoRGA2 | BolC09g027430.2J | 24522236~24523945 | 81.636 |
[ |
BoRGL1 | BolC02g022360.2J | 18385313~18386836 | 84.496 |
[ |
BoRGL2 | BolC05g063590.2J | 57356636~57358267 | 82.364 |
[ |
BoRGL3 | BolC09g055750.2J | 59207584~59209161 | 82.243 |
[ |
光周期调控植株开花大体可分3个阶段:一是植物对光信号的接收;二是生物钟对光信号的转导;三是光信号输出并影响植株开
GI和CO是光信号从生物钟输出,调控植株开花过程中的重要基因。拟南芥、白菜及甘蓝的GI高度保守,均为1个拷
基因名称 Gene name | BRAD数据库序号 Number in BRAD database | 染色体位置(bp) Chr. location | 与拟南芥基因一致度(%) Identity with A. thaliana gene | 参考文献 Reference |
---|---|---|---|---|
BoPRR1 | BolC07g043430.2J | 45523619~45525750 | 70.108 |
[ |
BoPRR2 | BolC09g007640.2J | 5022510~5024832 | 71.865 |
[ |
BoPRR3 | BolC09g049260.2J | 53732329~53734477 | 71.705 |
[ |
BoPRR4 | BolC09g006740.2J | 4416343~4418837 | 70.789 |
[ |
BoPRR5 | BolC07g041680.2J | 44330275~44332645 | 75.309 |
[ |
BoPRR6 | BolC02g059060.2J | 62363399~62365472 | 71.067 |
[ |
BoPRR7 | BolC02g000830.2J | 657915~660633 | 80.082 |
[ |
BoPRR8 | BolC09g068830.2J | 66790565~66793543 | 81.165 |
[ |
BoPRR9 | BolC04g001840.2J | 1431380~1432882 | 68.615 |
[ |
BoPRR10 | BolC04g068220.2J | 65033411~65035606 | 73.967 |
[ |
BoCCA1 | BolC04g001800.2J | 1415998~1421969 | 65.846 |
[ |
BoGI | BolC05g021100.2J | 13896504~13901184 | 91.709 |
[ |
BoCDF1-1 | BolC02g061010.2J | 64012310~64013817 | 76.159 |
[ |
BoCDF1-2 | BolC03g058640.2J | 42769905~42771304 | 70.627 |
[ |
BoCO | BolC09g057360.2J | 60256399~60257685 | 70.341 |
[ |
另外,在研究甘蓝类蔬菜抽薹开花调控过程中还发现了一些无法归属途径的基因,它们对甘蓝类蔬菜的抽薹开花也有显著影响。Abuyusuf
基因名称 Gene name | BRAD数据库序号 Number in BRAD database | 染色体位置(bp) Chr. location | 与拟南芥基因一致度(%) Identity with A. thaliana gene | 参考文献 Reference |
---|---|---|---|---|
BolPrx.2 | BolC03g002350.2J | 1166288~1167985 | 74.769 |
[ |
BoSEP2-1 | BolC01g057100.2J | 51965015~51966909 | 92.885 |
[ |
BoSEP2-2 | BolC05g062690.2J | 56731949~56734008 | 92.829 |
[ |
BoGRF6 | BolC02g004210.2J | 2639811~2643131 | 88.077 |
[ |
BoAGL18 | BolC04g034740.2J | 35717984~35719596 | 75.385 |
[ |
BoAGL19 | BolC03g078380.2J | 66859691~66868426 | 82.432 |
[ |
BoAGL24 | BolC01g018940.2J | 13074521~13077176 | 86.486 |
[ |

图1 甘蓝类蔬菜抽薹开花调控基因网络
Fig. 1 Bolting and flowering time regulatory genes network in B. oleracea
红线代表甘蓝中涉及的研究;蓝色框内为春化途径基因;黄色框内为光周期途径基因;红色框内为赤霉素途径基因
The red line represents the research involved in cabbage; The blue box indicates the vernalization pathway genes; The yellow box indicates the photoperiod pathway genes; The red box indicates the gibberellin pathway genes
随着我国国民生活水平的不断提高,人们对蔬菜提出了各式各样的品质要求。甘蓝类蔬菜作为重要的蔬菜作物之一,未熟抽薹等现象严重制约着甘蓝生产,各地农民对优质、适应性强甘蓝品种的需求逐渐增加。因此,推进甘蓝类蔬菜良种选育仍十分迫切。从过表达技术、VIGS沉默技术到CRISPR/Cas9基因编辑技术等生物育种技术的蓬勃发展,为利用分子设计育种途径加速甘蓝育种提供了可能。然而,分子设计育种中,目标基因的选择是关键。本文构建了甘蓝类蔬菜抽薹开花调控基因网络,可为改良现有甘蓝类蔬菜优良品种耐抽薹性提供重要参考,推进甘蓝良种培育。
自野生甘蓝被人类驯化以来,甘蓝已分化出多个变种,且每个变种的商品器官多有不同,如花椰菜、青花菜的商品器官是花球;芥兰的商品器官是花苔;结球甘蓝的商品器官是叶球;抱子甘蓝的商品器官是腋芽小球;苤蓝的商品器官是肉质膨大茎;羽衣甘蓝的商品器官是叶片,也是主要的观赏部位。对于每个变种而言,抽薹开花的意义各有不同,如食用花球的甘蓝类蔬菜需要促使花芽分化、花球大而饱满;食用叶球的结球甘蓝则需要培育耐抽薹品种,延长其营养生长阶段,从而提高产
参与植物抽薹开花的基因调控网络是一个高度复杂的动态系统,五大调控途径的各个因子之间存在相互串联,因此整合多个途径的基因研究进而构建甘蓝类蔬菜的抽薹开花调控基因网络是十分必要的。在芸苔属植物中,油菜的抽薹开花调控基因研究进度相对更快,且油菜的C亚基因组多与甘蓝基因组共线,因此油菜的C亚基因组研究内容对建立甘蓝类蔬菜的抽薹开花途径基因网络有较大参考价
虽然甘蓝类蔬菜抽薹开花调控基因逐渐被发现,但在甘蓝类蔬菜中开发的分子标记仍然较少,且标记所针对的基因仍不够全面。早期研究中,曹维荣
相较模式植物,甘蓝类蔬菜抽薹开花调控基因挖掘程度仍有较大不足。随着甘蓝全基因组测序的不断完善,包含花椰菜、青花菜、羽衣甘蓝和结球甘蓝等多个甘蓝变种的全基因组测序文件在近期均已公开发
参考文献
Blumel M, Dally N, Jung C. Flowering time regulation in crops-what did we learn from Arabidopsis ? Current Opinion in Biotechnology, 2015, 32: 121-129 [百度学术]
Freytes S N, Canelo M, Cerdan P D. Regulation of lowering time: When and where? Current Opinion in Plant Biology, 2021, 63: 102049 [百度学术]
Wang J W, Czech B, Weigel D. miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 2009, 138(4): 738-749 [百度学术]
Sheldon C C, Rouse D T, Finnegan E J, Peacock W J, Dennis E S. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences, 2000, 97(7): 3753-3758 [百度学术]
Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Development, 2000, 14(18): 2366-2376 [百度学术]
Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science, 2010, 327(5961): 94-97 [百度学术]
Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dwan C. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Molecular Cell, 2014, 54(1): 156-165 [百度学术]
Choi K, Kim J, Hwang H J, Kim S, Park C, Kim S Y, Lee I. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell, 2011, 23(1): 289-303 [百度学术]
Pien S, Fleury D, Mylne J S, Crevillen P, Inze D, Avramova Z, Dean C, Grossniklaus U. ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell, 2008, 20(3): 580-588 [百度学术]
Sharma N, Geuten K, Giri B S, Varma A. The molecular mechanism of vernalization in Arabidopsis and cereals: Role of Flowering Locus C and its homologs. Physiologia Plantarum, 2020, 170(3): 373-383 [百度学术]
Legris M, Ince Y C, Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nature Communications, 2019, 10(1): 5219 [百度学术]
Galvao V C, Fankhauser C. Sensing the light environment in plants: Photoreceptors and early signaling steps. Current Opinion in Neurobiology, 2015, 34: 46-53 [百度学术]
Johansson M, Staiger D. Time to flower: Interplay between photoperiod and the circadian clock. Journal of Experimental Botany, 2015, 66(3): 719-730 [百度学术]
Anwer M U, Davis A, Davis S J, Quint M. Photoperiod sensing of the circadian clock is controlled by EARLY FLOWERING 3 and GIGANTEA. Plant Journal, 2020, 101(6): 1397-1410 [百度学术]
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N H, Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell, 2010, 22(3): 594-605 [百度学术]
Luo X, Yin M, He Y. Molecular genetic understanding of photoperiodic regulation of flowering time in Arabidopsis and soybean. International Journal of Molecular Sciences, 2021, 23(1): 466 [百度学术]
Sawa M, Kay S A. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 2011, 108(28): 11698-11703 [百度学术]
Tiwari S B, Shen Y, Chang H C, Hou Y, Harris A, Ma S F, Mcpartland M, Hymus G J, Adam L, Marion C, Belachew A, Repetti P P, Reuber T L, Ratcliffe O J. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist, 2010, 187(1): 57-66 [百度学术]
Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiology, 2020, 61(11): 1832-1849 [百度学术]
Bao S, Hua C, Shen L, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1): 118-131 [百度学术]
Simpson G G. The autonomous pathway: Epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology, 2004, 7(5): 570-574 [百度学术]
Wang J W. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany, 2014, 65(17): 4723-4730 [百度学术]
汤青林, 王小佳, 宋明, 张洪, 任雪松, 牛义. 芥菜和甘蓝启动抽薹的温光诱导体系研究. 西南大学学报:自然科学版, 2007, 29(12): 113-117 [百度学术]
Tang Q L, Wang X J, Song M, Zhang H, Ren X S, Niu Y. Research on bolting-inducing system of mustard (Brassica juncea) and cabbage (Brassica oleracea) with temperature and photoperiod. Journal of Southwest University:Natural Science Edition, 2007, 29(12): 113-117 [百度学术]
杨小明, 李成琼, 宋洪元. 春甘蓝耐抽薹性研究进展. 北方园艺, 2009 (1): 111-114 [百度学术]
Yang X M, Li C Q, Song H Y. The progress of study on the bolting tolerance in spring cabbage. Northern Horticulture, 2009 (1): 111-114 [百度学术]
De Z D, Leopold A C. Altering juvenility with auxin. Science, 1955, 122(3176): 925-926 [百度学术]
Wiebe H J, Habegger R, Liebig H P. Quantification of vernalization and devernalization effects for kohlrabi (Brassica oleracea convar. acephala var. gongylodes L.). Scientia Horticulturae, 1992, 50(1): 11-20 [百度学术]
吴国平, 王建华, 王丽娟, 毛忠良, 陈智超, 刘小风. 幼苗春化特性对结球甘蓝开花及繁种的影响. 江苏农业科学, 2013, 41(6): 121-122 [百度学术]
Wu G P, Wang J H, Wang L J, Mao Z L, Chen Z C, Liu X F. Effects of seedling vernalization characteristics on flowering and propagation of cabbage. Jiangsu Agricultural Sciences, 2013, 41(6):121-122 [百度学术]
徐磊, 林碧英, 林义章. 春化作用与甘蓝类蔬菜的生育障碍(综述). 亚热带植物科学, 2002, 31(4): 73-76 [百度学术]
Xu L, Lin B Y, Lin Y Z. Relationship between breeding disturbance and vernalization in cabbage vegetable. Subtropical Plant Science, 2002, 31(4):73-76 [百度学术]
Adzić S, Girek Z, Pavlović N, Zdravković J, Cvikić D, Pavlović S, Prodanović S. Vernalization and seed yield of late head cabbage in different phases of rosette development by applying GA3 in vivo. Acta Horticulturae, 2013,1005:369-374 [百度学术]
王超, 张韬, 吴世昌. 春甘蓝抽薹特性的研究(Ⅰ)——抽薹鉴定的方法. 东北农业大学学报, 2003, 34(2): 129-132 [百度学术]
Wang C, Zhang T, Wu S C. Study on the method screening for bolting resistance in spring cabbages. Journal of Northeast Agricultural University, 2003, 34(2):129-132 [百度学术]
刘奎彬, 方文惠, 张宝珍, 李素文, 孙德岭, 赵前程. 不同播种期花椰菜生长发育特性. 华北农学报, 2002, 17(1): 64-68 [百度学术]
Liu K B, Fang W H, Zhang B Z, Li S W, Sun D L, Zhao Q C. Study on growth and development characteristics in cauliflower at different sowing date. Acta Agriculturae Boreali-Sinica, 2002, 17(1):64-68 [百度学术]
Farnham M W, Bjorkman T. Breeding vegetables adapted to high temperatures: A case study with broccoli. HortScience Horts, 2011, 46(8): 1093-1097 [百度学术]
Lindemann-zutz K, Fricke A, Stützel H. Prediction of time to harvest and its variability in broccoli (Brassica oleracea var. italica) Part I. Plant developmental variation and forecast of time to head induction. Scientia Horticulturae, 2016, 198: 424-433 [百度学术]
关佩聪, 梁承愈. 芥兰花芽分化与品种、播种期和春化条件的关系. 华南农业大学学报, 1989, 10(2): 60-66 [百度学术]
Guan P C, Liang C Y. Flower bud differentiation of Chinese Kale (Brassica alboglabra Bailey) and its relation to cultivar sowing time and vernalization. Journal of South China Agricultural University, 1989, 10(2):60-66 [百度学术]
Schranz M E, Quijada P, Sung S-B, Lukens L, Amasino R, Osborn T C. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics, 2002, 162(3): 1457-1468 [百度学术]
Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, Kuginuki Y, Matsumoto S, Hirai M. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theoretical and Applied Genetics, 2007, 114(4): 595-608 [百度学术]
Lin S I, Wang J G, Poon S Y, Su C L, Wang S S, Chiou T J. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiology, 2005, 137(3): 1037-1048 [百度学术]
Woodhouse S, He Z, Woolfenden H, Steuernagel B, Haerty W, Bancroft I, Irwin J A, Morris R J, Wells R. Validation of a novel associative transcriptomics pipeline in Brassica oleracea: Identifying candidates for vernalisation response. BMC Genomics, 2021, 22(1): 539 [百度学术]
Irwin J A, Soumpourou E, Lister C, Ligthart J D, Kennedy S, Dean C. Nucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas. The Plant Journal, 2016, 87(6): 597-605 [百度学术]
Li Q, Peng A, Yang J, Zheng S, Li Z, Mu Y, Chen L, Si J, Ren X, Song H. A 215-bp indel at intron I of BoFLC2 affects flowering time in Brassica oleracea var. capitata during vernalization. Theoretical and Applied Genetics, 2022, 135(8): 2785-2797 [百度学术]
Tang Q, Kuang H, Yu C, An G, Tao R, Zhang W, Jia Y. Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs. Theoretical and Applied Genetics, 2022, 135(2): 473-483 [百度学术]
Itabashi E, J. Shea D, Fukino N, Fujimoto R, Okazaki K, Kakizaki T, Ohara T. Comparison of cold responses for orthologs of cabbage vernalization-related genes. The Horticulture Journal, 2019, 88(4): 462-470 [百度学术]
Abuyusuf M, Nath U K, Kim H T, Islam M R, Park J I, Nou I S. Molecular markers based on sequence variation in BoFLC1.C9 for characterizing early- and late-flowering cabbage genotypes. BMC Genetics, 2019, 20(1): 42 [百度学术]
Kinoshita Y, Motoki K, Hosokawa M. Upregulation of tandem duplicated BoFLC1 genes is associated with the non-flowering trait in Brassica oleracea var. capitata. Theoretical and Applied Genetics, 2023, 136(3): 41 [百度学术]
Lin Y R, Lee J Y, Tseng M C, Lee C Y, Shen C H, Wang C S, Liou C C, Shuang L S, Paterson A H, Hwu K K. Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Scientific Reports, 2018, 8(1): 13609 [百度学术]
Razi H, Howell E C, Newbury H J, Kearsey M J. Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theoretical and Applied Genetics, 2008, 116(2): 179-192 [百度学术]
Hawkes E. Conservation and function of COOLAIR long non-coding RNAs in Brassica flowering time control. Norwich: University of East Anglia, 2017 [百度学术]
Nielsen M. Deciphering the role of PRC2 accessory proteins in promoting cold-induced epigenetic switching in Arabidopsis thaliana. Norwich:University of East Anglia, 2021 [百度学术]
赵荣秋. 甘蓝春化相关基因BoVIN3的克隆及分析. 哈尔滨:东北农业大学, 2013 [百度学术]
Zhao R Q. Clone vernalization related gene BoVIN3 from cabbage and analysis. Harbin: Northeast Agricultural University, 2013 [百度学术]
Irwin J A, Lister C, Soumpourou E, Zhang Y, Howell E C, Teakle G, Dean C. Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC Plant Biology, 2012, 12(1): 21 [百度学术]
Фадина О А. Структурные особенности гена FRIGIDA у видов Brassica. Москва: Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии, 2014 [百度学术]
Hamano M, Yamato Y, Yamazaki H, Miura H. Endogenous gibberellins and their effects on flowering and stem elongation in cabbage (Brassica oleracea var.capitata). The Journal of Horticultural Science and Biotechnology, 2015, 77(2): 220-225 [百度学术]
Hajime Ohyanagi, Kentaro Yano, Eiji Yamamoto, Ai Kitazumi. Plant omics advances in big data biology. Wallingford: CABI, 2022: 151-171 [百度学术]
李必元, 赵彦婷, 岳智臣, 雷娟利, 胡齐赞, 陶鹏. 甘蓝DELLA基因家族鉴定及其mRNA在嫁接体中的运输分析. 遗传, 2023, 45(2): 156-164 [百度学术]
Li B Y, Zhao Y T, Yue Z C, Lei J L, Hu Q Z, Tao P. Identification of DELLA gene family in head cabbage and analysis of mRNA transport in the heterograft. Hereditas, 2023, 45(2): 156-164 [百度学术]
田素波, 郭春晓, 郑成淑. 光周期诱导植物成花的分子调控机制. 园艺学报, 2010, 37(2): 325-330 [百度学术]
Tian S B, Guo C X, Zheng C S. Molecular mechanism of controlling flower formation by photoperiod inducement in plants. Acta Horticulturae Sinica, 2010, 37(2):325-330 [百度学术]
Salathia N, Lynn J R, Millar A J, King G J. Detection and resolution of genetic loci affecting circadian period in Brassica oleracea. Theoretical and Applied Genetics, 2007, 114(4): 683-692 [百度学术]
Xing Y Y, Jiang Y J, Muhammad A R, Song J S. Genome-wide identification of pseudo-response regulator (PRR) family members in cabbage (Brassica oleracea var. capitata L.) and their expression in response to abiotic stress. The Journal of Horticultural Science and Biotechnology, 2023, 99(2): 168-178 [百度学术]
Song H, Yi H, Han C T, Park J I, Hur Y. Allelic variation in Brassica oleracea CIRCADIAN CLOCK ASSOCIATED 1 (BoCCA1) is associated with freezing tolerance. Horticulture, Environment, and Biotechnology, 2018, 59(3): 423-434 [百度学术]
Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5: 3930 [百度学术]
Thiruvengadam M, Shih C F, Yang C H. Expression of an antisense Brassica oleracea GIGANTEA (BoGI) gene in transgenic broccoli causes delayed flowering, leaf senescence, and post-harvest yellowing retardation. Plant Molecular Biology Reporter, 2015, 33(5): 1499-1509 [百度学术]
Lou P, Wu J, Cheng F, Cressman L G, Wang X, Mcclung C R. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell, 2012, 24(6): 2415-2426 [百度学术]
Schiessl S V, Huettel B, Kuehn D, Reinhardt R, Snowdon R J. Flowering time gene variation in Brassica species shows evolutionary principles. Frontiers in Plant Science, 2017, 8: 1742 [百度学术]
Cai X, Wu J, Liang J, Lin R, Zhang K, Cheng F, Wang X. Improved Brassica oleracea JZS assembly reveals significant changing of LTR-RT dynamics in different morphotypes. Theoretical and Applied Genetics, 2020, 133(11): 3187-3199 [百度学术]
Abuyusuf M, Nath U K, Kim H-T, Biswas M K, Park J-I, Nou I-S. Intronic sequence variations in a gene with peroxidase domain alter bolting time in cabbage (Brassica oleracea var. capitata). Plant Molecular Biology Reporter, 2018, 36(5-6): 725-737 [百度学术]
Wang J, Zhang B, Guo H, Chen L, Han F, Yan C, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Zhang Y. Transcriptome analysis reveals key genes and pathways associated with the regulation of flowering time in cabbage (Brassica oleracea L. var. capitata). Plants, 2023, 12(19): 3413 [百度学术]
Shu J, Liu Y, Zhang L, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H. QTL-seq for rapid identification of candidate genes for flowering time in broccoli×cabbage. Theoretical and Applied Genetics, 2018, 131(4): 917-928 [百度学术]
王宇, 蒋炜, 闫凯, 周雯文, 王志敏, 魏大勇, 汤青林. 青花菜AGL18及HDA9与开花信号整合子互作研究. 园艺学报, 2018, 45(12): 2383-2394 [百度学术]
Wang Y, Jiang W, Yan K, Zhou W W, Wang Z M, Wei D Y, Tang Q L. Protein interactions of flowering inhibitors AGL18 and HDA9 with integrator factors in Brassica oleracea var. italica. Acta Horticulturae Sinica, 2018, 45(12):2383-2394 [百度学术]
蒋炜, 周雯文, 李朝闯, 闫凯, 王宇, 王志敏, 宋明, 汤青林. 青花菜开花促进因子AGL19与整合子AGL24和SOC1的互作研究. 园艺学报, 2017, 44(10): 1905-1913 [百度学术]
Jiang W, Zhou W W, Li C C, Yan K, Wang Y, Wang Z M, Song M, Tang Q L. Interactions of flowering promoting factor AGL19 with integrator factors AGL24 and SOC1 in Brassica oleracea var. italica. Acta Horticulturae Sinica, 2017, 44(10):1905-1913 [百度学术]
Lin X, Liu B, Weller J L, Abe J, Kong F. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 2021, 63(6): 981-994 [百度学术]
Bohuon E J R, Keith D J, Parkin I A P, Sharpe A G, Lydiate D J. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theoretical and Applied Genetics, 1996, 93(5): 833-839 [百度学术]
伍向苹, 王直新, 卓宸剑, 文静, 易斌, 马朝芝, 沈金雄, 傅廷栋, 涂金星. 甘蓝型油菜CO同源基因功能初步研究. 中国油料作物学报, 2021, 43(2): 186-194 [百度学术]
Wu X P, Wang Z X, Zhuo C J, Wen J, Yi B, Ma C Z, Shen J X, Fu T D, Tu J X. Preliminary study on function of CO homologs in Brassica napus. Chinese Journal of Oil Crop Sciences, 2021, 43(2):186-194 [百度学术]
Yu K, Wang X, Chen F, Chen S, Peng Q, Li H, Zhang W, Hu M, Chu P, Zhang J, Guan R. Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L.. Scientific Reports, 2016, 6: 30576 [百度学术]
Xu J, Dai H. Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant Growth Regulation, 2016, 80(3): 315-322 [百度学术]
Osborn T C, Kole C, Parkin I A P, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146(3): 1123-1129 [百度学术]
曹维荣, 王超. 甘蓝迟抽薹基因的RAPD标记. 生物技术通报, 2007 (5): 167-169 [百度学术]
Cao W R, Wang C. RAPD marker of later bolting gene on cabbage. Biotechnology Bulletin, 2007 (5): 167-169 [百度学术]
乌兰, 王超. 结球甘蓝迟抽薹基因RAPD标记转SCAR标记. 分子植物育种, 2010, 8(2): 307-311 [百度学术]
Wu L, Wang C. A SCAR marker derived from the RAPD marker linked to later bolting gene in headed cabbage. Molecular Plant Breeding, 2010, 8(2): 307-311 [百度学术]
李江丽, 王超, 张晓烜, 姜凯旋, 赵乐杰. 结球甘蓝(Brassica oleracea var. capitata)迟抽薹基因SCAR标记转CAPS标记. 分子植物育种, 2020, 18(5): 1529-1534 [百度学术]
Li J L, Wang C, Zhang X X, Jiang K X, Zhao L J. A CAPS marker derived from the SCAR marker linked to later bolting gene in Brassica oleracea var. capitata. Molecular Plant Breeding, 2020, 18(5): 1529-1534 [百度学术]
王娇, 张斌, 吴元康, 杨丽梅, 庄木, 吕红豪, 王勇, 季家磊, 闫超, 张扬勇. 甘蓝BoFLCs基因标记开发及优异单倍型聚合. 中国蔬菜, 2024 (5): 40-50 [百度学术]
Wang J, Zhang B, Wu Y K, Yang L M, Zhuang M, Lyu H H, Wang Y, Ji J L, Yan C, Zhang Y Y, Development of BoFLCs gene markers and pyramiding of elite haplotypes in cabbage (Brassica oleracea L. var. capitata), China Vegetables, 2024 (5): 40-50 [百度学术]
宋洪元, 李勤菲, 李樟萍, 任雪松, 司军. CN107190092B 用于鉴定结球甘蓝开花早晚的分子标记、引物对及分子标记方法与应用. 2020-11-24 [百度学术]
Song H Y, Li Q F, Li Z P, Ren X S, Si J. CN107190092B Molecular marker, primer pair and molecular marker method and application for identification of flowering time and evening of cabbage. 2020-11-24 [百度学术]
陈炯炯, 唐其蔚, 匡汉晖. CN112410464A 用于羽衣甘蓝和芥蓝花期鉴定的分子标记引物及应用. 2022-04-22 [百度学术]
Chen J J, Tang Q W, Kuang H H. CN112410464A Molecular marker primers for identification of flowering period of kale and kale and their application. 2022-04-22 [百度学术]
Li X, Wang Y, Cai C, Ji J, Han F, Zhang L, Chen S, Zhang L, Yang Y, Tang Q, Bucher J, Wang X, Yang L, Zhuang M, Zhang K, Lv H, Bonnema G, Zhang Y, Cheng F. Large-scale gene expression alterations introduced by structural variation drive morphotype diversification in Brassica oleracea. Nature Genetics, 2024 (56): 517-529 [百度学术]