摘要
种子适时休眠与萌发确保植物在不同环境条件下能够有效地生存和繁衍,该过程受到多种内源激素和外在环境因子的精确调控。近些年,脱落酸(ABA, abscisic acid)和赤霉素(GA, gibberellin)调控种子休眠与萌发的研究取得了重要进展,尤其是二者交互调控休眠与萌发等方面有所突破。本文详细阐述了ABA与GA的代谢过程以及信号转导通路在基因转录水平和蛋白翻译后水平调控种子休眠和萌发的分子机制,进一步探讨了二者介导种子休眠与萌发之间的拮抗作用及其交互关系,并系统总结了ABA和GA的代谢及信号转导通路如何响应外界光温环境变化进而精确调控种子休眠与萌发的研究进展,以期为更好地理解种子休眠与萌发的激素调控网络以及未来对ABA与GA调控种子休眠萌发机制的深入研究提供理论参考。
种子不仅是植物繁衍的媒介,更是携带基因信息的工具,在维持植物的遗传多样性方面发挥着重要作用。种子休眠与萌发对植物生长和环境适应具有重要意义,该过程受到多种内源激素的调控。深入了解休眠与萌发的机制,探究不同激素之间的相互作用,对研究整个植物激素信号调控网络以及深入理解植物生长发育进程具有重要意义。在激素调控种子休眠与萌发的过程中,脱落酸(ABA, abscisic acid)和赤霉素(GA, gibberellin)作为关键的两种内源激素发挥着决定性作用。通常认为,ABA与GA在种子休眠与萌发过程中发挥拮抗作用。ABA/GA比例过高,促进种子休眠;反之则促进种子萌
ABA是最早发现的植物激素之一,广泛参与植物的生长发育及逆境胁迫响应过程。在种子形成过程中,植株产生ABA,运输到种子内参与胚胎的早期发育,并促使种子成熟,这是种子内早期ABA的主要来源;随着种子成熟,种皮、胚乳和胚也会合成新的ABA,参与调控种子的休眠过
ABA含量的变化是影响种子休眠与萌发的关键。ABA合成缺陷突变体能够更快地解除休
ABA在种子中的含量始终处于一个动态平衡的过程。除上述合成过程外,ABA的分解也受到严格的调控。ABA的分解是通过连续的羟基化和偶联反应发生的,该过程主要由ABA 8'-羟化酶基因CYP707A1和CYP707A2参
植物响应ABA的信号通路涉及多个关键步骤,包括ABA受体的感知、信号转导、下游效应基因的活化
作为ABA信号下游的转录因子,ABI家族(ABI3、ABI4和ABI5)参与调控植物对ABA的响应。ABI3是在拟南芥中被鉴定出来的第1个ABA响应转录因子。在种子成熟过程中,ABI3响应ABA信号后,可以通过反馈调节影响ABA的合

图1 调控种子休眠与萌发的ABA信号转导
Fig. 1 Seed dormancy and germination regulation by ABA signaling
在拟南芥中,RVA家族转录因子RAV1通常抑制转录因子ABI3、ABI4和ABI5的转
除ABA代谢及其信号转导对休眠和萌发的调控外,GA在种子休眠和萌发过程中也起着至关重要的作用。成熟后的种子通过GA代谢调控游离态GA的含量,并通过GA信号转导调控下游与萌发相关的转录因子和调控元件,从而打破种子休眠并促进其萌发。
种子内GA代谢是种子从休眠状态转变为萌发状态的关键过程,该过程由GA合成与分解的平衡所决定。GA的合成包括3个阶段,首先,MVA形成牻牛儿基牻牛儿基焦磷酸(GGPP, geranyl geranyl pyrophosphate)后,在古巴焦磷酸合成酶(CPS, cuban pyrophosphate synthase)和内根-贝壳杉烯合成酶催化作用下,形成内根-贝壳杉烯;之后内根-贝壳杉烯在内根-贝壳杉烯氧化酶(KO, koxidase )和内根-贝壳杉烯酸氧化酶(KAO, kaurenoic acid oxidase)的氧化下最终形成GA12,GA12可被GA13ox氧化为GA53;最后,GA12和GA53在GA20ox及其他氧化酶的参与下逐步转化为不同类型的G
GA的含量变化是一个动态平衡的过程。除GA合成研究之外,其分解反应目前也已经明晰。该过程主要由GA2ox基因家族编码的GA氧化酶通过氧化反应将具有生物活性的GA转化为非生物活性G
GA信号转导过程通过GA-GID1复合物解除DELLA蛋白对下游转录因子的抑制作用,激活GA响应基因的表达,调控种子的休眠与萌

图2 调控休眠与萌发的GA信号转导
Fig. 2 Seed dormancy and germination regulation by GA signaling
RGL1/2/3编码不同类型的DELLA蛋白(RGL1、RGL2、RGL3),在GA信号转导中起到负调控作
除了RGL2发挥重要作用外,最新研究报道RGL1和RGL3也参与调控种子休眠与萌
大量研究表明,ABA与GA拮抗调控种子休眠与萌发。ABA含量的增加会抑制GA的作用,反之,GA水平的增加会削弱ABA的影响,从而促进种子的萌
ABA和GA代谢基因在二者拮抗作用中存在密切联系。OsGA2ox9不仅通过羟基化GA前体使种子中活性GA维持在较低水平,而且可以抑制α-淀粉酶的作用并使其失活,导致可溶性糖浓度降低,从而解除可溶性糖对ABA信号的抑制,维持种子休
此外,ABI4和ABI5也参与ABA与GA拮抗调控种子休眠与萌发过程。在萌发后期,ABI4促进ABA合成基因NCED6和GA分解基因GA2ox7的转录,并同时抑制ABA降解基因CYP707A1/2的转
除了ABA与GA的拮抗作用之外,ABA与GA之间还存在交互关系。DOG1是首个在拟南芥中鉴定到能够控制种子休眠数量性状位点的主效基因,其突变体通常表现出较短的休眠
由于植物固着生长的生活习性,其长期暴露于外界环境中,受到多种环境因素的胁迫。光照和温度是影响种子休眠与萌发的两个关键环境因素。种子通过感知光温等环境变化,调节内源激素代谢和信号转导,及时地对外界环境变化做出响应,从而保证植物的繁衍和生存。
光照是植物赖以生存的重要外界环境条件,对植物生长发育具有重要影响。目前植物的光信号转导通路研究取得了重要进展,其中光受体蛋白参与的信号转导是主要的信号通路。当种子感知光信号后,光受体PHY首先被激活,激活后的光受体与光敏色素互作因子(PIFs,phytochrome interacting factors)相互作用进而影响PIFs对靶基因的调控。此外,光受体也通过与COP1互作并促进其靶蛋白的积累,从而间接调控光响应基
COP1作为光信号的中枢调控因子,可通过介导ABA与GA信号转导参与种子休眠萌发调

图 3 COP1与ABA和GA信号的交互作用
Fig. 3 Involvement of COP1 in ABA and GA signaling
作为COP1的下游因子, PIFs家族也参与ABA/GA的调控,影响种子休眠与萌发。PIF1通过多重途径调控GA和ABA的信号转导和代谢。在调控激素代谢方面,PIF1通过激活DAG1、RVE1以及SOM基因的转录,从而抑制GA合成基因并促进GA分解基因的转录,降低GA水

图 4 PIFs与ABA和GA信号的交互作用
Fig. 4 Involvement of PIFs in ABA and GA signaling
温度不仅直接影响种子生理代谢过程,还作为外界环境信号,通过激素信号转导途径调控种子休眠与萌发。全球气温升高对种子萌发构成了主要威胁。在拟南芥中,高温通过调整ABA水平来抑制萌发。当种子受到高温胁迫时,转录因子FUS3激活了ABA合成基因(NCED1、NCED5和NCED9)的转录,同时抑制了ABA分解基因(CYP707A2)以及GA合成基因(GA3ox1、GA3ox2和GA20ox1)的转录,导致ABA积累、GA减少,使高温下种子萌发延
近年来,利用正向遗传学手段鉴定响应低温调控萌发基因的研究取得重要进展。Chen
参考文献
Liu X, Hou X. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Frontiers in Plant Science, 2018, 9: 251 [百度学术]
宋松泉, 唐翠芳, 雷华平, 姜孝成, 王伟青, 程红焱. 种子休眠与萌发调控的研究进展. 作物学报, 2024, 50(1): 1-15 [百度学术]
Song S Q, Tang C F, Lei H P, Jiang X C, Wang W Q, Cheng H Y. Research progress of seed dormancy and germination regulation. Acta Agronomica Sinica, 2024, 50(1): 1-15 [百度学术]
Pri-Tal O, Sun Y, Dadras A, Fürst-Jansen J M, Zimran G, Michaeli D, Wijerathna-Yapa A, Shpilman M, Merilo E, Yarmolinsky D. Constitutive activation of ABA receptors in Arabidopsis reveals unique regulatory circuitries. New Phytologist, 2024, 241(2): 703-714 [百度学术]
Kim D, Koo S. Concise and practical total synthesis of (+)-abscisic acid. ACS Omega, 2020, 5(22): 13296-13302 [百度学术]
Wu W, Cao S F, Shi L Y, Chen W, Yin X R, Yang Z F. Abscisic acid biosynthesis, metabolism and signaling in ripening fruit. Front Plant Science, 2023, 14: 1279031 [百度学术]
Dong T, Park Y, Hwang I. Abscisic acid:Biosynthesis, inactivation, homoeostasis and signalling. Essays in Biochemistry, 2015, 58: 29-48 [百度学术]
Wu H, Dai G X, Yuchun R, Wu K X, Wang J G, Hu P, Wen Y, Wang Y Y, Zhu L X, Chai B Z, Liu J L,Deng G F,Qian Q, Hu J. Disruption of LEAF LESION MIMIC 4 affects ABA synthesis and ROS accumulation in rice. The Crop Journal, 2023, 11(5): 1341-1352 [百度学术]
Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North H M, Marion-Poll A. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The Plant Journal, 2012, 70(3): 501-512 [百度学术]
Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal, 2006, 45(3): 309-319 [百度学术]
Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012, 5(6): 1375-1388 [百度学术]
Jensen M K, Lindemose S, de Masi F, Reimer J J, Nielsen M, Perera V, Workman C T, Turck F, Grant M R, Mundy J, Petersen M, Skriver K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio, 2013, 3: 321-327 [百度学术]
Baek D, Shin G, Kim M C, Shen M, Lee S Y, Yun D J. Histone deacetylase HDA9 with ABI4 contributes to abscisic acid homeostasis in drought stress response. Frontiers in Plant Science, 2020, 11: 143 [百度学术]
Kim H M, Joung Y H. Heterologous expression of the hot pepper ABA 8′-hydroxylase in escherichia coli for phaseic acid poduction. Journal of Microbiology and Biotechnology, 2023, 33(3): 378 [百度学术]
Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiology, 2004, 134(4): 1439-1449 [百度学术]
Okamoto M, Kushiro T, Jikumaru Y, Abrams S R, Kamiya Y, Seki M, Nambara E. ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry, 2011, 72(8): 717-722 [百度学术]
Hussain S, Brookbank B P, Nambara E. Hydrolysis of abscisic acid glucose ester occurs locally and quickly in response to dehydration. Journal of Experimental Botany, 2020, 71(6): 1753-1756 [百度学术]
Varshney V, Majee M. JA shakes hands with ABA to delay seed germination. Trends in Plant Science, 2021, 26(8): 764-766 [百度学术]
Zhao H, Nie K, Zhou H, Yan X, Zhan Q, Zheng Y, Song C P. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytologist, 2020, 228(2): 596-608 [百度学术]
Wang J, Deng Q W, Li Y H, Yu Y, Liu X, Han Y F, Luo X D, Wu X J, Ju L, Sun J Q, Liu A H, Fang J. Transcription factors Rc and OsVP 1 coordinately regulate preharvest sprouting tolerance in red pericarp rice. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14748-14757 [百度学术]
Mao X, Zhang J, Liu W, Yan S, Liu Q, Fu H, Zhao J, Huang W, Dong J, Zhang S, Yang T F,Yang W,Lin B, Wang F. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice, 2019, 12: 2 [百度学术]
Mao X, Zheng X, Sun B, Jiang L, Zhang J, Lyu S, Yu H, Chen P, Chen W, Fan Z, Li C,Liu Q. MKK3 cascade regulates seed dormancy through a negative feedback loop modulating ABA signal in rice. Rice, 2024, 17(1): 2 [百度学术]
Li Y, Zhou J, Li Z, Qiao J, Quan R, Wang J, Huang R, Qin H. Salt and ABA response ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiology, 2022, 189(2): 1110-1127 [百度学术]
Wang Z, Ren Z, Cheng C, Wang T, Ji H, Zhao Y, Deng Z, Zhi L, Lu J, Wu X. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis. Molecular Plant, 2020, 13(9): 1284-1297 [百度学术]
Ding Z J, Yan J Y, Li G X, Wu Z C, Zhang S Q, Zheng S J. WRKY 41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. The Plant Journal, 2014, 79(5): 810-823 [百度学术]
Liu F, Zhang H, Ding L, Soppe W J, Xiang Y. Reversal of RDO5 1, a homolog of rice Seed dormancy4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis. The Plant Cell, 2020, 32(6): 1933-1948 [百度学术]
Feng Y R, Li T T, Wang S J, Lu Y T, Yuan T T. Triphosphate Tunnel Metalloenzyme 2 acts as a downstream factor of ABI4 in ABA-mediated seed germination. International Journal of Molecular Sciences, 2023, 24(10): 8994 [百度学术]
Zhu Y, Hu X, Duan Y, Li S, Wang Y, Rehman A U, He J, Zhang J, Hua D, Yang L. The Arabidopsis nodulin homeobox factor AtNDX interacts with AtRING1A/B and negatively regulates abscisic acid signaling. The Plant Cell, 2020, 32(3): 703-721 [百度学术]
Jhanji S, Goyal E, Chumber M, Kaur G. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. Plant Physiology and Biochemistry, 2024: 108352 [百度学术]
Yang C, Li X, Chen S, Liu C, Yang L, Li K, Liao J, Zheng X, Li H, Li Y. ABI5-FLZ13 module transcriptionally represses growth-related genes to delay seed germination in response to ABA. Plant Communications, 2023, 4(6): 100636 [百度学术]
Yang M, Han X, Yang J, Jiang Y, Hu Y. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. The Plant Cell, 2021, 33(9): 3022-3041 [百度学术]
Nie K, Zhao H, Wang X, Niu Y, Zhou H, Zheng Y. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination. Journal of Integrative Plant Biology, 2022, 64(4): 930-941 [百度学术]
Guo P, Chong L, Wu F, Hsu C C, Li C, Zhu J K, Zhu Y. Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. Journal of Integrative Plant Biology, 2021, 63(4): 802-815 [百度学术]
Zhao H, Zhang Y, Zheng Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5. Frontiers in Plant Science, 2022, 13: 1000803 [百度学术]
Feng C Z, Chen Y, Wang C, Kong Y H, Wu W H, Chen Y F. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal, 2014, 80(4): 654-668 [百度学术]
Huang Y, Feng C, Ye Q, Wu W, Chen Y. Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genetics, 2016, 12(2): e1005833 [百度学术]
Li X, Zhong M, Qu L, Yang J, Liu X, Zhao Q, Liu X, Zhao X. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Science, 2021, 310: 110983 [百度学术]
Hedden P. The current status of research on gibberellin biosynthesis. Plant and Cell Physiology, 2020, 61(11): 1832-1849 [百度学术]
Shohat H, Eliaz N I, Weiss D. Gibberellin in tomato: Metabolism, signaling and role in drought responses. Molecular Horticulture, 2021, 1(1): 15 [百度学术]
Li Y, Shan X, Jiang Z, Zhao L, Jin F. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions. Plant Physiology and Biochemistry, 2021, 166: 621-633 [百度学术]
Xing M Q, Chen S H, Zhang X F, Xue H W. Rice OsGA2ox9 regulates seed GA metabolism and dormancy. Plant Biotechnology Journal, 2023, 21(12): 2411 [百度学术]
高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展. 生物技术通报, 2018, 34(7): 1-13 [百度学术]
Gao X H, Fu X D. Research progress for the gibberellin signaling and action on plant growth and development. Biotechnology Bulletin, 2018, 34(7): 1-13 [百度学术]
Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. The Plant Cell, 2006, 18(12): 3399-3414 [百度学术]
Ashikari M, Hironori I, Miyako U-T, Sasaki A, Gomi K, Kitano H, Matsuoka M. Gibberellin signal transduction in rice. Journal of Plant Growth Regulation, 2003, 22: 141-151 [百度学术]
Ravindran P, Kumar P P. Regulation of seed germination: The involvement of multiple forces exerted via gibberellin acid signaling. Molecular Plant, 2019, 12(1): 24-26 [百度学术]
Wang Z, Liu L, Cheng C, Ren Z, Xu S, Li X. GAI functions in the plant response to dehydration stress in Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21(3): 819 [百度学术]
Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, Wang X. Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiology, 2015, 169(3): 2288-2303 [百度学术]
Ravindran P, Verma V, Stamm P, Kumar P P. A novel RGL2-DOF6 complex contributes to primary seed dormancy in Arabidopsis thaliana by regulating a GATA transcription factor. Molecular Plant, 2017, 10(10): 1307-1320 [百度学术]
Boccaccini A, Santopolo S, Capauto D, Lorrai R, Minutello E, Serino G, Costantino P, Vittorioso P. The DOF protein DAG1 and the DELLA protein GAI cooperate in negatively regulating the AtGA3ox1 gene. Molecular Plant, 2014, 7(9): 1486-1489 [百度学术]
Richter R, Behringer C, Müller I K, Schwechheimer C. The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & Development, 2010, 24(18): 2093-2104 [百度学术]
Xu P, Hu J, Chen H, Cai W. SMAX1 interacts with DELLA protein to inhibit seed germination under weak light conditions via gibberellin biosynthesis in Arabidopsis. Cell Reports, 2023, 42(7):112740 [百度学术]
Liu H, Yuan L, Guo W, Wu W. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling. Plant Science, 2022, 322: 111350 [百度学术]
江玲, 万建民. 植物激素ABA和GA调控种子休眠和萌发的研究进展. 江苏农业学报, 2007 (4): 360-365 [百度学术]
Jiang L, Wan J M. Advances in seed dormancy and germination regulated by plant hormones ABA and GA. Journal of Agricultural Sciences, 2007 (4): 360-365 [百度学术]
Chen Y, Xiang Z, Liu M, Wang S, Zhang L, Cai D, Huang Y, Mao D, Fu J, Chen L. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice. Plant, Cell & Environment, 2023, 46(4): 1384-1401 [百度学术]
Huang X, Zhang X, Gong Z, Yang S, Shi Y. ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis. The Plant Journal, 2017, 89(2): 354-365 [百度学术]
Xian B, Rehmani M S, Fan Y, Luo X, Zhang R, Xu J, Wei S, Wang L, He J, Fu A. The ABI4-RGL2 module serves as a double agent to mediate the antagonistic crosstalk between ABA and GA signals. New Phytologist, 2024, 241(6): 2464-2479 [百度学术]
Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, Hou X. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nature Communications, 2016, 7(1): 12768 [百度学术]
Alonso-Blanco C, Bentsink L, Hanhart C J, Vries H B-d, Koornneef M. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics, 2003, 164(2): 711-729 [百度学术]
Carrillo-Barral N, Rodríguez-Gacio M d C, Matilla A J. Delay of Germination-1 (DOG1): A key to understanding seed dormancy. Plants, 2020, 9(4): 480 [百度学术]
Li Q, Chen X, Zhang S, Shan S, Xiang Y. DELAY OF GERMINATION 1, the master regulator of seed dormancy, integrates the regulatory network of phytohormones at the transcriptional level to control seed drmancy. Current Issues in Molecular Biology, 2022, 44(12): 6205-6217 [百度学术]
Lee H G, Lee K, Seo P J. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Plant Molecular Biology, 2015, 87: 371-381 [百度学术]
Yano R, Kanno Y, Jikumaru Y, Nakabayashi K, Kamiya Y, Nambara E. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiology, 2009, 151(2): 641-654 [百度学术]
Chen H, Ruan J, Chu P, Fu W, Liang Z, Li Y, Tong J, Xiao L, Liu J, Li C. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. The Plant Journal, 2020, 101(2): 310-323 [百度学术]
Shen J, Zhang L, Wang H, Guo J, Li Y, Tan Y, Shu Q, Qian Q, Yu H, Chen Y. The phosphatidylethanolamine-binding proteins OsMFT1 and OsMFT2 regulate seed dormancy in rice. The Plant Cell, 2024, 36(9):3857-3874 [百度学术]
Huang Y, Song J, Hao Q, Mou C, Wu H, Zhang F, Zhu Z, Wang P, Ma T, Fu K. WEAK SEED DORMANCY 1, an aminotransferase protein, regulates seed dormancy in rice through the GA and ABA pathways. Plant Physiology and Biochemistry, 2023, 202: 107923 [百度学术]
He Y, Cheng J, He Y, Yang B, Cheng Y, Yang C, Zhang H, Wang Z. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. Plant Biotechnology Journal, 2019, 17(2): 322-337 [百度学术]
林荣呈, 刘宏涛, 李继刚, 孔凡江, 刘斌, 王海洋, 杨洪全, 钟上威, 朱丹萌, 淮俊玲, 李洪, 刘双荣, 王璠, 王文秀, 茅志磊, 邓兴旺. 植物光信号转导研究领域近十年重要研究进展. 植物生理学报, 2024, 60(3): 399-429 [百度学术]
Lin R C, Liu H T , Li J G, Kong F J, Liu B, Wang H Y, Yang H Q, Zhong S W, Zhu D M, Huai J L, Li H, Liu S R, Wang F, Wang W X, Mao Z L, Deng X W. Research advances in plant light signaling transduction during the past ten years. Plant Physiology Journal, 2024, 60(3): 399-429 [百度学术]
李振华, 徐如宏, 任明见, 李鲁华. 光敏色素感知光温信号调控种子休眠与萌发研究进展. 植物生理学报, 2019, 55(5): 539-546 [百度学术]
Li Z H, Xu R H, Ren M J, Li L H. Advances in phytochrome regulating seed dormancy and germination by sensing light and temperature signals. Plant Physiology Journal, 2019, 55(5): 539-546 [百度学术]
Peng J, Wang M, Wang X, Qi L, Guo C, Li H, Li C, Yan Y, Zhou Y, Terzaghi W. COP1 positively regulates ABA signaling during Arabidopsis seedling growth in darkness by mediating ABA-induced ABI5 accumulation. The Plant Cell, 2022, 34(6): 2286-2308 [百度学术]
Lee B-D, Yim Y, Cañibano E, Kim S-H, García-León M, Rubio V, Fonseca S, Paek N-C. CONSTITUTIVE PHOTO-MORPHOGENIC 1 promotes seed germination by destabilizing RGA-LIKE 2 in Arabidopsis. Plant Physiology, 2022, 189(3): 1662-1676 [百度学术]
Yang L, Jiang Z, Jing Y, Lin R. PIF1 and RVE1 form a transcriptional feedback loop to control light-mediated seed germination in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(9): 1372-1384 [百度学术]
Gabriele S, Rizza A, Martone J, Circelli P, Costantino P, Vittorioso P. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. The Plant Journal, 2010, 61(2): 312-323 [百度学术]
Kim D H, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. The Plant Cell, 2008, 20(5): 1260-1277 [百度学术]
Park J, Lee N, Kim W, Lim S, Choi G. ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. The Plant Cell, 2011, 23(4): 1404-1415 [百度学术]
Yang L, Jiang Z, Liu S, Lin R. Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis. New Phytologist, 2020, 225(4): 1593-1605 [百度学术]
Luo X, Dai Y, Xian B, Xu J, Zhang R, Rehmani M S, Zheng C, Zhao X, Mao K, Ren X. PIF4 interacts with ABI4 to serve as a transcriptional activator complex to promote seed dormancy by enhancing ABA biosynthesis and signaling. Journal of Integrative Plant Biology, 2024, 66(5):909-927 [百度学术]
Qi L, Liu S, Li C, Fu J, Jing Y, Cheng J, Li H, Zhang D, Wang X, Dong X. PHYTOCHROME-INTERACTING FACTORS interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness. Molecular Plant, 2020, 13(3): 414-430 [百度学术]
Chiu R S, Nahal H, Provart N J, Gazzarrini S. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biology, 2012, 12: 15 [百度学术]
Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim D H, Kawakami N. ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. The Plant Cell, 2013, 25(12): 4863-4878 [百度学术]
Ibarra S E, Tognacca R S, Dave A, Graham I A, Sánchez R A, Botto J F. Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds. Plant, Cell & Environment, 2016, 39(1): 213-221 [百度学术]
Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology, 2008, 146(3): 1368-1385 [百度学术]
Suriyasak C, Oyama Y, Ishida T, Mashiguchi K, Yamaguchi S, Hamaoka N, Iwaya-Inoue M, Ishibashi Y. Mechanism of delayed seed germination caused by high temperature during grain filling in rice (Oryza sativa L.). Scientific Reports, 2020, 10(1): 17378 [百度学术]
Chen W, Wang W, Lyu Y, Wu Y, Huang P, Hu S, Wei X, Jiao G, Sheng Z, Tang S. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. The Crop Journal, 2021, 9(1): 68-78 [百度学术]
Yoshida H, Hirano K, Yano K, Wang F, Mori M, Kawamura M, Koketsu E, Hattori M, Ordonio R L, Huang P. Genome-wide association study identifies a gene responsible for temperature-dependent rice germination. Nature Communications, 2022, 13(1): 5665 [百度学术]
Xu F, Tang J, Wang S, Cheng X, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature Genetics, 2022, 54(12): 1972-1982 [百度学术]
Zhang C, Wang H, Tian X, Lin X, Han Y, Han Z, Sha H, Liu J, Liu J, Zhang J. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination. Nature Communications, 2024, 15(1): 2211 [百度学术]