摘要
籽粒茴香为中国卤制品和烧烤重要香料之一,其雄性不育材料的缺乏严重限制了培育优质籽粒茴香品种的研究进程。本研究从贵州省地方品种可育材料(FvGZKY001)中筛选获得籽粒茴香雄性不育(FvGZBY001)材料,并对其不育性状进行观察和鉴定,以及对二者籽粒脂质成分差异进行液相色谱-质谱(LC-MS,liquid chromatograph-mass spectrometer)分析。结果表明,与可育材料FvGZKY001相比,FvGZBY001在植株形态上无明显差异,但其花丝无明显伸长,且花药中无花粉粒。在FvGZBY001和FvGZKY001籽粒中均检测出7类49个脂质分子小类,其脂质类物质分别为1353和1351种;二者中共鉴定出41种有显著差异的脂质类物质,其中29种脂质类物质在FvGZBY001材料中上调表达(以鞘磷脂为主),12种脂质类物质在FvGZKY001材料中上调表达(以甘油磷脂为主)。LION富集分析表明,41个差异脂质物主要富集在22个不同物质上,以含不同碳数的脂肪酸为主。推测茴香FvGZBY001为细胞核雄性不育,该不育特征可用于茴香杂交育种中,其与FvGZKY001籽粒脂质物成分的差异可用于茴香籽粒油品质的评价及利用。
茴香(Foeniculum vulgare Mill.)(2n=2x=22)又名小茴香(籽粒/果实)、怀香、怀香子、茴香子等,为伞形科茴香属多年生草本植物,是重要的药食同源性蔬菜之
伞形科作物,如芹菜(Apium graveolens L.
在植物中,脂质参与调节多种生命活动过
脂质组学是一种基于液相色谱-质谱(LC-MS,liquid chromatograph-mass spectrometer)的高通量分析技术,高效研究脂类家族、脂质化合物在各种生物过程中的变化与功能,进而阐明其相关的生物活动机制与原理。目前,脂质组学已应用于油
2018年对茴香资源进行收集,利用化学诱变剂甲基磺酸乙酯方
在茴香花期,利用体视显微镜(M165C,上海徕卡仪器有限公司)观察2种材料,鉴定FvGZBY001与FvGZKY001的花瓣、花丝等结构和拍照,使用显微镜(SH11,北京海富达科技有限公司)进行花药中花粉粒观察和拍照。在大田中观察茴香FvGZBY001与FvGZKY001植株地上部分差异和拍照,育苗后分别对2种材料的幼苗植株进行对比观察和拍照。
分别取适量FvGZBY001与FvGZKY001籽粒(约50 mg)于2 mL离心管中,加入钢珠和750 μL氯仿甲醇(2:1,v/v)溶液,涡旋混匀,2次50 Hz研磨60 s;置于冰上40 min,加入190 μL ddH2O,混匀后置于冰上10 min;室温下,12000 r/min离心5 min,取上层溶液300 μL于新的2 mL离心管中,加入500 μL氯仿甲醇混合溶液(2∶1,v/v),涡旋混匀;室温下,12000 r/min离心5 min,取上层溶液400 μL于新的2 mL离心管中,在真空浓缩仪进行浓缩;加入200 μL异丙醇溶解样品后,用0.22 μm膜过滤,得到待测样本。
色谱柱使用ACQUITYUPL
在电喷雾离子源(ESI,electrospray ionization,Thermo Fisher Scientific,美国)的正、负离子电离模式下,使用参数为:正、负离子喷雾电压各为3.50 kV和2.50 kV,辅助气10 arb,鞘气30 arb,检测脂质物质成分。毛细管温度325℃和分辨率35000条件下进行全扫描,扫描范围为150~2000;碰撞电压为30 eV下,采用高碰撞解离(HCD,higher collisional dissociation)进行二级裂解,并采用动态排除去除无必要的MS/MS(Tandem mass spectrometry)信息后得到质谱数据。
通过LipidSearc
采用R语言(v4.0.3)Ropls软件
茴香FvGZBY001与FvGZKY001地上植株形态相近,茎均直立,光滑,圆柱形,高1.5~2.0 m,上部分枝,灰绿色;花为复伞形花序顶生,花小,金黄色;冬季地上部分枯萎后,基部周围发出新苗,为典型多年生籽粒茴香(

图1 茴香FvGZBY001与FvGZKY001不同表型的观察
Fig. 1 Observation of different phenotypes in fennel FvGZBY001 and FvGZKY001
A:FvGZBY001植株;B:FvGZBY001幼苗;C:FvGZBY001种子;D:FvGZKY001植株;E:FvGZKY001幼苗;F:FvGZKY001种子
A: Plant of FvGZBY001; B:Seeding of FvGZBY001; C: Seeds of FvGZBY001; D: Plant of FvGZKY001; E: Seeding of FvGZKY001; F: Seeds of FvGZKY001
对茴香FvGZBY001与FvGZKY001材料花期的花进行对比观察,发现茴香雄性不育材料FvGZBY001开花时出现异常,花丝不伸长,花药不明显,花药中未有花粉粒(

图2 茴香FvGZBY001与FvGZKY001花的观察
Fig. 2 Observation of flower in fennel FvGZBY001 and FvGZKY00
A:FvGZBY001田间花;B:盛开期FvGZBY001花;C:盛开期FvGZBY001单个花;D:FvGZBY001花药中花粉粒;E:FvGZKY001田间花;F:盛开期FvGZKY001花;G:盛开期FvGZKY001单个花;H:FvGZKY001花药中花粉粒
A: Field flower of FvGZBY001; B: Flower of FvGZBY001 in blooming period; C: Individual flower of FvGZBY001 in blooming period; D: Pollen grains in anthers of FvGZBY001; E: Field flower of FvGZKY001; F: Flower of FvGZKY001 in blooming period; G: Individual flower of FvGZKY001 in blooming period; H: Pollen grains in anthers of FvGZKY001
正离子模式下,FvGZBY001共检测出1353种物质;而负离子模式下,FvGZKY001中共检测出1351种物质,以1351种物质作为共同物质数据基础进行后期相关分析(
分类 Classification | 脂质分子小类 Sub class of lipids | POS个数/占比(%) Number of POS/ Proportion | NEG个数/占比(%) Number of NEG /Proportion | 属性和功能 Attributes and functions |
---|---|---|---|---|
甾醇脂类 Sterol lipids | 乙酰化葡糖糖基菜油甾醇酯 | 7/0.52 | 7/0.52 | 含短链脂肪酸较多,为主要的储存脂类;主要有β-谷甾醇酯,豆甾醇酯,菜油甾醇酯3种成分;减低血浆总胆固醇和低密度脂蛋白胆固醇的作用;降血脂功能;用于食品加工和医疗行业 |
乙酰化葡糖糖基谷甾醇酯 | 11/0.81 | 11/0.81 | ||
乙酰化葡糖糖基豆甾醇酯 | 6/0.44 | 6/0.44 | ||
乙酰化葡糖糖基酵母甾醇酯 | 3/0.22 | 3/0.22 | ||
胆固醇酯 | 5/0.37 | 5/0.37 | ||
谷甾醇酯 | 1/0.07 | 1/0.07 | ||
(植)豆甾醇酯 | 6/0.44 | 6/0.44 | ||
酵母甾醇酯 | 17/1.26 | 17/1.26 | ||
甘油酯类 Glyceride | 甘油一酯 | 4/0.30 | 4/0.30 | 不溶于水溶于有机质,食物脂肪主要成分,其所含脂肪酸的种类和链长的不同而具有不同的理化性质 |
甘油二酯 | 79/7.97 | 79/7.99 | ||
甘油三酯 | 283/20.92 | 282/20.95 | ||
甘油磷脂类 Glyceryl phosohatide | 磷脂酰胆碱 | 79/7.97 | 79/7.99 | 最常见、含量最多的一类磷脂,极性脂;构成生物膜;是胆汁和膜表面活性物质等成分之一;参与细胞膜对蛋白质的识别和信号传导;优良的天然活性剂,无毒、无刺激,不污染环境;良好的抗氧化剂,用于医疗;磷脂酰甘油是其主要成分,一种酸性磷脂,主要在大肠杆菌等微生物中存在;是胡萝卜素脂生物合成的中间产物 |
磷脂酰乙醇胺 | 51/5.15 | 51/5.16 | ||
磷脂酰甘油 | 50/5.05 | 50/5.06 | ||
溶血磷脂酸 | 1/0.07 | 1/0.07 | ||
溶血磷脂酰胆碱 | 11/0.81 | 11/0.81 | ||
溶血磷脂酰乙醇胺 | 3/0.22 | 3/0.22 | ||
溶血磷脂酰甲醇 | 4/0.30 | 4/0.30 | ||
溶血磷脂酰甘油 | 4/0.30 | 4/0.30 | ||
甘油磷脂类 Glyceryl phosohatide | 心磷脂 | 32/2.37 | 32/2.37 | |
磷脂酰肌醇 | 31/2.29 | 31/2.29 | ||
磷脂酰肌醇酸 | 2/0.15 | 2/0.15 | ||
二磷脂酰肌醇酸 | 1/0.07 | 1/0.07 | ||
磷脂酸 | 28/2.07 | 28/2.07 | ||
双溶血心磷脂 | 10/0.74 | 10/0.75 | ||
二甲基化磷脂酰乙醇 | 9/0.67 | 9/0.67 | ||
环磷脂酸 | 3/0.22 | 3/0.22 | ||
磷脂酰乙醇 | 8/0.59 | 8/0.59 | ||
磷脂酰丝氨酸 | 22/1.62 | 22/1.63 | ||
磷脂酰甲醇 | 15/1.11 | 15/1.11 | ||
溶血双磷脂酸 | 7/0.52 | 7/0.52 | ||
鞘脂类 Sphingolipid | 神经酰胺 | 222/16.41 | 221/16.36 | 包括鞘磷脂、脑苷脂和神经节苷脂;生物膜结构的重要组成成分;参与细胞生长、衰老等许多重要的信号传导过程;多是饱和脂肪酸或单元不饱和脂肪酸;碳链长度为16~26个碳原子 |
单糖基神经酰胺 | 130/9.61 | 130/9.62 | ||
单糖基神经酰胺 | 8/0.59 | 8/0.59 | ||
单糖基神经酰胺 | 2/0.15 | 2/0.15 | ||
鞘磷脂 | 3/0.22 | 3/0.22 | ||
鞘氨醇 | 7/0.52 | 7/0.52 | ||
磷酸鞘氨醇 | 2/0.15 | 2/0.15 | ||
植物鞘氨醇 | 1/0.07 | 1/0.07 | ||
糖脂类 Glycolipid | (植)二半乳糖基二酰基甘油 | 20/1.48 | 20/1.48 | 有甘油糖脂和鞘糖脂两类;是动植物细胞膜的重要成分;甘油糖脂具有抗氧化、抗病毒、抗菌、抗肿瘤、抗炎、抗动脉粥样硬化等多种生物活性;能量来源,提高免疫力 |
(植)二半乳糖基酰基甘油 | 5/0.37 | 5/0.37 | ||
硫代异鼠李糖甘油二酯 | 24/1.77 | 24/1.78 | ||
硫代异鼠李糖甘油一酯 | 7/0.52 | 7/0.52 | ||
(植)单半乳糖二酰甘油 | 31/2.29 | 32/2.37 | ||
(植)单半乳糖基二酰基甘油 | 6/0.44 | 6/0.44 | ||
衍生脂质类 Derived lipid | 双-甲基化磷脂酸 | 8/0.59 | 8/0.59 | 重要的活性物质;有能量储存、保护作用;生物膜骨架成分 |
溶血二甲基化磷脂酰乙醇胺 | 5/0.37 | 5/0.37 | ||
甲基化磷脂酰胆碱 | 27/2.00 | 27/2.00 | ||
其他磷脂类 Other phospholipids | 蜡酯 | 34/2.44 | 33/2.44 | 防止水分蒸发;抗心肌缺血作用;提高人体免疫力;抗氧化、延缓衰老、保肝等 |
辅酶 | 4/0.30 | 4/0.30 | ||
O-2酰化(γ-羟基)脂肪酸 | 14/1.03 | 14/1.04 | ||
总计 Total | 1353 | 1351 |
POS指在正离子模式下检测到的脂质数量;NEG指在负离子模式下检测到的脂质数量;加粗为有数量差异的脂质小类物质
POS refers to the amount of lipids detected in positive ion mode; NEG refers to the amount of lipids detected in negative ion mode;Bolded were lipid substances with quality variance
茴香FvGZBY001与FvGZKY001籽粒含量前10的脂质分子小类中,其含量从高到低依次为:甘油三酯(20.92%)>神经酰胺(16.41%)>单糖基神经酰胺(9.61%)>磷脂酰胆碱(7.97%)>甘油二酯(7.97%)>磷脂酰乙醇胺(5.15%)>磷脂酰甘油(5.05%)>蜡酯(2.44%)>心磷脂(2.37%)>磷脂酰肌醇(2.29%)/(植)单半乳糖二酰甘油酯(2.29%)。结果表明,茴香FvGZBY001与FvGZKY00籽粒中不仅脂质及脂质小类成分丰富,且甘油酯类、甘油磷脂类及鞘脂类的含量较高,可作为油脂材料进行提取、加工及利用。
甾醇脂类的(植)豆甾醇酯,糖脂类的(植)二半乳糖基二酰基甘油、(植)二半乳糖基酰基甘油、(植)半乳糖二酰甘油及(植)单半乳糖基二酰基甘油5种脂质物均为植物性成分。谷甾醇酯、溶血磷脂酸、二磷脂酰肌醇酸及植物鞘氨醇在2种茴香籽粒中均被检测到仅有1种脂质小类物质成分。此外,FvGZBY001与FvGZKY001中相互比较,正离子模式下,FvGZBY001中有1种(植)单半乳糖二酰甘油酯脂质物未检测到;负离子模式下,FvGZKY001中有3种脂质物未检测到,分别为甘油三酯、神经酰胺及蜡酯。目前,对于甘油三酯、神经酰胺及蜡酯的相关功能有相关研究,但(植)单半乳糖二酰甘油酯脂质物质的具体功能尚不清楚,是否影响或决定茴香的雄性不育,需进一步研究。
为了分析2种茴香果实之间的总体脂质差异和组内之间的变异度大小,采用主成分分析研究各组之间脂质组的分离趋势(

图3 2种茴香品种的主成分分析、OPLS-DA得分及OPLS-DA验证
Fig. 3 Principal component analysis, score plot of OPLS-DA and permutation test of OPLS-DA of two fennel varieties
A: 主成分分析;B: OPLS-DA得分;C:OPLS-DA置换检验;HX_1_1、HX_1_2、HX_1_3和HX_2_1、HX_2_2、HX_2_3分别表示FvGZBY001和FvGZKY001的3次重复试验,下同
A: Principal component analysis (PCA); B: Score plot of orthogonal projections to latent structures discriminant analysis (OPLS-DA); C:Permutation test of OPLS-DA model; HX_1_1,HX_1_2,HX_1_3 and HX_2_1,HX_2_2, HX_2_3 means 3 repeated tests of FvGZBY001 and FvGZKY001, respectively, the same as below
通过OPLS-DA模型对1351种脂质物质数据进行分析,茴香FvGZKY001果实样品分布在置信区间右侧,FvGZBY001果实样品分布在置信区间左侧(图
2种茴香籽粒中共筛选出41种差异表达的脂质分子物质,主要是甘油酯类(19种)、鞘脂类(13种)、甘油磷脂类(5种)、中性脂(2种)、衍生脂类(1种)及其他磷脂(1种);其中,在茴香FvGZBY001和FvGZKY001上调表达分别为29种和12种(
序号No. | 脂质分子 Lipid molecules | P值 P value | 变量投影重要度 Variable importance in the projection | 差异倍数 Fold change | log2FC | 显著性 Regulation |
---|---|---|---|---|---|---|
1 | 乙酰化葡糖糖基酵母甾醇酯 (20∶2) |
3.20×1 | 1.97 | 1.80 | 0.85 | 上调 |
2 | 神经酰胺(d18∶2_25∶4) |
3.38×1 | 2.02 | 0.04 | -4.82 | 下调 |
3 | 神经酰胺(d19∶2_18∶1) |
4.63×1 | 1.90 | 1.81 | 0.85 | 上调 |
4 | 神经酰胺(d41∶2+O) |
3.53×1 | 2.04 | 2.06 | 1.05 | 上调 |
5 | 神经酰胺(t18∶1_21∶0+O) |
4.50×1 | 2.03 | 1.51 | 0.59 | 上调 |
6 | 神经酰胺(t38∶1+O) |
4.42×1 | 2.00 | 1.36 | 0.44 | 上调 |
7 | 神经酰胺(t40∶1+O) |
4.77×1 | 1.99 | 1.40 | 0.48 | 上调 |
8 | 神经酰胺(t45∶1+O) |
2.75×1 | 2.05 | 1.33 | 0.41 | 上调 |
9 | 甘油二酯 (15∶0_18∶2) |
1.02×1 | 2.20 | 2.23 | 1.16 | 上调 |
10 | 甘油二酯 (16∶0_18∶2) |
4.87×1 | 2.01 | 1.34 | 0.42 | 上调 |
11 | 甘油二酯 (16∶1_18∶2) |
1.57×1 | 2.17 | 1.37 | 0.45 | 上调 |
12 | 甘油二酯 (17∶0_18∶2) |
9.26×1 | 2.21 | 1.81 | 0.86 | 上调 |
13 | 甘油二酯 (22∶0_18∶2) |
4.07×1 | 2.03 | 1.58 | 0.66 | 上调 |
14 | 甘油二酯 (24∶0_18∶2) |
4.99×1 | 1.91 | 1.54 | 0.62 | 上调 |
15 | 甘油二酯 (31∶0e) |
1.89×1 | 2.12 | 0.89 | -0.17 | 下调 |
16 | 甘油二酯 (33∶0e) |
2.65×1 | 2.04 | 1.37 | 0.45 | 上调 |
17 | 甘油二酯 (34∶5e) |
3.16×1 | 2.10 | 1.20 | 0.26 | 上调 |
18 | 单糖基神经酰胺 (d35∶2) |
4.46×1 | 2.00 | 1.81 | 0.85 | 上调 |
19 | 单糖基神经酰胺 (t16∶0_18∶1) |
3.42×1 | 2.13 | 1.97 | 0.98 | 上调 |
20 | 单糖基神经酰胺 (t18∶1_26∶0+O) |
4.26×1 | 2.04 | 1.29 | 0.36 | 上调 |
22 | 单糖基神经酰胺 (t40∶0) |
7.15×1 | 2.39 | 1.51 | 0.59 | 上调 |
23 | 甲基化磷脂酰胆碱 (34∶7) |
2.72×1 | 2.18 | 0.91 | -0.14 | 下调 |
24 | O-2酰化(γ-羟基)脂肪酸 (20∶0_22∶0) |
1.76×1 | 2.15 | 1.94 | 0.95 | 上调 |
25 | 磷脂酸(18∶3_18∶2) |
3.88×1 | 2.09 | 0.39 | -1.35 | 下调 |
26 | 磷脂酰胆碱 (15∶0_18∶3) |
2.97×1 | 2.07 | 0.82 | -0.29 | 下调 |
27 | 磷脂酰胆碱 (18∶2_21∶0) |
1.15×1 | 2.24 | 1.44 | 0.52 | 上调 |
28 | 磷脂酰胆碱 (19∶1_18∶1) |
1.75×1 | 2.22 | 1.35 | 0.44 | 上调 |
29 | 磷脂酰甲醇 (17∶1_18∶1) |
1.44×1 | 2.24 | 2.22 | 1.15 | 上调 |
30 | 鞘氨醇 (d16∶0) |
1.65×1 | 2.09 | 0.63 | -0.66 | 下调 |
31 | 甘油三酯 (14∶0_22∶3_22∶3) |
2.28×1 | 2.13 | 0.69 | -0.54 | 下调 |
32 | 甘油三酯 (15∶0_16∶1_18∶2) |
6.30×1 | 2.22 | 0.87 | -0.20 | 下调 |
33 | 甘油三酯 (16∶0_13∶0_18∶1) |
2.22×1 | 2.13 | 0.30 | -1.76 | 下调 |
34 | 甘油三酯 (16∶0_16∶0_20∶2) |
9.80×1 | 2.19 | 0.24 | -2.04 | 下调 |
35 | 甘油三酯 (16∶0_18∶1_21∶0) |
3.76×1 | 2.07 | 1.43 | 0.51 | 上调 |
36 | 甘油三酯 (17∶0_17∶0_19∶0) |
4.74×1 | 2.03 | 2.97 | 1.57 | 上调 |
37 | 甘油三酯 (18∶1_18∶1_22∶5) |
3.57×1 | 2.11 | 0.40 | -1.33 | 下调 |
38 | 甘油三酯 (18∶4_16∶1_18∶4) |
3.26×1 | 2.06 | 1.77 | 0.83 | 上调 |
39 | 甘油三酯 (19∶1_17∶1_18∶3) |
4.16×1 | 2.11 | 0.62 | -0.70 | 下调 |
40 | 甘油三酯 (4∶0_14∶1_18∶1) |
2.65×1 | 2.14 | 1.28 | 0.36 | 上调 |
41 | 酵母甾醇酯 (20∶3) |
2.20×1 | 2.18 | 1.76 | 0.82 | 上调 |
表中所列的均是差异显著的脂质分子的化学式,以甘油三酯(14∶0_22∶3_22∶3)为例:属于一种脂质小类,括号内的数字表示连接在该脂质分子上的脂肪酸,如14∶0_22∶3_22∶3表示该三酰基甘油分子上连接了3个脂肪酸,分别是1个十四碳烯酸(14∶0)和2个二十二碳烯酸(22∶3);上调表达为不育材料中某物质含量相对高于可育材料,反之则为下调表达
Listed in this table were the chemical formulas of lipid molecules with significant differences, taking triglyceride (14∶0_22∶3_22∶3) as an example: itbelongs to a lipid subclass, and the fatty acids in parentheses represent the fatty acids attached to the lipid molecule, for example, 14∶0_22∶3_22∶3 means that one fatty acids were attached to the triacylglycerols molecule, were two tetradecenoic acids (14∶0) and two docoenoic acid (22∶3), respectively;Up-regulation indicates that the content of a substance in sterility material higher than that of fertility, otherwise is down-regulation
FvGZBY001中,磷脂酰胆碱(18∶2_21∶0)、甘油二酯(16∶1_18∶2)、单糖基神经酰胺(t39∶0)及单糖基神经酰胺(t40∶0)等在3个重复样品中的相对含量较多,神经酰胺(t18∶1_21∶0+O)及乙酰化葡糖糖基酵母甾醇酯(20∶2)在2个重复样品中的相对含量较多,而甘油三酯(17∶0_17∶0_19∶0)、甘油二酯(16∶0_18∶2)及甘油二酯(34∶5e)这3个脂质物中有1个重复样品的相对含量较少。FvGZKY001中,甘油三酯(16∶0_13∶0_18∶1)、甘油三酯(16∶0_16∶0_20∶2)在3个重复样品中相对含量较多,神经酰胺(d18∶2_25∶4)中1个重复样品的相对含量较少;此外,甘油三酯 (18∶1_18∶1_22∶5)、甘油三酯 (19∶1_17∶1_18∶3)、甲基化磷脂酰胆碱 (34∶7) 及磷脂酸(18∶3_18∶2)这3个物质相对含量高于FvGZBY001,与

图4 2种茴香籽粒差异脂质聚类
Fig. 4 Hierarchical clustering of differential lipid metabolites in seed of two fennel varieties
通过LION数据库对鉴定出的41种差异脂质物进行富集分析(

图5 茴香籽粒差异脂质物质的LION富集
Fig. 5 LION enrichment of differential expressed lipids in fennel seeds
柱形上数字为不同脂质物的数量
The number on the column is the number of different lipids
雄性不育,即一种不能产生有活力或可育花粉的母性遗传现象,包括胞质雄性不育类型、核不育类型和核质互作不育类型
雄性不育材料的发现,极大地推进了伞形科蔬菜作物的杂交育种进程;而雄性不育材料的利用、雄性不育遗传机制的确定,将进一步为杂交育种及其分子机理提供理论基础。有研究发现,胡萝卜雄性不育主要由线粒体基因控制,如atp6、atp8、atp9、cox1
国外对茴香雄性不育制种、品质、分子等相关的研究较早、较多、较深入,筛选出多种优良茴香品
目前,脂质组
本研究中,在茴香FvGZBY001和FvGZKY001中检测出(植)单半乳糖二酰甘油酯脂质小类物质,分别含有31种(2.29%)、32种(2.37%)脂质物质;还检测出蜡酯脂质成分,分别含有34种(2.44%)、33种(2.44%)脂质物质;同时,鉴定出衍生脂质类的双-甲基化磷脂酸、溶血二甲基化磷脂酰乙醇胺及甲基化磷脂酰胆碱,其他磷脂的O-2酰化(γ-羟基)脂肪酸等脂质物质,但其具体功能尚不清楚。而FvGZBY001中共有29种脂质小类物质上调表达,且有1种单半乳糖二酰甘油酯脂质物未检测到;FvGZKY001中只有12种脂质小类物质上调表达,且甘油三酯、神经酰胺及蜡酯中共有3种脂质物未检测到;这些差异表达和未检测到的脂质小类物质与茴香雄性不育是否有影响或决定性作用,仍需进一步深入研究。
茴香作为调料,在各类餐饮、食品加工以及家庭消费中得到了广泛的使
参考文献
刘昆言,禹双双,刘琪龙,祝腾辉,廖桂瑜,吴宇平,郑绍儒.小茴香研究进展.农产品加工,2020, 17(9): 67-73 [百度学术]
Liu K Y, Yu S S, Liu Q L, Zhu T H, Liao G Y, Wu Y P, Zheng S R. Progress in research on fennel. Farm Products Processing, 2020, 17(9): 67-73 [百度学术]
Ibrahim N, Moussa A Y. A comparative volatilomic characterization of florence fennel from different locations: Antiviral prospects. Food and Function, 2021, 12(4): 1498-1515 [百度学术]
Khammassi M, Loupassaki S, Tazarki H, Mezni F, Slama A, Tlili N, Zaouali Y, Mighri H, Jamoussi B. Variation in essential oil composition and biological activities of Foeniculum vulgare Mill. populations growing widely in Tunisia. Journal of Food Biochemistry, 2018, 42(3): e12532 [百度学术]
Noreen S, Tufail T, Ain H B U, Awuchi C G. Pharmacological, nutraceutical, functional and therapeutic properties of fennel (Foeniculum vulgare). International Journal of Food Properties, 2023, 26 (1): 915-927 [百度学术]
梁焕,安岳.不同主产区小茴香药材质量评价.中国农学通报, 2023, 39(19): 148-152 [百度学术]
Liang H, An Y.The quality evaluation of Foeniculi fructus from different production origin. Chinese Agricultural Science Bulletin, 2023, 39(19): 148-152 [百度学术]
Izadi-Darbandi A, Akbari A, Bahmani K, Warner R, Ebrahimi M, Ramshini H. Fatty acid profiling and oil content variation among Iranian fennel (Foeniculum vulgare Mill. var. vulgare) landraces. International Journal of Horticultural Science and Technology, 2022, 10(3): 193-202 [百度学术]
Akbari F, Izadi-Darbandi A, Bahmani K, Farhadpour M, Ebrahimi M, Ramshini H, Esmaeili Z. Assessment of phenolic profile, and antioxidant activity in developed breeding populations of fennel (Foeniculum vulgare Mill). Biocatalysis and Agricultural Biotechnology, 2023, 48: e102639 [百度学术]
Jadid N,Widodo A F,Ermavitalini D,Sa’adah N N,Gunawan S,Nisa C. The medicinal Umbelliferae plant fennel (Foeniculum vulgare Mill.): Cultivation, traditional uses, phytopharmacological properties, and application in animal husbandry. Arabian Journal of Chemistry, 2023(16): e104541 [百度学术]
谭国飞,钟秀来,罗庆,王天文.芹菜线粒体atp6基因的克隆及在花发育过程中的表达.贵州农业科学,2019, 47 (7): 110-116 [百度学术]
Tan G F, Zhong X L, Luo Q, Wang T W. Clone and expression of mitochondrial atp6 gene in celery during flowers development. Guizhou Agricultural Sciences, 2019, 47 (7): 110-116 [百度学术]
罗庆,钟秀来,王天文,谭国飞.胡萝卜雄性不育研究及展望.西南农业学报,2019, 32 (S1): 310-318 [百度学术]
Luo Q, Zhong X L, Wang T W, Tan G F. Advance and study on male sterility of carrot. Southwest China Journal of Agricultural Sciences, 2019, 32 (S1): 310-318 [百度学术]
陈志峰,罗庆,张新圻,熊爱生,朱顺华,钟秀来,谭国飞.多裂叶水芹雄性不育材料的发现与鉴定.中国野生植物资源,2024, 43 (5): 52-57 [百度学术]
Chen Z F, Luo Q, Zhang X Q, Xiong A S, Zhu S H, Zhong X L, Tan G F. Identification and analysis of male sterile materials of Oenanthe thomsonii C. B. Clarke. Chinese Wild Plant Resources, 2024, 43(5): 52-57 [百度学术]
Dashora A, Sharma R K, Sastry E V D, Singh D. Varietal cross diallel analysis for seed yield and its components in fennel. Acta Agronomica Hungarica, 2009, 57 (3): 383-387 [百度学术]
Akbari A, Izadi-Darbandi A, Ramshini H, Ebrahimi M. Evaluation of heterosis and heritability of quantitative traits and grouping of new cultivars and genotypes of fennel (Foeniculum vulgare. Mill). Iranian Journal of Field Crops Research, 2023, 21(2): 173-188 [百度学术]
吴之涛,高正睿,张英英,王兴宏,杨克泽,马金慧,任宝仓,魏玉杰.不同药剂对小茴香根腐病的田间防治效果.西北农业学报,2021, 30 (10): 1588-1594 [百度学术]
Wu Z T, Gao Z R, Zhang Y Y, Wang X H, Yang K Z, Ma J H, Ren B C, Wei Y J. Field efficacy of various fungicides in controlling root rot of fennel. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(10): 1588-1594 [百度学术]
杨平,董海萍.小茴香干热敷对腹部手术患者胃肠症状及肠功能恢复的影响分析.四川中医,2019, 37 (7): 199-202 [百度学术]
Yang P, Dong H P. Effect of dry hot compress of fennelon gastrointestinal symptoms and intestinal function recovery for patients undergoing abdominal surgery. Journal of Sichuan of Traditional Chinese Medicine, 2019, 37(7): 199-202 [百度学术]
Okorska S, Dabrowska J A, Głowacka K, Pszczółkowska A, Jankowski K J, Jastrzebski J P, Oszako T, Okorski A. The fungicidal effect of essential oils of fennel and hops against Fusarium disease of pea. Applied Sciences, 2023, 13: e6282 [百度学术]
Kamte S L N, Ranjbarian F, Cianfaglione K, Sut S, Dall’Acqua S, Bruno M, Afshar F H, Iannarelli R, Benelli G, Cappellacci L, Hofer A, Maggi F, Petrelli R. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family. Ecotoxicology and Environmental Safety, 2018, 156 (1): 154-165 [百度学术]
Afifi S M, El-Mahis A, Heiss A G, Farag M A. Gas chromatography-mass spectrometry-based classification of 12 fennel (Foeniculum vulgare Miller) varieties based on their aroma profiles and estragole levels as analyzed using chemometric tools. ACS Omega, 2021, 6(8): 5775-5785 [百度学术]
Napoli E M, Curcuruto G, Ruberto G. Screening the essential oil composition of wild Sicilian fennel. Biochemical Systematics and Ecology, 2010, 38(2): 213-223 [百度学术]
Ferioli F, Giambanelli E, D' Antuono F. Fennel (Foeniculum vulgare Mill. subsp. piperitum) florets, a traditional culinary spice in Italy: Evaluation of phenolics and volatiles in local populations, and comparison with the composition of other plant parts. Journal of the Science of Food and Agriculture, 2017, 97 (15): 5369-5380 [百度学术]
Hosseini E, Majidi M M, Ehtemam M H, Ghanadian M. Genetic variability for phytochemical components in fennel (Foeniculum vulgare Mill.) genotypes. Crop Science, 2021, 61 (6): 4081-4086 [百度学术]
Khammassi M, Mighri H, Mansour M B, Amri I, Jamoussi B, Khaldi A. Metabolite profiling and potential antioxidant activity of sixteen fennel (Foeniculum vulgare Mill.) populations growing wild in Tunisia. South African Journal of Botany, 2022, 148(Suppl C): 407-414 [百度学术]
Akbari A, Bahmani K, Kafkas N E, Bilgin O F, Hamijo T, Darbandi A I, Farhadpour M. Evaluation of seed yield, essential oil compositions, and fatty acid profiles in advanced fennel (Foeniculum vulgare Mill) breeding populations. Biocatalysis and Agricultural Biotechnology, 2024(57): e103118 [百度学术]
高颖,李雪梅.6个不同产地小茴香精油香气成分及感官分析研究.中国调味品,2024, 49(3): 157-160 [百度学术]
Gao Y, Li X M. Study on aroma components and sensory analysis of essential oils of fennels from six different places of origin. China Condiment, 2024, 49(3): 157-160 [百度学术]
姜楠楠,陈小亮,董娜,王建清.小茴香精油成分测定及性能研究.中国调味品,2019, 44(11): 162-166 [百度学术]
Jiang N N, Chen X L, Dong N, Wang J Q. Composition determination and property research of fennel essential oils. China Condiment, 2019, 44(11): 162-166 [百度学术]
李婷,李洁芝,范智义,张其圣,李恒,王芳,卢付青,陈功,王泽亮,蒋四强,李龙,李雄波,邓维琴.不同产地小茴香挥发性成分差异性研究.食品与发酵研究,2024, 60 (4): 1-7, 14 [百度学术]
Li T, Li J Z, Fan Z Y, Zhang Q S, Li H, Wang F, Lu F Q, Chen G, Wang Z L, Jiang S Q, Li L, Li X B, Deng W Q. Study on the differences of volatile components of fennel in different production areas. Food and Fermentation Science and Technology, 2024, 60 (4): 1-7, 14 [百度学术]
苏慧慧,詹璐璐,马矜烁.小茴香挥发油提取、成分分析及其在畜牧生产中的应用.黑龙江畜牧兽医,2022 (15):37-40, 46 [百度学术]
Su H H, Zhan L L, Ma J S. Extraction, component analysis of volatile oil from Foeniculi Fructus and its application in animal husbandry. Heilongjiang Animal Science and Veterinary Medicine, 2022 (15): 37-40, 46 [百度学术]
王溢,黄润生,程俊森,李永泉,张庆威,张晖.基于UPLC-MS/MS的油茶种仁成分差异分析及其油脂抗氧化活性研究.中国食品学报,2023, 23(8): 329-341 [百度学术]
Wang Y, Huang R S, Cheng J S, Li Y Q, Zhang Q W, Zhang H. Differential composition analysis of seed kernels between two Camellia species by UPLC-MS/MS and the antioxidant activity research of seed kernels oil. Journal of Chinese Institute of Food Science and Technology, 2023, 23(8): 329-341 [百度学术]
李庆杨,沈丹玉,莫润宏,舒金平,汤富彬,刘毅华.基于脂质组学的油茶籽油脂质轮廓与功能特性分析.中国粮油学报,2023, 38 (7): 133-139 [百度学术]
Li Q Y, Shen D Y, Mo R H, Shu J P, Tang F B, Liu Y H. Lipid profile and functional analysis of camellia oil based on lipidomics. Journal of the Chinese Cereals and Oils Association, 2023, 38 (7): 133-139 [百度学术]
廖敏和,任皓威,金日天,康佳欣,商佳琦,宁雪楠,姚思含,刘宁.采用UHPLC-QTOF-MS技术筛选亚麻籽油脂质分子标志物.农业工程学报,2021, 37(24): 338-346 [百度学术]
Liao M H, Ren H W, Jin R T, Kang J X, Shang J Q, Ning X N, Yao S H, Liu N. Screening lipid molecular markers of flaxseed oils by UHPLC-QTOF-MS technology. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 338-346 [百度学术]
江群,凌溪铁,唐兆成,周珍珍,张保龙. EMS诱变创制水稻抗乙酰辅酶A羧化酶抑制剂类除草剂种质.江苏农业学报,2023, 39 (2):305-312 [百度学术]
Jiang Q, Ling X T, Tang Z C, Zhou Z Z, Zhang B L. EMS mutagenesis to create rice anti-acetyl-CoA carboxylase inhibitor-her-bicide germplasm. Jiangsu Journal of Agricultural Sciences, 2023, 39 (2):305-312 [百度学术]
Taguchi R, Ishikawa M. Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. Journal of Chromatography A, 2010, 1217(25): 4229-4239 [百度学术]
Thévenot E A, Roux A, Xu Y, Ezan E, Junot C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research, 2015, 14(8): 3322-3335 [百度学术]
Anne-Laure B, Korbinian S. Partial least squares: A versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics, 2007, 8(1): 32-44 [百度学术]
Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 2010, 16(3): 119-128 [百度学术]
Villumsen S O, Benfeitas R, Knudsen A D, Gelpi M, Høgh J, Thomsen M T, Murray D, Ullum H, Neogi U, Nielsen S D. Integrative lipidomics and metabolomics for system-level understanding of the metabolic syndrome in long-term treated HIV-infected individuals. Frontiers in Immunology, 2022, 12:e742736 [百度学术]
Molenaar M R, Jeucken A, Wassenaar T A, Lest C H A, Helms J B. LION/web: A web-based ontology enrichment tool for lipidomic data analysis. Gigascience, 2019, 8(6): giz061 [百度学术]
Cosge B, Kiralan M, Gurbuz B. Characteristics of fatty acids and essential oil from sweet fennel (Foeniculum vulgare Mill. var. dulce) and bitter fennel fruits (F. vulgare Mill. var. vulgare) growing in Turkey. Natural Product Research, 2008, 22(12): 1011-1016 [百度学术]
Sharma P, Nair S A, Sharma P. Male sterility and its commercial exploitation in hybrid seed production of vegetable crops: A review. Agricultural Reviews, 2019, 40(4): 261-270 [百度学术]
Liu C, Liu Z Y, Li C Y, Zhang Y, Feng H. Comparative transcriptome analysis of fertile and sterile buds from a genetically male sterile line of Chinese cabbage. In Vitro Cellular and Developmental Biology-Plant, 2016, 52(2): 130-139 [百度学术]
Leino M. Mitochondrial genetics of alloplasmic male-sterile Brassica napus lines. Uppsala: Swedish University of Agricultural Sciences, 2005 [百度学术]
罗庆,孟平红,钟秀来,王天文,李彤,熊爱生,谭国飞.种子无刺毛野生胡萝卜雄性不育材料的创制与鉴定.植物遗传资源学报,2021, 22(1): 268-273 [百度学术]
Luo Q, Meng P H, Zhong X L, Wang T W, Li T, Xiong A S, Tan G F. Creation and identification of wild carrot male sterile material with hairless seed. Journal of Plant Genetic Resources, 2021, 22 (1): 268-273 [百度学术]
Cheng Q, Wang P, Li T T, Liu J K, Zhang Y H, Sun L, Shen H L. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in celery (Apium graveolens L.). International Journal of Molecular Sciences, 2021, 22(16): e8584 [百度学术]
Tan G F, Wang F, Zhang X Y, Xiong A S. Different lengths, copies and expression levels of the mitochondrial atp6 gene in male sterile and fertile lines of carrot (Daucus carota L). Mitochondrial DNA Part A, 2018, 29 (3): 446-454 [百度学术]
谭国飞,李梦瑶,罗庆,赵倩,钟秀来,孟平红,熊爱生.芹菜雄性不育的创制及线粒体不育候选基因鉴定.植物遗传资源学报,2022, 23(6): 1807-1815 [百度学术]
Tan G F, Li M Y, Luo Q, Zhao Q, Zhong X L, Meng P H, Xiong A S. Creation of a male sterility line and identification of its candidate mitochondrial male sterile gene in celery. Journal of Plant Genetic Resources, 2022, 23(6): 1807-1815 [百度学术]
朱顺华,罗庆,李梦瑶,孟平红,钟秀来,王堃,陈志峰,谭国飞,熊爱生. 水芹雄性不育材料的鉴定及营养品质分析.植物科学学报,2023, 41(3): 343-348 [百度学术]
Zhu S H, Luo Q, Li M Y, Meng P H, Zhong X L, Wang K, Chen Z F, Tan G F, Xiong A S. Identification and analysis of nutritive quality of male sterile material of Oenanthe javanica (Blume) DC. Plant Science Journal, 2023, 41(3): 343-348 [百度学术]
谭国飞,李梦瑶,罗庆,钟秀来,朱顺华,王堃,熊爱生.多裂叶水芹线粒体特征及雄性不育候选基因的鉴定.南京农业大学学报, 2024,http://kns.cnki.net/kcms/detail/32.1148.S.20241012.1716.002.html [百度学术]
Tan G F, Li M Y, Luo Q, Zhong X L, Zhu S H, Wang K, Xiong A S. Identification of mitochondrial characteristics and candidate male sterile genes in Oenanthe thomsonii C. B. Clarke. Journal of Nanjing Agricultural University, 2024,http://kns.cnki.net/kcms/detail/32.1148.S.20241012.1716.002.html [百度学术]
Rajput S S, Singhania D L, Singh D, Raje R S. Combining ability in fennel (Foeniculum vulgare Mill.) for yield and quality. Journal of Spices and Aromatic Crops, 2005, 14(1): 42-46 [百度学术]
Bahmani K, Darbandi A I, Noori S A S, Jafari A A. Assessment of the genetic diversity in Iranian fennels by RAPD markers. Journal of Herbs, Spices and Medicinal Plants, 2013, 19 (3): 275-285 [百度学术]
Bahmani K, Izadi-Darbandi A, Noori S A S, Jafari A A, Moradi N. Determination of interrelationships among phenotypic traits of Iranian fennel (Foeniculum vulgare Mill.) using correlation, stepwise regression and path analyses. Journal of Essential Oil Bearing Plants, 2012, 15 (3): 424-444 [百度学术]
Bahmani K, Akbari A, Darbandi A I, Warner R M. Development of high-yielding fennel synthetic cultivars based on polycross progeny performance. Agricultural Research, 2023, 12(4): 357-363 [百度学术]
Palumbo F, Vitulo N, Vannozzi A, Magon G, Barcaccia G. The mitochondrial genome assembly of fennel (Foeniculum vulgare) reveals two different atp6 gene sequences in cytoplasmic male sterile accessions. International Journal of Molecular Sciences. 2020,21(13):1-14 [百度学术]
李祥栋,潘虹,陆秀娟,魏心元,石明,周美亮.薏米萌芽过程的代谢组学变化及特征分子筛选.植物遗传资源学报,2022, 23 (4):1155-1165 [百度学术]
Li X D, Pan H, Lu X J, Wei X Y, Shi M, Zhou M L. Metabonomics profiles and distinctive molecular selection during adlay seed generation. Journal of Plant Genetic Resources, 2022, 23 (4):1155-1165 [百度学术]
Jr R V F, Walther T C. Glycerolipid synthesis and lipid droplet formation in the endoplasmic reticulum. Cold Spring Harbor Perspectives in Biology, 2023, 15(5):a041246 [百度学术]
Kuksis A, Breckenridge W C, Marai L, Stachnyk O. Quatitative gas chromatography in the structural characterization of glyceryl phosphatides. Journal of the American Oil Chemists Society, 1968, 45(8): 537-546 [百度学术]
Jia W T, Yuan J Y, Zhang J B, Li S, Lin W F, Cheng B B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochimica et Biophysica Acta-Reviews on Cancer, 2024, 1879(5): e189176 [百度学术]
Mirarchi A, Mare R, Musolino V, Nucera S, Mollace V, Pujia A, Montalcini T, Romeo S, Maurotti S. Bergamot polyphenol extract reduces hepatocyte neutral fat by increasing beta-oxidation. Nutrients, 2022, 14(16):e3434 [百度学术]
Long Y, Yang J J, Ji H F, Han X, Fan Y T, Dai K Y, Ji H Y, Yu J. Preparation process optimization of glycolipids from dendrobium officinale and the difference in antioxidant effects compared with ascorbic acid. Nutrients, 2024, 16(21): e3664 [百度学术]
Kılıç E R, Aydogan A, Aydin A A. Lipid-derived cetyltrimethylammonium salts as renewable phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, 2023, 250:e112102 [百度学术]
杨璞,徐冬丽,陈晓鸣,刘魏魏,巩中军,胡艳红.蜡酯合成途径及关键酶的研究进展.中国细胞生物学学报,2012, 34(7): 695-703 [百度学术]
Yang P, Xu D L, Chen X M, Liu W W, Gong Z J, Hu Y H. Research progress on wax ester biosynthetic pathway and the related key enzymes. Chinese Journal of Cell Biology, 2012, 34(7):695-703 [百度学术]
Biliaa A R, Flaminib G, Tagliolia V, Morellib I, Vincieri F F. GC-MS analysis of essential oil of some commercial fennel teas. Food Chemistry, 2002, 76(3): 307-310 [百度学术]
Sayed-Ahmad B, Talou T, Saad Z, Hijazi A, Merah O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial Crop and Products, 2017, 109: 661-671 [百度学术]