摘要
“采后生理腐烂”(PPD, postharvest physiological deterioration)严重制约木薯商品化进程。本研究以木薯新选048自交系的166个种质为研究对象,观察评价木薯块根采后贮藏
木薯(Manihot esculenta Crantz)是大戟科木薯属植物,块根富含淀粉,与马铃薯、甘薯并称为三大薯类,是全球第六大粮食作
采后生理腐烂通常是由收获时的机械损伤、环境因子和微生物侵染共同作用引起的植物非生物逆境胁迫反应,可导致其品质、生理生化特性以及防御反应系统等发生显著改
高产、优质、高抗木薯种质的创制,有望从源头上解决木薯块根采后生理腐烂问题。自交育种是木薯新种质创建的重要途
2019年3月将亲本新选048木薯隔离种植在广西壮族自治区龙州县北耀木薯育种基地,使其自花授粉,2019年12月收获自交果实,并将其放置于常温室内保存。2020年3月初将收获的种子进行催芽、播种,4月下旬将其种植并保存在广西南亚热带农业科学研究所木薯试验地,分别编号为X001~X166。2021年2月初收获种茎并采用露天堆放法保存于地头约1.5月。2021年3月下旬,将木薯自交系后代材料种植在广西南亚热带农业科学研究所试验基地。每个种质单排种植,各种植10株,株行距为8
2021年12月下旬(木薯块根成熟期)人工收获全部木薯自交系块根,每份种质选取薯形均匀、大小相近、外表皮没有破损且无病虫害的块根,贮藏于自然通风条件良好和阴凉的室内。以采收当天的时间点标记为0 d,并分别在贮藏期的
采用国际热带作物研究中心(CIAT, TheInternational Centerfor Tropical Agriculture)建立的目测
干物质含量:采用烘干法测定,取10
通过对新选048木薯自交系166个种质块根采后贮藏期间腐烂程度的评估,发现不同种质间存在差异,并通过目测法筛选了较耐贮藏和不耐贮藏的种质各5个,详见
种质 Germplasm | 0 d | 6 d | 12 d | 18 d | 24 d | 30 d | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
褐化面积(%) Browning area | PPD 等级 PPD grade | 褐化面积(%) Browning area | PPD 等级 PPD grade | 褐化面积(%) Browning area | PPD 等级 PPD grade | 褐化面积(%) Browning area | PPD 等级 PPD grade | 褐化面积(%) Browning area | PPD 等级 PPD grade | 褐化面积(%) Browning area | PPD 等级 PPD grade | |
X045 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 10 | 一级 | 10 | 一级 |
X077 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 5 | 一级 |
X088 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 5 | 一级 |
X126 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 5 | 一级 | 5 | 一级 |
X147 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 5 | 一级 |
X024 | 0 | 完好 | 0 | 完好 | 5 | 一级 | 45 | 四级 | 90 | 六级 | 100 | 六级 |
X062 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 20 | 二级 | 50 | 四级 | 100 | 六级 |
X085 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 5 | 一级 | 85 | 六级 | 100 | 六级 |
X100 | 0 | 完好 | 0 | 完好 | 20 | 二级 | 55 | 四级 | 95 | 六级 | 100 | 六级 |
X133 | 0 | 完好 | 0 | 完好 | 0 | 完好 | 5 | 一级 | 60 | 四级 | 100 | 六级 |
PPD: Postharvest physiological deterioration; The same as below

图1 木薯块根采后贮藏期间腐烂程度对比
Fig. 1 Comparison of rotting degree in cassava tubers during postharvest storage
木薯块根采后贮藏期间干物质含量呈现时序波动与种质特异性差异(

图2 木薯自交系块根采后贮藏期间干物质含量变化
Fig. 2 Dry matter content of cassava tubers during the period of storage
同一贮藏时间不同小写字母表示处理间差异显著(P<0.05),下同
Different lowercase letters at the same storage time indicate significant difference between treatments (P<0.05), the same as below
由

图3 木薯自交系块根采后贮藏期间淀粉含量变化
Fig. 3 Starch content of cassava tubers during the period of storage
由

图4 木薯自交系块根采后贮藏期间β-胡萝卜素含量变化
Fig. 4 Beta-carotene content of cassava tubers during the period of storage
由

图5 木薯自交系块根采后贮藏期间MDA含量变化对比
Fig. 5 MDA content of cassava tubers during the period of storage
由

图6 木薯自交系块根采后贮藏期间SOD活性变化对比
Fig. 6 SOD enzymatic activity of cassava tubers during the period of storage
由

图7 木薯自交系块根采后贮藏期间CAT活性变化对比
Fig. 7 CAT enzymatic activity of cassava tubers during the periods of storage
由

图8 木薯自交系块根采后贮藏期间POD酶活性变化对比
Fig. 8 POD enzymatic activity of cassava tubers during the periods of storage
对10个木薯自交系采后贮藏期间块根褐化面积与生理指标进行相关性分析,由
采后腐烂程度 Postharvest rotting degree | 干物质含量 Dry matter content | 淀粉含量 Starch content | β-胡萝卜素 含量 Beta-carotene content | SOD酶活性 SOD enzymatic activity | CAT酶活性 CAT enzymatic activity | POD酶活性 POD enzymatic activity | MDA含量 MDA content |
---|---|---|---|---|---|---|---|
褐化面积 Browning area | 0.864** | 0.845** | -0.763* | 0.632* | 0.644* | 0.958** | 0.721* |
** 表示在 P<0.01 水平(双侧)上显著相关;* 表示在 P<0.05 水平(双侧)上显著相关
** indicates significant correlation at P<0.01 level (Bilateral); * indicates significant correlation at P<0.05 level (Bilateral)
本研究采用目测观察法,于块根贮藏期的
不同品种的木薯在耐贮性方面存在显著差异,这主要与木薯的遗传特性(如块根中的淀粉含量、干物质含量以及β-胡萝卜素含量等)、贮藏环境以及机械损伤等因素有
在逆境胁迫条件下,植物细胞膜脂会发生氧化应激反应,导致生物膜结构受损,特别是细胞质膜。该损伤会引起细胞膜在结构与功能上的破坏,进而影响膜的通透性,对植物的正常生理和生化过程产生影响。MDA作为氧化应激反应过程的主要产物之一,通常被用作膜脂过氧化的衡量指标,其含量变化可反映细胞膜脂过氧化程度和植物对逆境条件的抵抗能
抗氧化酶在植物体内扮演着至关重要的角色,它们有助于维持机体的代谢平衡,并清除活性
本研究从木薯新选048自交系的166份材料中,筛选了耐贮藏和不耐贮藏材料各5个,其中耐贮藏材料为X045、X077、X088、X126、X147,不耐贮藏材料为X024、X062、X085、X100、X133。并测定10个种质在贮藏期间的干物质含量、淀粉含量、β-胡萝卜素含量、MDA含量、SOD、CAT和POD活性,分析其与块根的褐化面积(24 d)相关性,发现褐化面积与植物生理指标之间存在一定的相关性。其中,干物质含量、淀粉含量高、β-胡萝卜素含量低的种质较容易发生采后腐烂,耐贮性越差。随着贮藏时间的延长,木薯块根采后腐烂程度不断加重,MDA含量不断积累,块根通过不断提高SOD、CAT和POD活性来抵御逆境。本研究不仅为木薯耐贮性育种提供了宝贵的核心亲本材料,也为深入解析木薯抗采后生理腐烂分子机制奠定了坚实基础。下一步应加强利用现代分子生物学技术,如基因测序、基因表达分析、蛋白质组学等,以探究抗采后生理腐烂种质的遗传基础,解析木薯抗采后生理腐烂的分子机制,助力木薯突破新品种改良及产业的可持续壮大发展。
参考文献
段春芳, 李月仙, 宋记明, 姜太玲, 肖明昆, 沈正松, 刘倩, 熊贤坤, 耿沙, 车彬, 张钦, 李林虹, 严炜, 刘光华. 木薯自交后代疫霉根腐病抗性评价及抗性材料遗传多样性分析. 植物遗传资源学报, 2025, https://doi.org/10.13430/j.cnki.jpgr.20241024001 [百度学术]
Duan C F, Li Y X, Song J M, Jiang T L, Xiao M K, Shen Z S, Liu Q, Xiong X K, Geng S, Che B, Zhang Q, Li L H, Yan W, Liu G H. Evaluation of Phytophthora root rot resistance and genetic diversity analysis of resistant materials in cassava inbred progeny. Journal of Plant Genetic Resources, 2025, https://doi.org/10.13430/j.cnki.jpgr.20241024001 [百度学术]
Chen Q, Liang X, Wu C L, Gao J T, Chen Q, Zhang Z. Density threshold-based acaricide application for the two-spotted spider mite Tetranychus urticae on cassava: From laboratory to the field. Pest Management Science, 2019, 75(10): 2634-2641 [百度学术]
陆柳英, 曾文丹, 尚小红, 曹升, 肖亮, 程冬, 施平丽, 龙紫媛, 李祥, 严华兵. 8份木薯二倍体及其同源四倍体资源部分表型性状鉴定与分析. 植物遗传资源学报, 2025, https://doi.org/10.13430/j.cnki.jpgr.20240902002 [百度学术]
Lu L Y, Zeng W D, Shang X H, Cao S, Xiao L, Cheng D, Shi P L, Long Z Y, Li X, Yan H B. Identification and analysis of partial phenotypic traits on diploidy and homologous tetraploid of 8 cassava resources. Journal of Plant Genetic Resources, 2025, https://doi.org/10.13430/j.cnki.jpgr.202409 02002 [百度学术]
Zainuddin I M, Fathoni A, Sudarmonowati E, Beeching J R, Gruissem W, Vanderschuren H. Cassava post-harvest physiological deterioration: From triggers to symptoms. Postharvest Biology and Technology, 2018, 142: 115-123 [百度学术]
Yan Y, Li M Y, Ding Z H, Yang J H, Xie Z G, Ye X X, Tie W W, Tao X G, Chen G L, Huo K S, Ma J X, Ye J Q, Hu W. The regulation mechanism of ethephon-mediated delaying of postharvest physiological deterioration in cassava storage roots based on quantitative acetylproteomes analysis. Food Chemistry, 2024, 458:140252 [百度学术]
Li R M, Yuan S, Zhou Y J, Wang S J, Zhou Q, Ding Z P, Wang Y J, Yao Y, Liu J, Guo J C. Comparative transcriptome profiling of cassava tuberous roots in response to postharvest physiological deterioration. International Journal of Molecular Sciences, 2023, 24(1): 246 [百度学术]
Djabou A S M, Carvalho L, Li Q X, Niemenak N, Chen S B. Cassava postharvest physiological deterioration: A complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death. Acta Physiologiae Plantarum, 2017, 39(4): 91 [百度学术]
An F F, Cui M J, Chen T, Cheng C, Liu Z, Luo X Q, Xue J J, Tang Y Q, Cai J, Chen S B. Flavonoid accumulation modulates the responses of cassava tuberous roots to postharvest physiological deterioration. Tropical Plant Biology, 2023, 3: 112254 [百度学术]
An F F, Xue J , Luo X Q, Chen T, Wei Z W, Zhu W L, Ou W J, Li K M, Cai J, Chen S B. MePOD12 participates the regulation to postharvest physiological deterioration by ROS scavenging and lignin accumulation in cassava tuberous roots. Postharvest Biology and Technology, 2024, 207: 112609 [百度学术]
Huang J, Bachem C, Jacobsen E, Visser R G F. Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots. Euphytica, 2001, 120: 85-93 [百度学术]
Beeching J R, Reilly K, GómezVásquez R, Li H, Han Y, Rodriguez M X, Buschmann H, Taylor N, Fauquet C, Tohme J. Post-harvest physiological deterioration of cassava. Nagoya Journal of Law&Politics, 2002, 245: 323-381 [百度学术]
文明富, 胡梅珍, 陈新, 王海燕, 卢诚, 王文泉. 八个木薯品种(系)储藏根采后耐贮性生化指标的变化. 作物学报, 2013, 39(1): 172-176 [百度学术]
Wen M F, Hu M Z, Chen X, Wang H Y, Lu C, Wang W Q. Changes in biochemical indicators of postharvest storability for eight cassava varieties (lines). Acta Agronomica Sinica, 2013, 39(1): 172-176 [百度学术]
姚庆群, 张振文. 木薯采后生理性变质与淀粉特性研究. 热带农业科学, 2012, 32(12): 12-15 [百度学术]
Yao Q Q, Zhang Z W. Physiological deterioration and starch characteristics of harvest cassava tuberous root. Chinese Journal of Tropical Agriculture,2012, 32(12):12-15 [百度学术]
Morante N, Sánchez T, Ceballos H, Calle F, Pérez J C, Egesi C, Cuambe C E, Escobar A F, Ortiz D, Chávez A L, Fregene M. Tolerance to postharvest physiological deterioration in cassava roots. Crop Science, 2010, 50(4): 1333-1338 [百度学术]
罗妙明, 陈松笔, 安飞飞, 薛晶晶, 蔡杰, 罗秀芹. 木薯块根β-胡萝卜素与采后腐烂的相关性研究. 热带农业科学, 2021, 41(6): 82-86 [百度学术]
Luo M M, Chen S B, An F F, Xue J J, Cai J, Luo X Q. Correlation between β-carotene in cassava tuberous roots and postharvest deterioration. Tropical Agricultural Science, 2021, 41(6): 82-86 [百度学术]
Sánchez T M, Chavez A L, Ceballos H, Rodriguez-Amaya D B, Nestel P S, Ishitani M. Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture, 2006, 86: 634-639 [百度学术]
Reilly K, Bernal D, Cortés D F, Gómez-Vásquez R, Tohme J, Beeching J R. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Molecular Biology, 2007, 64(1/2): 187-203 [百度学术]
Bayoumi S A, Rowan M G, Blagbrough I S, Beeching J R. Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: The E-Z-isomerisation stage. Phytochemistry, 2008, 69(17):2928-2936 [百度学术]
Yan Y, Zhao S H, Ye X X, Tian L B, Shang S, Tie W W, Zeng L W, Zeng L M, Yang J H, Li M Y, Wang Y, Xie Z G, Hu W. Abscisic acid signaling in the regulation of postharvest physiological deterioration of sliced cassava tuberous roots. Journal of Agricultural and Food Chemistry, 2022, 70(40): 12830-12840 [百度学术]
王聪聪. 壳聚糖处理延缓木薯采后退化机制初步研究. 海口:海南大学, 2023 [百度学术]
Wang C C. Preliminary study on the mechanism of chitosan treatment in delaying postharvest deterioration of cassava tuberous roots. Haikou: Hainan University, 2023 [百度学术]
Wu X Y, Xu J, Ma Q X, Ahmed S, Lu X L, Ling E, Zhang P. Lysozyme inhibits postharvest physiological deterioration of cassava. Journal of Integrative Plant Biology, 2022 , 64(3): 621-624 [百度学术]
Gu J B, Ma X W, Ma Q X, Xia Z Q, Lin Y, Yuan J B, Li Y, Li C, Chen Y H, Wang W Q, Zhang P, Wang Z Y. RNA splicing modulates the postharvest physiological deterioration of cassava storage root. Plant Physiology, 2024, 196(1): 461-478 [百度学术]
李恒锐, 张秀芬, 陈会鲜, 杨海霞, 梁振华, 兰秀, 黄珍玲, 莫周美, 何文, 郭素云.木薯雌雄花分化形态结构观察及生理调控研究 .植物遗传资源学报, 2022, 23(1): 255-262 [百度学术]
Li H R, Zhang X F, Chen H X, Yang H X, Liang Z H, Lan X, Huang Z L, Mo Z M, He W, Guo S Y. Study on morphological structure and physiological regulation of female and male flowers differentiation in cassava. Journal of Plant Genetic Resources, 2022, 23(1): 255-262 [百度学术]
罗兴录. 木薯新品种新选048选育与应用. 中国农学通报, 2009, 25(24): 501-505 [百度学术]
Luo X L. Report on applying and breeding of new cassava cultivar Xinxuan 048. Chinese Agricultural Science Bulletin, 2009, 25(24): 501-505 [百度学术]
尚小红, 谢向誉, 曹升, 严华兵, 肖亮, 王颖, 曾文丹, 陆柳英, 陈会鲜. 木薯‘新选048’自交系群体表型鉴定评价及遗传多样性分析. 植物生理学报, 2019, 55(9): 1277-1290 [百度学术]
Shang X H, Xie X Y, Cao S, Yan H B, Xiao L, Wang Y, Zeng W D, Lu L Y,Chen H X. Phenotypic identification and genetic diversity of cassava cultivar ‘Xinxuan 048’ inbred lines. Plant Physiology Journal, 2019, 55(9): 1277-1290 [百度学术]
中华人民共和国卫生部. GB 5009.3 食品安全国家标准 食品中水分的测定. 北京: 中国标准出版社, 2010 [百度学术]
National Health and Family Planning Commission of the People′s Republic of China. GB 5009.3 National food safety standard-Determination of moisture in foods. Beijing: Standards Press of China, 2010 [百度学术]
张振文, 李开绵. 木薯块根采后腐烂及贮藏方法研究进展. 热带作物学报, 2012, 33(7): 1326-1331 [百度学术]
Zhang Z W, Li K M. Research progress on postharvest rot and storage methods of cassava tuber. Journal of Tropical Crops, 2012, 33(7): 1326-1331 [百度学术]
Ceballos H, Fregene M, Pérez J C, Morante N, Calle F. Cassava genetic improvement// Kang M S, Priyadarshan P M. Breeding Major Food Staples. Hoboken: Blackwell Publishing, 2007: 365-391 [百度学术]
Van Oirschot Q E A, O'Brien G M, Dufour D, El-Sharkawy M A, Mesa E. The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. Journal of the Science of Food and Agriculture, 2000, 80(13): 1866-1873 [百度学术]
Zhao K Y, Wang X Q, Yue X Z, Lv J Y, Xu X D, Lu H S, Zuo J H, Xu X B, Chen B, Yuan S Z, Wang Q. A comprehensive physiological and -Omic analysis of trypsin-mediated protection of green pepper fruits from chilling injury. Food Chemistry, 2024, 460(2): 140547 [百度学术]
袁帅, 李瑞梅, 周杨骄, 仇婷婷, 姚远, 刘姣, 段瑞军, 符少萍, 胡新文, 郭建春. 两个木薯种质田间农艺性状及叶片生理指标比较分析. 分子植物育种, 2018, 16(7): 2316-2321 [百度学术]
Yuan S, Li R M, Zhou Y J, Qiu T T, Yao Y, Liu J, Duan R J, Fu S P, Hu X W, Guo J C. Comparative analysis of agronomic traits and leaf physiological indices of two cassava germplasms in the field. Molecular Plant Breeding, 2018, 16(7): 2316-2321 [百度学术]
Drapal M, Ovalle Rivera T M, Luna Meléndez J L, Perez-Fons L, Tran T, Dufour D, Becerra Lopez-Lavalle L A, Fraser P D. Biochemical characterisation of a cassava (Manihot esculenta crantz) diversity panel for post-harvest physiological deterioration; metabolite involvement and environmental influence. Journal of Plant Physiology, 2024, 301: 154303 [百度学术]
韦丽君, 盘欢, 李军, 卢赛清, 俞奔驰, 郑华, 雷开文. 木薯块根采后主要耐贮性生化指标的分析. 西南农业学报, 2016, 29(3): 525-530 [百度学术]
Wei L J, Pan H, Li J, Lu S Q, Yu B C, Zheng H, Lei K W. Analysis of the main biochemical indicators of storability of cassava tuberous roots after harvest. Southwest China Journal of Agricultural Sciences, 2016, 29(3): 525-530 [百度学术]
王旭明, 麦绮君, 周鸿凯, 赵夏夏, 陈景阳, 龚茂健, 杨善, 谢平, 莫俊杰, 叶昌辉. 盐胁迫对4个水稻种质抗逆性生理的影响. 热带亚热带植物学报, 2019, 27(2): 149-156 [百度学术]
Wang X M, Mai Q J, Zhou H K, Zhao X X , Chen J Y, Gong M J, Yang S, Xie P, Mo J J, Ye C H. Effects of salt stress on resistance physiology of four rice germplasms. Journal of Tropical and Subtropical Botany, 2019, 27(2): 149-156 [百度学术]
韦婉羚, 何文, 阮丽霞, 梁振华, 杨海霞, 陈会鲜, 李恒锐, 黄振玲. 华南205木薯二倍体及其同源四倍体对朱砂叶螨取食胁迫的生理响应. 植物保护学报, 2024, 51(2): 456-466 [百度学术]
Wei W L, He W, Ruan L X, Liang Z H, Yang H X, Chen H X, Li H R, Huang Z L. Physiological responses of cassava SC205 diploids and their autotetraploids to feeding stress by carmine spider mite Tetranychus cinnabarinus. Journal of Plant Protection, 2024, 51(2): 456-466 [百度学术]
王鹏伟, 闫晓文, 刘珍宇, 孙丽, 刘振威, 李新峥. 百蜜系列南瓜品种(系)采后品质变化和耐贮性比较. 河南农业科学, 2024, 53(3): 158-168 [百度学术]
Wang P W, Yan X W, Liu Z Y, Sun L, Liu Z W, Li X Z. Comparison of post-harvest quality changes and storability of Baimi series pumpkin varieties (lines). Henan Agricultural Sciences, 2024, 53(3): 158-168 [百度学术]
张群, 宁密密, 舒楠. 预冷不同时间对阳光玫瑰葡萄贮藏品质的影响. 湖南农业科学, 2024(1): 45-50 [百度学术]
Zhang Q, Ning M M, Shu N. Effects of pre-cooling duration on postharvest quality of sunshine rose grapes. Hunan Agricultural Sciences, 2024(1): 45-50 [百度学术]
毕莹, 李慧, 马鑫, 王新宇, 黄帅, 张琪, 雷雅馨, 王雪, 王富鑫, 许文昌, 王静. 不同品种哈密瓜果实采后品质与耐冷性关系分析. 食品科技, 2023, 48(10): 27-34 [百度学术]
Bi Y, Li H, Ma X, Wang X Y, Huang S, Zhang Q, Lei Y X, Wang X, Wang F X, Xu W C, Wang J. Analysis on the relationship between postharvest quality and cold resistance of different Hami melon varieties. Food Science and Technology, 2023, 48(10): 27-34 [百度学术]
刘琳, 毛凯, 干友民, 白史且, 李君, 唐雪辉. 抗寒锻炼对假俭草SOD、POD活性及MDA含量的影响. 湖北农业科学, 2005, 44(6): 87-89 [百度学术]
Liu L, Mao K, Gan Y M, Bai S Q, Li J, Tang X H. Effects of cold hardening on SOD, POD activities and MDA contents indifferent populations of wild centipede grass. Hubei Agricultural Sciences, 2005, 44(6): 87-89 [百度学术]
梁美, 王纪辉, 胡伯凯, 刘亚娜, 耿阳阳, 张时馨, 曾亚军, 何佳丽, 杨光. 泡核桃青果贮藏期间生理指标响应. 南京师大学报:自然科学版, 2023, 46(4): 21-28 [百度学术]
Liang M, Wang J H, Hu B K, Liu Y N, Geng Y Y, Zhang S X, Zeng Y J, He J L, Yang G. Response of physiological indicators during the storage of Juglans sigillata green fruit. Journal of Nanjing Normal University: Natural Science Edition, 2023, 46(4): 21-28 [百度学术]
姜元昊, 张凯浩, 高亚宁, 马新超, 杨鸿基, 轩正英. 不同番茄品种采后品质变化和耐贮性比较. 中国瓜菜,2023, 36(6): 114-119 [百度学术]
Jiang Y H, Zhang K H, Gao Y N, Ma X C, Yang H J, Xuan Z Y. Comparison of postharvest quality changes and storage resistance of different varieties of tomatoes. China Cucurbits and Vegetables, 2023, 36(6): 114-119 [百度学术]
樊吴静, 罗兴录, 翟瑞宁, 覃徐建. 不同淀粉型木薯品种采后块根变质生理特性的比较. 中国农业大学学报, 2019, 24(3): 39-44 [百度学术]
Fan W J, Luo X L, Zhai R N, Qin X J. Comparison on the physiological characteristics of tuberous roots of cassava varieties with different starch content during post-harvest deterioration. Journal of China Agricultural University, 2019, 24(3): 39-44 [百度学术]