摘要
小麦籽粒色泽性状亮度(
小麦籽粒色泽是小麦品质的重要指标之一。紫色小麦的抗氧化物活性最高,其次是红色小麦和白色小
全基因组关联分析(GWAS,genome-wide association studies)是一种通过检验全基因组遗传标记与表型变异关联的显著性来确定性状遗传位点在基因组中分布的分析方法,该方法在群体水平上解析性状的遗传基
GWAS已被广泛应用于小麦重要农艺与品质性状重要遗传位点的挖掘。Sun
目前已经有部分小麦面粉色泽遗传位点挖掘的报道。除了上述TaRPP13L1基因之
本研究以黄淮麦区243份小麦为材料,以小麦 660K芯
供试材料为243份来自河南省冬水组比较试验的小麦品系,在2013-2016年分别在驻马店市西平县(XP,Xiping)、驻马店市遂平县(SP,Suiping)、新乡市原阳县(YY,Yuanyang)和郑州市惠济区(ZZ,Zhengzhou)4个地点种植,每份材料种植4行,行长150 cm,行距23 cm,株距10 cm,随机区组设计,在郑州、原阳进行2次重复,分别用1、2表示。田间管理同一般大田,小麦成熟后统一收获脱粒。
使用SeedCount SC5000图像分析系统(http://www.tenovolab.cn/)测定小麦籽粒色泽性状亮度(
自然群体的243份材料由小麦660K SNP芯
称取100 mg种子,打碎后使用植物种子RNA提取试剂盒(Cat#082009,贝贝生物科技有限公司)提取RNA。使用dsDNase 1 μL,5×RT All-in-One Mix 4 μL(北京诺贝莱生物科技有限公司),ddH2O 5 μL,RNA原液10 μL的体系将RNA反转录成cDNA,反转录条件为37 ℃ 2 min,55 ℃ 15 min,85 ℃ 5 min,转录完成后加入120 μL ddH2O稀释。使用2×SYBR premix UrTaqⅡ 混合缓冲液(北京诺贝莱生物科技有限公司)进行qRT-PCR分析。以小麦(中国春)β-actin作为内参,反应体系为20 μL,其中包含上述缓冲液10 μL,正反向引物各0.4 μL,引物序列见
引物名称 Primer Name | 正向序列(5′-3′) Forward primer(5′-3′) | 反向序列(5′-3′) Reverse primer(5′-3′) |
---|---|---|
TraesCS2B02G180800 | TGGCCCGATGAAGATGAAGA | GGCTATTTGGAGGTTGCTGG |
TraesCS4B02G346000 | AGGGAAAATGAGCTCTACGTCA | TAGGAGTTGGCCATTCTCGG |
TraesCS5A02G003200 | ATATGCTCGTGATGGCTCCG | AAGATCACACCGCCATCCAT |
TraesCS5B02G399800 | AGACCTCACAATCAGTCAGCA | TAACCTTCTGCAGTCTCCGG |
TraesCS5D02G004300 | CGTGATGGAGCGATGTTTCA | GGATCACTCGCCGGATAGAA |
TraesCS7A02G350100 | TGGTGTCTGGGTGGTTCAC | TTGGTATGGCGATTTCCCCT |
TraesCS7A02G350800 | ATGAGGTCGCTGATGGTCAT | GCGATCGATTTGTCCCTCTG |
TraesCS7B02G408900 | CCTGTTGTACGGCCACATCT | GTACGTCGGGGTGTAGATGA |
分别对L*、a*和b*进行表型变异分析、多环境方差分析和相关性分析。表型变异分析结果显示供试品种的3个性状表型存在较大差异,各性状的分布基本服从正态分布(

图1 籽粒色泽各性状的次数分布
Fig. 1 Distribution of kernel color traits
变异来源 Source of variation | 亮度 | 红度 | 黄度 |
---|---|---|---|
点内区组间Block in location | 76.29*** | 62.61*** | 16.58*** |
地点Location |
2.1 |
8.9 |
8.5 |
品系Lines | 10.32*** | 10.31*** | 7.85*** |
地点×品系Location×lines | 1.94*** | 1.65*** | 1.71*** |
广义遗传力 (%) | 86.9 | 83.4 | 81.5 |
NS表示在P<0.05水平上差异不显著,
NS and
关联群体的基因型经过质控后保留了395783个高质量SNP,进一步计算出74957个有效 SNP,考虑到3个性状在多年多环境的表型变异等因素,最终将GWAS显著性阈值设定为1
显著SNP在不同染色体上的数量分布如

图 2 染色体上显著SNP分布
Fig. 2 Chromosomal distribution of significant SNPs
在进行 GWAS 分析时,某一地点的某一次重复视为一个环境。显著SNP的环境稳定性评价包括以下两个方面:(1)不同环境条件下重复检测到的显著SNP个数;(2)以多年多地点3个性状的BLUP值为表型进行GWAS挖掘显著SNP位点,并计算基于BLUP值关联到的显著SNP和单个环境显著SNP的交集。
与
以BLUP值进行GWAS分析,
染色体 Chromosome | SNP | 性状 Trait | 环境 Environment |
---|---|---|---|
1D | AX-108902473 | L* | 西平、BLUP |
1D | AX-111484181 | L* | 原阳1、原阳2 |
1D | AX-94556277 | L* | 原阳1、原阳2 |
3D | AX-110423300 | L* | 郑州1、BLUP |
3D | AX-94663542 | L* | 遂平、原阳1、BLUP |
5A | AX-108947616 | L* | 郑州2、BLUP |
5A | AX-95250489 | L* | 郑州1、BLUP |
5D | AX-86170796 | L* | 原阳1、原阳2、郑州1、BLUP |
6A | AX-108898115 | L* | 原阳1、郑州2 |
6B | AX-110472468 | L* | 郑州2、BLUP |
6D | AX-109898786 | L* | 原阳1、郑州1、BLUP |
6D | AX-94699483 | L* | 原阳1、郑州2、BLUP |
2A | AX-108736897 | a* | 原阳1、原阳2、郑州1、BLUP |
2B | AX-108736846 | a* | 遂平、西平、郑州1、BLUP |
2B | AX-108984235 | a* | 遂平、西平、郑州1、BLUP |
2B | AX-110620516 | a* | 遂平、西平、郑州1、BLUP |
4B | AX-109333795 | a* | 遂平、原阳1、原阳2、郑州1、BLUP |
4B | AX-109368556 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-109552654 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-110052982 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-110425610 | a* | 遂平、原阳1、原阳2、郑州1、BLUP |
4B | AX-110517373 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-110648483 | a* | 遂平、原阳1、原阳2、郑州1、BLUP |
4B | AX-111274839 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-111465706 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-111516967 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-111579343 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-111747488 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-111820468 | a* | 遂平、原阳1、原阳2、BLUP |
4B | AX-86164894 | a* | 遂平、原阳1、原阳2、BLUP |
5B | AX-109877815 | a* | 遂平、原阳1、原阳2、郑州1、郑州2、BLUP |
5D | AX-109549041 | a* | 遂平、原阳2、郑州1、BLUP |
4B | AX-108837712 | b* | 遂平、原阳1、原阳2、BLUP |
4B | AX-109333795 | b* | 遂平、原阳1、原阳2、BLUP |
4B | AX-110425610 | b* | 遂平、原阳1、原阳2、BLUP |
4B | AX-110648483 | b* | 遂平、原阳1、原阳2、BLUP |
5B | AX-109050097 | b* | 遂平、原阳1、原阳2、BLUP |
5B | AX-111077474 | b* | 原阳2、郑州1、郑州2、BLUP |
5B | AX-111468272 | b* | 原阳1、郑州1、郑州2、BLUP |
5B | AX-95004777 | b* | 遂平、原阳1、原阳2、郑州2、BLUP |
5D | AX-86170796 | b* | 遂平、原阳1、原阳2、郑州1、郑州2、BLUP |
BLUP: 最佳线性无偏预测,1、2为同一年的2次重复,下同
BLUP: Best linear unbiased prediction, 1, 2 is two repetitions in the same year, the same as below
在单环境关联分析中,共检测到51个显著SNP同时与两个性状关联(
染色体 Chromosome | SNP | 性状 Trait | 环境 Environment | 染色体 Chromosome | SNP | 性状 Trait | 环境 Environment |
---|---|---|---|---|---|---|---|
2B | AX-111049983 | a*、b* | 遂平 | 5B | AX-109499327 | a*、b* | 遂平 |
2B | AX-109459969 | a*、b* | 遂平 | 5D | AX-95142657 | a*、b* | 郑州1、遂平 |
4A | AX-110468618 | a*、b* | 原阳1、遂平 | 5D | AX-94562472 | a*、b* | 遂平 |
4B | AX-110648483 | a*、b* | 遂平 | 5D | AX-86170796 | L*、b* | 原阳1、原阳2、遂平 |
4B | AX-110425610 | a*、b* | 遂平 | 5D | AX-111710883 | a*、b* | 遂平 |
4B | AX-109333795 | a*、b* | 遂平 | 5D | AX-111608176 | a*、b* | 遂平 |
4B | AX-108837712 | a*、b* | 原阳2、遂平 | 5D | AX-111553017 | a*、b* | 遂平 |
4B | AX-108731779 | a*、b* | 遂平 | 5D | AX-111548818 | a*、b* | 遂平 |
5B | AX-95004777 | a*、b* | 遂平 | 5D | AX-111462611 | a*、b* | 郑州1、遂平 |
5B | AX-110994024 | L*、b* | 郑州2 | 5D | AX-111441725 | a*、b* | 遂平 |
5B | AX-110921294 | L*、b* | 郑州2 | 5D | AX-111185783 | a*、b* | 遂平 |
5B | AX-110064547 | a*、b* | 遂平 | 5D | AX-111061951 | a*、b* | 遂平 |
5D | AX-110996413 | a*、b* | 遂平 | 7A | AX-111483986 | a*、b* | 郑州1、原阳1 |
5D | AX-110985232 | a*、b* | 遂平 | 7A | AX-110943976 | a*、b* | 郑州1、原阳1 |
5D | AX-110576250 | a*、b* | 遂平 | 7A | AX-110524850 | a*、b* | 郑州1 |
5D | AX-110532402 | a*、b* | 遂平 | 7A | AX-109958382 | a*、b* | 郑州1、原阳1 |
5D | AX-110504529 | a*、b* | 遂平 | 7A | AX-109877102 | a*、b* | 郑州1、原阳1 |
5D | AX-109760956 | a*、b* | 遂平 | 7A | AX-109050060 | a*、b* | 郑州1、原阳1 |
5D | AX-109549041 | a*、b* | 遂平 | 7A | AX-108858065 | a*、b* | 郑州1、原阳1 |
5D | AX-109426744 | a*、b* | 遂平 | 7A | AX-108774375 | a*、b* | 郑州1、原阳1 |
5D | AX-109387951 | a*、b* | 遂平 | 7B | AX-89724805 | L*、b* | 郑州1 |
5D | AX-108772796 | a*、b* | 遂平 | 7D | AX-94890186 | L*、b* | 原阳2 |
6D | AX-94699483 | L*、b* | 原阳1、遂平 | 7D | AX-94749119 | L*、b* | 原阳2、遂平 |
7A | AX-89444413 | a*、b* | 郑州1 | 7D | AX-94470386 | L*、b* | 原阳2 |
7A | AX-86165096 | a*、b* | 郑州1、原阳1 | 7D | AX-86162668 | L*、b* | 原阳2、遂平 |
7A | AX-111737274 | a*、b* | 原阳1 |
根据中国春参考基因组1.1版本基因注释信息(https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.1/),对稳定检测或一因多效SNP在上下游2 kb范围检索候选基因。42个显著 SNP 共挖掘到36个候选基因(
染色体 Chromosome | SNP | 性状 Trait | 基因ID Gene ID | 环境 Environment |
---|---|---|---|---|
1D | AX-111484181 | L* | TraesCS1D02G390900LC | 原阳1、原阳2 |
1D | AX-94556277 | L* | TraesCS1D02G291400 | 原阳1、原阳2 |
1D | AX-108902473 | L* | TraesCS1D02G409500 | 西平、BLUP |
2B | AX-110620516 | a* | TraesCS2B02G180800 | 遂平、西平、郑州1、BLUP |
2B | AX-108736846 | a* | TraesCS2B02G252100LC | 遂平、西平、郑州1、BLUP |
2B | AX-108984235 | a* | TraesCS2B02G253300LC | 遂平、西平、郑州1、BLUP |
3D | AX-94663542 | L* | TraesCS3D02G354800LC | 遂平、原阳1、BLUP |
3D | AX-110423300 | L* | TraesCS3D02G027800 | 郑州1、BLUP |
4A | AX-110468618 | a*、b* | TraesCS4A02G424200LC | 原阳1、遂平 |
4B | AX-108731779 | a*、b* | TraesCS4B02G404100LC | 遂平 |
4B | AX-111747488 | a* | TraesCS4B02G346000 | 遂平、原阳1、原阳2、BLUP |
4B | AX-86164894 | a* | TraesCS4B02G346000 | 遂平、原阳1、原阳2、BLUP |
4B | AX-109552654 | a* | TraesCS4B02G346100 | 遂平、原阳1、原阳2、BLUP |
5A | AX-95250489 | L* | TraesCS5A02G003200 | 郑州1、BLUP |
5A | AX-108947616 | L* | TraesCS5A02G487600LC | 郑州2、BLUP |
5B | AX-109877815 | a* | TraesCS5B02G358300 | 遂平、原阳1、原阳2、郑州1、郑州2、BLUP |
5B | AX-95004777 | a*、b* | TraesCS5B02G399800 | 遂平 |
5B | AX-110064547 | a*、b* | TraesCS5B02G591600LC | 遂平 |
5B | AX-110921294 | L*、b* | TraesCS5B02G753200LC | 郑州2 |
5D | AX-86170796 | L*、b* | TraesCS5D02G004300 | 原阳1、遂平 |
5D | AX-94562472 | a*、b* | TraesCS5D02G565100 | 遂平 |
5D | AX-110504529 | a*、b* | TraesCS5D02G565400 | 遂平 |
5D | AX-111185783 | a*、b* | TraesCS5D02G567700 | 遂平 |
5D | AX-111553017 | a*、b* | TraesCS5D02G661900LC | 遂平 |
5D | AX-110985232 | a*、b* | TraesCS5D02G568300 | 遂平 |
5D | AX-95142657 | a*、b* | TraesCS5D02G568800 | 郑州1、遂平 |
5D | AX-109549041 | a*、b* | TraesCS5D02G663600LC | 遂平 |
5D | AX-111710883 | a*、b* | TraesCS5D02G663600LC | 遂平 |
6A | AX-108898115 | L* | TraesCS6A02G416500 | 原阳1、郑州2 |
6D | AX-94699483 | L*、b* | TraesCS6D02G401700 | 原阳1、遂平 |
7A | AX-111737274 | a*、b* | TraesCS7A02G150400 | 原阳1 |
7A | AX-110524850 | a*、b* | TraesCS7A02G350100 | 郑州1 |
7A | AX-86165096 | a*、b* | TraesCS7A02G350100 | 郑州1、原阳1 |
7A | AX-89444413 | a*、b* | TraesCS7A02G350300 | 郑州1 |
7A | AX-109050060 | a*、b* | TraesCS7A02G502900LC | 郑州1、原阳1 |
7A | AX-110943976 | a*、b* | TraesCS7A02G350800 | 郑州1、原阳1 |
7A | AX-109877102 | a*、b* | TraesCS7A02G350800 | 郑州1、原阳1 |
7B | AX-89724805 | L*、b* | TraesCS7B02G408900 | 郑州1 |
7D | AX-86162668 | L*、b* | TraesCS7D02G638500LC | 原阳2、遂平 |
7D | AX-94890186 | L*、b* | TraesCS7D02G638500LC | 原阳2 |
7D | AX-94470386 | L*、b* | TraesCS7D02G467100 | 原阳2 |
7D | AX-94749119 | L*、b* | TraesCS7D02G467100 | 原阳2、遂平 |
根据小麦族多组学网站中国春基因在不同组织和时期的表达量数据

图 3 候选基因在籽粒中的qRT-PCR分析
Fig. 3 qRT-PCR analysis of candidate genes in kernel
染色体 Chromosome | 性状 Trait | 基因ID Gene ID | 基因功能 Function of gene | 富集编号 Enrichment ID |
---|---|---|---|---|
2B | a* | TraesCS2B02G180800 | emp24/gp25L/p24家族 | GO:0033116, GO:0030134, GO:0005793, GO:0032580, GO:0016021 |
4B | a* | TraesCS4B02G346000 | PLAC8 家族蛋白 | - |
5A | L* | TraesCS5A02G003200 | Core-2/I-Branching酶 | GO:0016021, GO:0008375 |
5B | a*、b* | TraesCS5B02G399800 | UDP-葡萄糖/GDP-甘露糖脱氢酶家族 |
O:0006024 ko00053, GO:0003979, GO:0006065, G |
5D | L*、b* | TraesCS5D02G004300 | 蛋白酶抑制剂/种子贮藏/LTP家族 | - |
7A | a*、b* | TraesCS7A02G350100 | 精胺和亚精胺合成酶 |
O:0004766, GO:0016768 ko00330, GO:0006596, GO:0006597, G |
7A | a*、b* | TraesCS7A02G350800 | 聚酮环化酶/脱水酶和脂质转运 |
O:0004864 ko04075, GO:1905183, GO:0010427, G |
7B | L*、b* | TraesCS7B02G408900 | 脂肪酸羟化酶超家族 | - |
- 表示本研究中没有显著富集
- indicates not significant enriched in this study
采用小麦Pan800K数据库(未发表数据)对8个候选基因进行了多态性分析,共挖掘到位于基因或上下游2 kb范围内的1489个多态性位点,并将以上多态性位点重新加入到上述小麦 660K 芯片进行GWAS,结果表明仅有2个基因的多态性能够分别在西平和郑州环境中重新被关联到(

图4 加入基因多态性前后的GWAS对比
Fig. 4 Comparison of manhattan plots before and after adding gene polymorphism
A:添加基因多态性之后;B:添加基因多态性之前; XP:西平,ZZ:郑州
A: After adding gene polymorphism; B: Before adding gene polymorphism; XP:Xiping,ZZ:Zhengzhou
因5D染色体上的Pinb基因在群体中并未形成有效单倍型,因此仅对位于5B染色体上的TraesCS5B02G399800进行了单倍型分析(

图5 候选基因TraesCS5B02G399800的单倍型分析
Fig. 5 Haplotype analysis of candidate gene TraesCS5B02G399800
A:单倍型区块;B~D:不同单倍型表型差异,HAP1和HAP2序列分别为CCTC和TGCG
A: Haplotype block; B-D:Phenotype of different haplotypes, the sequences of HAP1 and HAP2 were CCTC and TGCG, respectively
不同于Hong
L*、a*和b*在所研究的自然群体中表现出丰富的表型变异;方差分析结果表明各品系之间差异达到极显著水平,地点间的差异不显著,3个性状的广义遗传力均达到了80%以上,表明L*、a*和b*主要受遗传因素影响,为其遗传位点的挖掘奠定了基础。本研究采用高密度的小麦660K SNP芯片表征群体的基因型信息,经质控后仍保留了395783个高质量SNP位点,而相关研究多采用小麦90K SNP芯
前人研究主要集中在小麦面粉色泽相关遗传位点挖掘。本研究挖掘到的小麦籽粒色泽调控位点和前人研究的面粉色泽相关位点定位在相同染色体上,如Parker
本研究基于GWAS、基因表达量、基因功能注释、基因多态性分析等手段挖掘到了2个可能的候选基因,包括已知的硬度调控基因Pinb。并通过单倍型分析检测到了调控籽粒黄度基因TraesCS5B02G399800的差异单倍型。葡萄糖脱氢酶是一种依赖NAD+的酶,可催化葡萄糖的双重氧化,生成葡萄糖醛酸,在植物细胞壁合成中起重要作
亚精胺(Spermidine)广泛存在于植物中,具有刺激生
位于7A染色体上的TraesCS7A02G350800被显著富集参与MAPK(Mitogen-activated protein kinase)植物信号通路(ko04016)。植物MAPK是一类高度保守的Ser/Thr类蛋白激酶,广泛存在于级联反应途径,MAPK可磷酸化多种底物,包括转录因子、蛋白激酶和细胞骨架相关蛋白等,在调控植物响应逆境(盐分、干旱、极端温度、重金属等)胁迫中起重要作
参考文献
Ma D Y, Sun D X, Zuo Y, Wang C Y, Zhu Y J, Guo T C. Diversity of antioxidant content and its relationship to grain color and morphological characteristics in winter wheat grains. Journal of Integrative Agriculture, 2014, 13:1258-1267 [百度学术]
Shen Y, Jin L, Xiao P, Lu Y, Bao J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science, 2009, 49:106-111 [百度学术]
Harakotr B, Suriharn B, Scott M P, Lertrat K. Genotypic variability in anthocyanins, total phenolics, and antioxidant activity among diverse waxy corn germplasm. Euphytica, 2015, 2:237-248 [百度学术]
Kim M J, Hyun J N, Kim J A, Park J C, Kim M Y, Kim J G, Lee S J, Chun S C, Chung I M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry, 2007, 55:4802-4809 [百度学术]
宗学凤, 张建奎, 李帮秀, 余国东, 石有明, 王三根. 小麦籽粒颜色与抗氧化作用. 作物学报, 2006, 32(2):237-242 [百度学术]
Zong X F, Zhang J K, Li B X, Yu G D, Shi Y M, Wang S G. Relationship between antioxidant and grain colors of wheat (Triticum aestivum L.). Acta Agronnmica Sinica, 2006, 32(2):237-242 [百度学术]
Gfeller F, Svejda F. Inheritance of post-harvest seed dormancy and kernel colour in spring wheat lines. Canadian Journal of Plant, 1960, 40:1-6 [百度学术]
赵宇慧, 李秀秀, 陈倬, 鲁宏伟, 刘羽诚, 张志方, 梁承志. 生物信息学分析方法I: 全基因组关联分析概述. 植物学报, 2020, 55(6):715-732 [百度学术]
Zhao Y H, Li X X, Chen Z, Lu H W, Liu Y C, Zhang Z F, Liang C Z. An overview of genome-wide association studies in Plants. Chinese Bulletin of Botany, 2020, 55(6):715-732 [百度学术]
Xiao Y J, Liu H J, Wu L J, Warburton M, Yan J. Genome-wide association studies in maize: Praise and stargaze. Molecular Plant, 2017, 10:359-374 [百度学术]
Chen H L, Hao Z Y, Zhao Y F, Yang R. A fast-linear mixed model for genome-wide haplotype association analysis: Application to agronomic traits in maize. BMC Genomics, 2020, 21:151 [百度学术]
Luján Basile S M, Ramírez I A, Crescente J M, Conde M B, Demichelis M, Abbate P, Rogers W J, Pontaroli A C, Helguera M, Vanzetti L S. Haplotype block analysis of an Argentinean hexaploidy wheat collection and GWAS for yield components and adaptation. BMC Plant Biology, 2019, 19:553 [百度学术]
Sun C W, Zhang F Y, Yan X F, Dong Z D, Cui D Q, Chen F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnology Journal, 2017, 15(8):953-969 [百度学术]
Chen J, Zhang F, Zhao C, Lv G, Sun C, Pan Y, Guo X, Chen F. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnology Journal, 2019, 17(11):2106-2122 [百度学术]
Zhai S, Liu J, Xu D, Wen W, Yan J, Zhang P, Wan Y, Cao S, Hao Y, Xia X, Ma W, He Z. A genome-wide association study reveals a rich genetic architecture of flour color-related traits in bread wheat. Frontiers in Plant Science, 2018, 9:1136 [百度学术]
于海霞, 肖静, 田纪春.小麦面粉色泽(白度)DArT标记的关联分析. 作物学报, 2014, 40(12):2198 [百度学术]
Yu H X, Xiao J, Tian J C. Genome-wide association analysis of flour color (whiteness) using dart markers in common wheat. Acta Agronomica Sinica, 2014, 40(12):2198 [百度学术]
张立平, 阎俊, 夏先春, 何中虎, Mark W Sutherland.普通小麦籽粒黄色素含量的QTL分析. 作物学报, 2006, 32(1):41-45 [百度学术]
Zhang L P, Yan J, Xia X C, He Z H, Sutherland M W. QTL mapping for kernel yellow pigment content in common wheat. Acta Agronomica Sinica, 2006, 32(1):41-45 [百度学术]
Hong M J, Ko C S, Kim D Y. Genome-wide association study to identify marker-trait associations for seed color in colored wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 2024, 25:3600 [百度学术]
Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker‐assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6):1354-1360 [百度学术]
Lipka A E, Tian F, Wang Q, Peiffer J, Li M, Bradbury P J, Gore M A, Buckler E S, Zhang Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics, 2012, 28(18):2397-2399 [百度学术]
Barrett J C, Fry B, Maller J D. M J, Daly M J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics, 2004, 21(2):263-265 [百度学术]
Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 2021, 14(12):1965-1968 [百度学术]
Qiao P, Li X, Liu D, Lu S, Zhi L, Rysbekova A, Chen L, Hu Y G. Mining novel genomic regions and candidate genes of heading and flowering dates in bread wheat by SNP-and haplotype-based GWAS. Molecular Breeding, 2023, 43(11):76 [百度学术]
Parker G D, Chalmers J K, Rathjen A J, Langridge P. Mapping loci associated with flour color in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998, 97:238-245 [百度学术]
Alemu A, Feyissa T, Tuberosa R, Maccaferri M, Sciara G, Letta T, Abeyo B. Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). The Crop Journal, 2020, 8(5):757-768 [百度学术]
Jia T, Ge Q, Zhang S, Zhang Z, Liu A, Fan S, Jiang X, Feng Y, Zhang L, Niu D, Huang S, Gong W, Yuan Y, Shang H. UDP-Glucose dehydrogenases: Identification, expression, and function analyses in upland cotton (Gossypium hirsutum). Frontiers in Genetics, 2021, 11:597890 [百度学术]
Gamlath J, Aldred G P, Panozzo J F. Barley (1lead to 3; 1 lead to 4)-β-glucan and arabinoxylan contentare related to kerel hardness and water uptake. Journal of Cereal Science, 2008, 47(2):365-371 [百度学术]
Yang Q, Zheng C, Cao J, Shou P, lin L, Velletri T, Jiang M, Chen Q, Han Y, Li F, Wang Y, Cao W, Shi Y. Spemidine alleviates experimental autoimmune eneephalomyelitis thrugh inducing inhibitory maemphages. Cell Death & Differentiation, 2016, 23(11):1850-1861 [百度学术]
Gupta V K, Pech U, Bhukel A, Fulterer A, Ender A, Mauermann S F, Andlauer T F M, Anwi-Adjei E, Beuschel C, Thriene K, Maglione M, Quentin C, Bushow R, Sigrist S J. Spemidinesuppresses age-associated memory impaiment by preventing adverseinerease of presynaptic aetive zone size and release. PLoS Biology, 2016, 14(9):e1002563 [百度学术]
赵硕, 幸岑璨, 王艳, 锁然, 王凤忠. 植物中亚精胺类物质的化学结构及生理活性研究进展. 核农学报, 2018, 32(1):123-130 [百度学术]
Zhao S, Xing C C, Wang Y, Suo R, Wang F Z. Review on chemical structures and biological activities of spermidine derivatives in plants. Journal of Nuclear Agricultural Sciences, 2018, 32(1):123-130 [百度学术]
Zhang S, Sun F, Zhang C, Zhang M, Wang W, Zhang C, Xi Y. Anthocyanin biosynthesis and a regulatory network of different-colored wheat grains revealed by multiomics analysis. Journal of Agricultural and Food Chemistry, 2022, 70(3):887-900 [百度学术]
张鑫苗, 伍国强, 魏明. MAPK在植物响应逆境胁迫中的作用. 草业学报, 2024, 33(1):182-197 [百度学术]
Zhang X M, Wu G Q, Wei M. The role of MAPK in plant response to abiotic stress. Acta Prataculturae Sinica, 2024, 33(1):182-197 [百度学术]
Manna M, Rengasamy B, Sinha A K. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. Plant, Cell & Environment, 2023, 46(8):2277-2295 [百度学术]
Zhao F, Zheng Y F, Zeng T, Sun R, Yang J Y, Li Y, Ren D T, Ma H, Xu Z H, Bai S N. Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 kinase is required for anther development. Plant Physiology, 2017, 173(4):2265-2277 [百度学术]
López-Bucio J S, Dubrovsky J G, Raya-González J, Ugartechea-Chirino Y, López-Bucio J, de Luna-Valdez LA, Ramos-Vega M, León P, Guevara-García A A. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. Journal of Experimental Botany, 2014, 65(1):169-183 [百度学术]
Zhang Y, Xiong Y, Liu R, Xue H W, Yang Z. The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proceedings of the National Academy of Sciences, 2019, 116(32):16121-16126 [百度学术]
Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. The Plant Cell, 2018, 30(4):871-888 [百度学术]