摘要
为创制具有育种利用价值的遗传材料,定位影响小麦穗粒数的候选区间,以八倍体小偃麦与普通小麦品种衡观35和科农199杂交构建的近等基因系作为研究材料,对株高、有效分蘖数、穗长、小穗数、每穗粒数、单株产量、千粒重7个性状进行表型鉴定。利用660K SNP芯片对表型差异显著的近等基因系进行全基因组扫描,分析两对近等基因系间的多态性SNPs位点及一致性的物理区间。结合候选区间的基因功能注释和基因表达分析,预测影响小麦穗粒数的重要候选基因。结果表明,N81和N82、N86和N87是两对在小麦穗部性状具有显著差异的近等基因系,其遗传相似度分别为98.02%和98.78%。通过660K SNP芯片分析,确定两对近等基因系分别在1B染色体上662~669 Mb、3B染色体上19~25 Mb和5B染色体上541~548 Mb的物理区间存在明显的遗传多态性,表明这些物理区间可能是影响小麦穗部相关性状的候选区间。通过整合前人研究的QTL定位区间、基因功能注释、基因表达分析和同源基因功能分析,筛选出3个可能影响小麦穗粒数的重要候选基因,分别是1B染色体上编码苹果酸脱氢酶的TraesCS1B02G443200,3B染色体上编码AP2/ERF转录因子的TraesCS3B02G042400,5B染色体上编码C2H2类型锌指蛋白TraesCS5B02G366500。本研究结果为挖掘小麦穗粒数基因提供理论参考。
关键词
小麦(Triticum aestivum L.)是世界上重要的粮食作物之一,维持其稳产、增产对确保粮食生产安全至关重
小麦产量相关性状是由多基因控制的复杂数量性状,目前已克隆的基因资源较少,因此,创制产量相关性状差异显著的近等基因系,挖掘和利用更多与产量性状相关的优异基因,对小麦高产育种至关重要。本研究利用八倍体小偃麦与普通小麦作为亲本杂交构建的高世代家系,筛选出两对穗部性状显著差异的近等基因系,进一步利用660K SNP芯片基因型数据,分析和挖掘与小麦穗部性状密切相关的候选区段,为小麦产量的遗传改良提供重要的基因资源和优异种质。
2份小偃麦材料均由中国科学院遗传与发育生物学研究所李振声院士课题组提供。以小偃麦材料小偃78829(NPFP/多年生2号)和小偃693(小偃2号//临7小麦/长穗偃麦草)为供体,分别与2个普通小麦品种衡观35和科农199杂交,连续自交8代(F8)形成株系。对来自同一穗行的株系进行两年产量相关性状的表型鉴定,筛选出两对在穗部相关性状存在显著差异的近等基因系N81和N82、N86和N87。
试验于2017-2018年、2018-2019年两个生长季在河北省石家庄市赵县实验基地进行。两对近等基因系均播种2行,行长2 m、行距25 cm,20株/行,株距10 cm,设置2次重复。试验田按常规农田管理方法对病虫害防治、田间杂草、水肥资源等进行管理。小麦成熟后,在不同近等基因系长势均匀一致区域连续取10株进行农艺性状考察。鉴定表型包括株高、有效分蘖数、穗长、小穗数、穗粒数、单株产量和千粒重。
在小麦苗期,取N81和N82、N86和N87两对近等基因系的幼嫩叶片置于EP管中,送样至北京康普森生物科技有限公司(https://www.kangpusenny.com/breeding/121.html),利用该公司开发的小麦660K SNP芯片对近等基因系进行全基因组扫描,最终获得461658个高质量SNPs位点,用于后续试验数据分析。
采用人工读数统计的方法对株高、有效分蘖数、穗长、小穗数、穗粒数等产量相关性状进行统计,用Excel 2010对表型数据进行计算和显著性分析。通过Shell脚本对660K SNP芯片基因型数据进行分析,得到每对近等基因系间各条染色体上的多态性SNPs,并在差异多态性SNPs密度相似区域进行相关基因分析。
基于小麦中国春的基因组信息(IWGSC RefSeq v1.1),对近等基因系间多态性SNPs重叠区间进行基因分析。利用小麦穗发育关键时期[茎尖分生组织顶端过渡阶段(W1.5)、早期二棱期(W2)、二棱期(W2.5)、护颖原基期(W3)、颖片原基期(W3.25)、小花原基期(W3.5)和晚期小穗期(W4)]的基因表达量TPM(Transcripts per million)(http://39.98.48. 156:8800/#/
利用小麦WheatOmics网站(http://202.194.139.32)对基因进行功能注释。
利用660K SNP基因芯片对穗部性状显著差异的两对近等基因系N81和N82、N86和N87进行全基因组扫描,筛选获得的461658个高质量SNPs位点中,N81和N82之间的多态性SNPs共9128个(占比为1.98%),N86和N87之间的多态性SNPs共5638个(占比为1.22%)。由
近等基因系 Near-isogenic lines | 有效检测位点 Effective detection site | 杂合点 Heterozygous site | 纯合度(%) Homozygosity | 差异位点数 Difference site | 遗传背景相似度(%) Genetic similarity |
---|---|---|---|---|---|
N81 | 461658 | 22881 | 95.04 | 9128 | 98.02 |
N82 | 461658 | 26656 | 94.23 | ||
N86 | 461658 | 25293 | 94.52 | 5638 | 98.78 |
N87 | 461658 | 26822 | 94.19 |
2017-2018年和2018-2019年对两对近等基因系(N81和N82、N86和N87)进行产量相关性状表型考察,结果显示,在2017-2018年度与2018-2019年度,N81的株高、有效分蘖数和单株产量均显著高于N82;在2018-2019年度,N81的穗长和每穗粒数均显著高于N82(
性状 Traits | 环境 Environment | 近等基因系NILs | P值 P-value | 近等基因系NILs | P值 P-value | ||
---|---|---|---|---|---|---|---|
N81 | N82 | N86 | N87 | ||||
株高 (cm) Plant height | 2018SJZ | 56.77 ± 3.57 | 53.61 ± 3.46 |
5.47 × 1 | 57.80 ± 2.74 | 54.52 ± 3.93 |
2.04 × 1 |
2019SJZ | 68.53 ± 3.08 | 62.50 ± 3.13 |
2.60 × 1 | 66.33 ± 3.92 | 62.89 ± 1.73 |
4.72 × 1 | |
有效分蘖数 Effective tiller number | 2018SJZ | 6.85 ± 1.09 | 5.90 ± 1.07 |
4.20 × 1 | 3.65 ± 1.23 | 3.80 ± 1.01 | 0.34 |
2019SJZ | 5.39 ± 0.92 | 4.28 ± 1.07 |
1.03 × 1 | 3.50 ± 0.61 | 3.20 ± 0.52 | 0.05 | |
穗长 (cm) Spike length | 2018SJZ | 7.44 ± 0.57 | 7.20 ± 0.59 | 0.10 | 8.13 ± 0.69 | 7.36 ± 0.75 |
9.50 × 1 |
2019SJZ | 8.14 ± 0.54 | 7.15 ± 0.60 |
2.28 × 1 | 7.28 ± 0.73 | 6.75 ± 0.43 |
3.80 × 1 | |
小穗数 Spikelet number per spike | 2018SJZ | 17.00 ± 1.65 | 16.75 ± 1.16 | 0.29 | 17.30 ± 1.26 | 17.15 ± 1.87 | 0.38 |
2019SJZ | 19.60 ± 1.60 | 19.00 ± 1.25 | 0.10 | 19.75 ± 1.68 | 18.60 ± 0.75 |
4.10 × 1 | |
每穗粒数 Kernel number per spike | 2018SJZ | 51.20 ± 7.66 | 48.95 ± 7.39 | 0.18 | 58.30 ± 5.66 | 48.11 ± 9.41 |
1.01 × 1 |
2019SJZ | 56.65 ± 9.44 | 48.05 ± 6.27 |
9.89 × 1 | 60.80 ± 8.40 | 50.65 ± 6.34 |
5.51 × 1 | |
单株产量 (g) Grain yield per plant | 2018SJZ | 8.21 ± 1.66 | 6.43 ± 1.81 |
1.57 × 1 | 6.93 ± 1.69 | 5.67 ± 0.92 |
5.32 × 1 |
2019SJZ | 10.57 ± 3.14 | 6.68 ± 2.43 |
4.93 × 1 | 7.92 ± 2.31 | 5.66 ± 1.10 |
2.17 × 1 | |
千粒重 (g) Thousand grain weight | 2018SJZ | 42.91 ± 0.49 | 40.80 ± 0.49 | 0.09 | 43.75 ± 2.14 | 43.51 ± 4.00 | 0.41 |
2019SJZ | / | / | / | / | / | / |
/:无数据;SJZ:石家庄;下同
/: No data;2018:2017-2018;2019:2018-2019;SJZ:Shijiazhuang;The same as below

图1 近等基因系N81和N82产量相关性状的比较分析
Fig. 1 Comparisons analysis of yield-related traits of NILs N81 and N82
A:近等基因系N81和N82的植株;**:在P<0.01水平差异显著;***:P<0.001水平差异显著;NS:差异不显著;下同
A: NILs N81 and N82 plants;**:Significant correlation at the P<0.01 level;***:Significant correlation at the P<0.001 level; NS: Not significance; The same as below
在2017-2018年度与2018-2019年度,N86的株高、穗长、每穗粒数和单株产量均显著高于N87;在2018-2019年度,N86的小穗数显著高于N87(

图2 近等基因系N86和N87产量相关性状的比较分析
Fig. 2 Comparisons analysis of yield-related traits of NILs N86 and N87
A:近等基因系N86和N87的植株
A: NILs N86 and N87 plants
基于小麦660K SNP芯片对两对近等基因系N81和N82、N86和N87进行基因型分析,得到近等基因系间每条染色体上多态性SNPs的分布。在N81和N82中,多态性SNPs在5B染色体上分布数量最多,共有2917个,占已知多态性SNPs总数的34.44%;其次是在3B染色体上,共有1248个,占已知多态性SNPs总数的14.73%;1B染色体上共有777个,占已知多态性SNPs总数的9.18%(

图3 近等基因系N81和N82多态性SNPs在1B、3B和5B染色体上的分布
Fig. 3 Polymorphic SNPs distribution of N81 and N82 on chromosome 1B, 3B and 5B
A:近等基因系N81与N82多态性SNPs在每条染色体上的分布数量;B:多态性SNPs在1B染色体上的位置密度分布;C:多态性SNPs在3B染色体上的位置密度分布;D:多态性SNPs在5B染色体上的位置密度分布
A: The number of polymorphic SNPs distribution of N81 and N82 on each chromosome; B: The distribution of polymorphic SNPs based on their physical locations on chromosome 1B; C: The distribution of polymorphic SNPs based on their physical locations on chromosome 3B; D: The distribution of polymorphic SNPs based on their physical locations on chromosome 5B

图4 近等基因系N86和N87的多态性SNPs在1B、3B和5B染色体上的分布
Fig. 4 Polymorphic SNPs distribution of N86 and N87 on chromosome 1B, 3B and 5B
A:近等基因系N86与N87多态性SNPs在每条染色体上的分布数量;B:多态性SNPs在1B染色体上的位置密度分布;C:多态性SNPs在3B染色体上的位置密度分布;D:多态性SNPs在5B染色体上的位置密度分布
A: The number of polymorphic SNPs distribution of N86 and N87 on each chromosome; B: The distribution of polymorphic SNPs based on their physical locations on chromosome 1B; C: The distribution of polymorphic SNPs based on their physical locations on chromosome 3B; D: The distribution of polymorphic SNPs based on their physical locations on chromosome 5B
对N81和N82、N86和N87在1B、3B、5B染色体上多态性SNPs的物理位置进行分析,结果显示,两对近等基因系在相同染色体上多态性SNPs分布的物理位置相似。N81和N82在1B染色体上662~690 Mb区间多态性SNPs的密度最高;N86和N87在1B染色体上640~669 Mb区间多态性SNPs的密度最高;662~669 Mb为两对近等基因系多态性SNPs在1B染色体上的重叠物理区间(
通过对候选区间内注释的功能基因进行表达分析,筛选出在1B、3B和5B染色体上分别有25个、47个和 41个高置信度基因有表达(TPM>0.5)。根据基因表达模式进行聚类分析(

图5 1B、3B和5B染色体上候选区间内功能基因在小穗发育时期的表达分析
Fig. 5 Gene expression analysis in candidate intervals on chromosomes 1B, 3B and 5B during spikelet development
A:1B染色体上基因的表达;B:3B染色体上基因的表达;C:5B染色体上基因的表达。W1.5:过渡顶端;W2:早期二棱期;W2.5:二棱期;W3:护颖原基期;W3.25:外稃原基期;W3.5:小花原基期;W4:晚期小穗期;基因表达数据来源于文献[
A: Expression of genes on chromosome 1B;B: Expression of genes on chromosome 3B; C: Expression of genes on chromosome 5B. W1.5: Transition apex; W2: Early double ridge stage; W2.5: Double ridge stage; W3: Glume primordium stage; W3.25:Lemma primordium stage; W3.5: Floret primordium stage; W4: Late terminal spikelet stage; Gene expression data were derived from reference [
基因编号 Gene ID | 染色体 Chormosome | 功能注释 Functional annotation | 基因编号 Gene ID | 染色体 Chormosome | 功能注释 Functional annotation |
---|---|---|---|---|---|
TraesCS1B02G443100 | 1B | GTP结合的核蛋白 | TraesCS1B02G446300 | 1B | 固醇还原酶 |
TraesCS1B02G443200 | 1B | 苹果酸脱氢酶 | TraesCS1B02G446700 | 1B | β-半乳糖苷酶 |
TraesCS1B02G442300 | 1B | 酮醇酸还原异构酶 | TraesCS1B02G446800 | 1B | 转录伸长因子1 |
TraesCS1B02G441900 | 1B | CTP合成酶 | TraesCS1B02G442000 | 1B | 核转录因子Y亚基B |
TraesCS1B02G443900 | 1B | 蛋白酶体亚基 | TraesCS1B02G442500 | 1B | CHUP1蛋白 |
TraesCS1B02G446000 | 1B | DUF617结构域的蛋白 | TraesCS1B02G441700 | 1B | 跨膜蛋白 |
TraesCS3B02G042400 TraesCS3B02G042600 TraesCS3B02G045400 TraesCS3B02G047500 TraesCS3B02G039900 TraesCS3B02G042000 TraesCS3B02G047300 TraesCS3B02G040600
TraesCS3B02G047700 TraesCS3B02G046800 TraesCS3B02G047800 TraesCS3B02G045500 TraesCS3B02G046100 TraesCS3B02G040000 TraesCS3B02G041400 TraesCS3B02G048100
TraesCS3B02G041700 TraesCS3B02G041800 TraesCS3B02G047100 |
3B 3B 3B 3B 3B 3B 3B 3B
3B 3B 3B 3B 3B 3B 3B 3B
3B 3B 3B |
AP2/ERF转录因子 信号肽酶亚基家族蛋白 醛糖还原酶 RuvB-like解旋酶 跨膜蛋白214 染色质重塑蛋白 己糖转运蛋白 DNA结合储藏蛋白相关转录调控因子 类棉纤维蛋白 真核翻译起始因子 己糖转运蛋白 钙结合家族蛋白 脂肪酸羟化酶 C2结构域蛋白 抗病蛋白(NBS-LRR类)家族 RNA聚合酶II转录亚基的介体 糖基水解酶 翻译起始因子 羟酰基谷胱甘肽水解酶 |
TraesCS5B02G366000 TraesCS5B02G366500 TraesCS5B02G361200 TraesCS5B02G368600 TraesCS5B02G362400 TraesCS5B02G365600 TraesCS5B02G362100 TraesCS5B02G363500
TraesCS5B02G362500 TraesCS5B02G366100 TraesCS5B02G362700 TraesCS5B02G367100
TraesCS5B02G366200 TraesCS5B02G362300 TraesCS5B02G363900 TraesCS5B02G362200 TraesCS5B02G363800 TraesCS5B02G364100 TraesCS5B02G364900 |
5B 5B 5B 5B 5B 5B 5B 5B
5B 5B 5B 5B
5B 5B 5B 5B 5B 5B 5B |
跨膜蛋白 锌指蛋白 BTB/POZ结构域家族蛋白 S-酰基转移酶 低温和盐响应蛋白 微管相关蛋白 跨膜蛋白 核糖体BOP1蛋白 同源物 低温和盐响应蛋白 CASP-like蛋白质 环核苷酸门控通道 染色体结构域解旋酶-DNA结合家族蛋白 DNA损伤蛋白的介体 磷酸酶2C家族蛋白 鸟嘌呤核苷酸交换家族蛋白 蓝铜蛋白 NADPH-细胞色素P450还原酶 RNA聚合酶II转录亚基的介体 PHD蛋白 |
本研究筛选出小麦穗部相关性状显著差异的两对近等基因系N81和N82、N86和N87。基于660K SNP芯片对近等基因系间的多态性SNPs进行基因型分析,通过比对其物理位置,确定了N81和N82、N86和N87两对近等基因系多态性SNPs共同在1B、3B和5B染色体上662~669 Mb、19~25 Mb和541~548 Mb的物理区间存在重叠,推测这些物理位置可能是影响近等基因系间穗部相关性状表型差异的候选区间。近年来,研究人员利用不同的作图群体,以及全基因组关联分析和连锁分析等方法,鉴定到多个影响小麦产量性状的QT

图6 1B、3B和5B染色体上候选区间与前人研究定位的比对
Fig. 6 Comparison of candidate regions on chromosomes 1B, 3B and 5B with previous mapping studies
★是本研究在1B、3B和5B染色体上鉴定到的物理位置;不同颜色字体表示前人鉴定到的不同位点;PH:株高;FT:开花期;ETN:有效分蘖数;SC、SD:穗密度;SL:穗长;SNS:每穗小穗数;KN、GNPS:每穗粒数;KL:粒长;KW:粒宽;TGW:千粒重
★ is the physical location identified on chromosomes 1B, 3B and 5B in this study; Different color fonts represent different sites identified by predecessors; PH:Plant height; FT: Flowering time; ETN: Effective tiller number; SC:Spike compactness; SD: Spike density; SL: Spike length; SNS: Spikelet number per spike; KN: Kernel number per spike; GNPS: Grain number per spike; KL: Kernel length; KW: Kernel width; TGW: 1000-grain weight
小麦幼穗的发育经历生长锥伸长期、单棱期、二棱期、小花原基分化期、雌雄蕊原基分化期等关键时期。其中,单棱期和二棱期的持续时长和分化速率决定小穗原基的数目;小花原基分化期是决定小花数目的关键时期;而雌雄蕊分化期决定了小花的育性。小麦的每个小穗能产生多到8个以上的小花原基,但最后只有3~4个能够发育生成籽粒。因此,小穗的早期发育和小花育性对于穗粒数的形成较为关键,影响小麦的最终产量。
本研究对1B、3B和5B染色体上的一致性物理区间进行候选基因挖掘,根据基因的功能注释、基因表达分析及同源基因功能分析,分别在1B、3B和5B染色体上筛选出25个、47个和41个高置信度基因。其中,1B染色体上TraesCS1B02G443200编码苹果酸脱氢酶,其在植物生长发育、逆境响应过程中起着重要作用,并且该基因在小麦穗发育的多个时期表达量较高(TPM>110)。Pei
本研究创制了两对穗部性状显著差异的近等基因系(N81和N82、N86和N87)。利用660K SNP基因芯片,确定了两对近等基因系在1B、3B和5B染色体上存在的一致性物理区间,并鉴定出TraesCS1B02G443200、TraesCS3B02G042400和TraesCS5B02G366500可能是调控小麦穗粒数的重要候选基因。
参考文献
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling H Q, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. Science China Life Sciences, 2022, 65(9): 1718-1775 [百度学术]
Shewry P R, Hey S J. The contribution of wheat to human diet and health. Food and Energy Security, 2015, 4(3): 178-202 [百度学术]
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. Journal of Genetics and Genomics, 2023, 50(11): 835-845 [百度学术]
Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F, Zhao J, Ma L, Wang Y, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H, Zhang X. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant, 2020, 13(12): 1733-1751 [百度学术]
Pang Y, Liu C, Wang D, St Amand P, Bernardo A, Li W, He F, Li L, Wang L, Yuan X, Dong L, Su Y, Zhang H, Zhao M, Liang Y, Jia H, Shen X, Lu Y, Jiang H, Wu Y, Li A, Wang H, Kong L, Bai G, Liu S. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 2020, 13(9): 1311-1327 [百度学术]
Li A, Hao C, Wang Z, Geng S, Jia M, Wang F, Han X, Kong X, Yin L, Tao S, Deng Z, Liao R, Sun G, Wang K, Ye X, Jiao C, Lu H, Zhou Y, Liu D, Fu X, Zhang X, Mao L. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 2022, 15(3): 504-519 [百度学术]
姚琦馥, 周界光, 王健, 陈黄鑫, 杨瑶瑶, 刘倩, 闫磊, 王瑛, 周景忠, 崔凤娟, 蒋云, 马建. 小麦穗长QTL鉴定及其遗传分析. 中国农业科学, 2023, 56(24): 4814-4825 [百度学术]
Yao Q F,Zhou J G,Wang J,Chen H X,Yang Y Y,Liu Q,Yan L,Wang Y,Zhou J Z,Cui F J,Jiang Y,Ma J. Identification and genetic analysis of QTL for wheat spike length. Scientia Agricultura Sinica, 2023, 56(24): 4814-4825 [百度学术]
马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析. 作物学报, 2020, 46(12): 1997-2007 [百度学术]
Ma Y M,Feng Z Y,Wang W,Zhang S J,Guo Y,Ni Z F,Liu J. Analysis of genetic diversity of agronomic and yield traits in winter wheat varieties in Xinjiang. Acta Agronomica Sinica, 2020, 46(12): 1997-2007 [百度学术]
Finnegan E J, Ford B, Wallace X, Pettolino F, Griffin P T, Schmitz R J, Zhang P, Barrero J M, Hayden M J, Boden S A, Cavanagh C A, Swain S M, Trevaskis B. Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. Plant Cell and Environment, 2018, 41(6): 1346-1360 [百度学术]
Shaw L M, Lyu B, Turner R, Li C, Chen F, Han X, Fu D, Dubcovsky J. FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. Journal of Experimental Botany, 2019, 70(1): 193-204 [百度学术]
Zhang X, Jia H, Li T, Wu J, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z, Chen C, Carver B F, Yan L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376(6589): 180-183 [百度学术]
Zhang B, Liu X, Xu W, Chang J, Li A, Mao X, Zhang X, Jing R. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Scientific Reports, 2015, 5: 12211 [百度学术]
Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(11): 5182-5187 [百度学术]
Debernardi J M, Greenwood J R, Jean Finnegan E, Jernstedt J, Dubcovsky J. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. Plant Journal, 2020, 101(1): 171-187 [百度学术]
Wang Y, Du F, Wang J, Wang K, Tian C, Qi X, Lu F, Liu X, Ye X, Jiao Y. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nature Plants, 2023, 9(2): 372 [百度学术]
Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494-497 [百度学术]
Jablonski B, Bajguz A, Bocian J, Orczyk W, Nadolska-Orczyk A. Genotype-dependent effect of silencing of TaCKX1 and TaCKX2 on phytohormone crosstalk and yield-related traits in wheat. International Journal of Molecular Sciences, 2021, 22(21): 11494 [百度学术]
Shen L, Zhang L, Yin C, Xu X, Liu Y, Shen K, Wu H, Sun Z, Wang K, He Z. The wheat sucrose synthase gene TaSus1 is a determinant of grain number per spike. The Crop Journal, 2024, 12(1): 295-300 [百度学术]
Lin X, Xu Y, Wang D, Yang Y, Zhang X, Bie X, Gui L, Chen Z, Ding Y, Mao L, Zhang X, Lu F, Zhang X, Uauy C, Fu X, Xiao J. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. Molecular Plant, 2024, 17(3): 438-459 [百度学术]
Pei Y, Deng Y, Zhang H, Zhang Z, Liu J, Chen Z, Cai D, Li K, Du Y, Zang J, Xin P, Chu J, Chen Y, Zhao L, Liu J, Chen H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. Plant Cell, 2022, 34(6): 2222-2241 [百度学术]
Yano A, Kodama Y, Koike A, Shinya T, Kim H J, Matsumoto M, Ogita S, Wada Y, Ohad N, Sano H. Interaction between methyl CpG-binding protein and ran GTPase during cell division in tobacco cultured cells. Annals of Botany, 2006, 98(6): 1179-1187 [百度学术]
Zhang B, Li C, Li Y, Yu H. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nature Plants, 2020, 6(9): 1146-1157 [百度学术]
Smit M E, McGregor S R, Sun H, Gough C, Bågman A M, Soyars C L, Kroon J T, Gaudinier A, Williams C J, Yang X, Nimchuk Z L, Weijers D, Turner S R, Brady S M, Etchells J P. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. Plant Cell, 2020, 32(2): 319-335 [百度学术]
Papdi C, Pérez-Salamó I, Joseph M P, Giuntoli B, Bögre L, Koncz C, Szabados L. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant Journal, 2015, 82(5): 772-784 [百度学术]
Chevalier F, Perazza D, Laporte F, Le Hénanff G, Hornitschek P, Bonneville J M, Herzog M, Vachon G. GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis. Plant Physiology, 2008, 146(3): 1142-1154 [百度学术]
Li M, Li H, Zhu Q, Liu D, Li Z, Chen H, Luo J, Gong P, Ismail A M, Zhang Z. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). New Phytologist, 2024, 241(3): 1250-1265 [百度学术]
Huang C, Wang D, Yang Y, Yang H, Zhang B, Li H, Zhang H, Li Y, Yuan W. SUPPRESSOR OF FRIGIDA 4 cooperates with the histone methylation reader EBS to positively regulate root development. Plant Physiology, 2024,196(4):2199-2212 [百度学术]
Kim S, Choi K, Park C, Hwang H J, Lee I. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell, 2006, 18(11): 2985-2998 [百度学术]
Ahn C S, Cho H K, Lee D H, Sim H J, Kim S G, Pai H S. Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. Journal of Experimental Botany, 2016, 67(17): 5217-5232 [百度学术]
Liu F, Qu P Y, Li J P, Yang L N, Geng Y J, Lu J Y, Zhang Y, Li S. Arabidopsis protein S-acyl transferases positively mediate BR signaling through S-acylation of BSK1. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(7): e2322375121 [百度学术]
Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu Y G. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 2021, 134(9): 3083-3109 [百度学术]
Saini D K, Srivastava P, Pal N, Gupta P K. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135(3): 1049-1081 [百度学术]
Liu H, Ma J, Tu Y, Zhu J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y. Several stably expressed QTL for spike density of common wheat (Triticum aestivum L.) in multiple environments. Plant Breeding, 2020, 139(2): 284-294 [百度学术]
Li T, Deng G, Su Y, Yang Z, Tang Y, Wang J, Qiu X, Pu X, Li J, Liu Z, Zhang H, Liang J, Yang W, Yu M, Wei Y, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theoretical and Applied Genetics, 2021, 134(11): 3625-3641 [百度学术]
Ai G, He C, Bi S, Zhou Z, Liu A, Hu X, Liu Y, Jin L, Zhou J, Zhang H, Du D, Chen H, Gong X, Saeed S, Su H, Lan C, Chen W, Li Q, Mao H, Li L, Liu H, Chen D, Kaufmann K, Alazab K F, Yan W. Dissecting the molecular basis of spike traits by integrating gene regulatory networks and genetic variation in wheat. Plant Communications, 2024, 5(5): 100879 [百度学术]
Shang E, Wang X, Li T, Guo F, Ito T, Sun B. Robust control of floral meristem determinacy by position-specific multifunctions of KNUCKLES. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(36): e2102826118 [百度学术]
Zhuang H, Wang H L, Zhang T, Zeng X Q, Chen H, Wang Z W, Zhang J, Zheng H, Tang J, Ling Y H, Yang Z L, He G H, Li Y F. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice. Plant Cell, 2020, 32(2): 392-413 [百度学术]