核仁显性与植物多倍体形成

陈纪鹏,刘小林,胡月清,毛康康

(宜春学院生命科学与资源环境学院/江西省作物生长发育调控重点实验室,宜春336000)

摘要:核仁显性在植物多倍化进程中发挥着重要作用,通过调节rDNA基因表达控制核糖体数量,使多倍体植物能够应对多倍化带来的遗传变化。串连重复的rDNA基因表达调控是一种大规模、整体基因表达调控模式,rDNA基因沉默往往发生在整个核仁组织区,受所处位置染色质状态控制,而不受基因前序列的影响。核仁显性不但在调控蛋白质合成中发挥着重要作用,还与多倍体染色体组稳定性相关,相应基因组的rDNA基因沉默往往引起该基因组的染色体消除,染色体消除也是多倍体形成过程中的一种应答机制。虽然大量证据表明核仁显性与染色体消除之间存在必然的联系,但rDNA基因表达稳定染色体的遗传机制仍不清晰,尤其是染色体消除的基因组特异性更难解释。因此,对核仁显性稳定染色体组的遗传机制进一步研究将揭示核仁在多倍体形成中的作用。本研究旨在阐述植物如何通过核仁显性应对多倍化带来的基因组冲击,呈现植物多倍化进程的一个侧面。

关键词:核仁显性;多倍化;基因沉默;染色体消除

Nucleolar Dominance and Plant Polyploidy Formation

CHEN Ji-peng, LIU Xiao-lin, HU Yue-qing, MAO Kang-kang
(School of Life Science and Resource Environment Yichun University / Jiangxi Key Laboratory of Crop Growth
and Development Regulation, Yichun 336000)

Abstract: Nucleolar dominance plays an important role in plant polyploidy. Polyploid can cope with the genetic changes in polyploidy via regulating the expression of rDNA genes to control the number of ribosomes. The rDNA gene expression regulation, which is controlled by the chromatin state rather than by the DNA sequence, is a large-scale and global pattern, and genes silencing usually occurs in the whole nucleolus region. Nucleolar dominance contributes to the protein synthesis and the genome stabilization. Chromosome elimination may be a way to response mechanism in polyploidy. Although the link between nucleolar dominance and chromosome elimination is supported by tremendous evidences, the genetic mechanism remains unclear, especially the genome specificity of chromosome elimination. Therefore, further research on the genetic mechanism will reveal the role of nucleolar dominance in the formation of polyploidy. The purpose of this study is to explain how plants cope with the genomic shock of polyploidy through nucleolar dominance, and to provide an insight in polyploidization.

Key words: nucleolar dominance; polyploidy; gene silencing; chromosome elimination

1934年 Navashin^[1]发现植物杂种中来自一个亲本的染色体总是缺失次缢痕和随体结构,即杂种只遗传了一个亲本的次缢痕和随体,另一亲本的这些结构遗失,这是最早发现的核仁显性引起的细胞遗传学现

象。同年,在玉米中发现核仁的形成发生在6号染色体的次缢痕位置,因此便把次缢痕称作核仁组织区(NOR, nucleolar organizing region)^[2]。 1971 年 Wallace 等^[3]发现NOR 处聚集着大量的核糖体 DNA

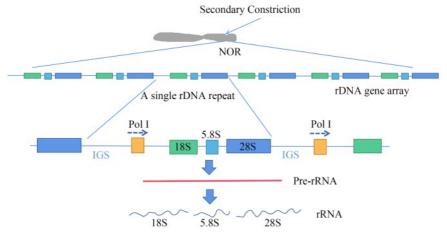
DOI: 10.13430/j.cnki.jpgr.20220617002

收稿日期: 2022-06-17 修回日期: 2022-07-02 网络出版日期: 2022-08-19

URL: https://doi.org/10.13430/j.cnki.jpgr.20220617002

第一作者研究方向为植物细胞遗传学研究, E-mai: chensi20020606@163.com

基金项目: 国家自然科学基金(32060501);江西省重点研发计划(20212BBF63014);江西省自然科学基金(20202BABL205017)


Foundation projects: National Natural Science Foundation of China (32060501); The Key R&D Program of Jiangxi (20212BBF63014); Natural Science Foundation of Jiangxi (20202BABL205017)

序列(rDNA),从而发现核仁与核糖体RNA以及核糖体形成之间的关联。随后,在多种动物和植物中发现rDNA表达与核仁形成的关系,当rDNA正常表达时,在NOR区域便形成核仁,而当rDNA沉默时,便观察不到核仁的形成。核仁显性作为植物缓冲基因组冲击的手段在植物多倍化进程中发挥着重要作用。

1 核仁的形成

参与形成核糖体的45S rDNA有18S、5.8S、28S和5S rDNA。45S rDNA前体包含18S、5.8S和28S三段,中间由2个间隔区分开,上游还有增强子、核心启动子和复制起点等控制元件,共同组成1个重复单元rDNA,成百上千个这样的重复单元首尾相

接分布在次缢痕处,形成核仁组织区^[4](图1)。位于核仁组织区的rDNA前体由RNA聚合酶 I (RNA Pol I)转录形成 45S rRNA前体,经过剪接加工形成 3种成熟的核糖体RNA(18S、5.8S和28S),而核糖体所需要的第四种 5S rRNA则由RNApol III 在NOR之外的区域转录形成,再转运至NOR参与糖糖体的合成^[5-6]。NOR一般位于染色体末端次缢痕处,但并不是每条染色体都有NOR。如人类细胞5S rDNA基因位于第1号染色体,第13、14、15、21和22号染色体的短臂上携带45S rDNA基因位点,其他染色体不包含rDNA基因。核仁只在染色体的NOR位置rDNA基因表达时形成,而无NOR位点的染色体不形成核仁^[7]。

IGS:基因间隔区;Pol I:聚合酶 I;虚线箭头:转录方向

IGS: Intergenic spacer region; Pol I: Polymerase I; Dotted arow: Derection of transcription

图1 核仁组织区(NOR)结构

Fig.1 Structure of nucleolar organizer region (NOR)

多拷贝串连重复排列的rDNA基因持续转录,以转录产物和相关蛋白为原料,组装成核糖体过程中便在NOR处形成核仁。核仁是细胞核中特定位置形成的动态无膜结构,在细胞分裂间期,采用硝酸银染色方法处理细胞可观察到核仁。组装完成的核糖体从核仁迁移到核质并进一步成熟,最终形成有活性的核糖体亚基^[8]。核仁的形成与消失受细胞周期的调节,在间期(S期和G2期)rDNA基因的转录最活跃,便形成核仁;进入细胞分裂期,rDNA基因转录被抑制,因此在整个细胞分裂期观察不到核仁。当细胞分裂结束,在新形成的子细胞中,rDNA恢复转录活性,核仁又重新出现。核仁组织区的数量和分布因物种而异,部分染色体无核仁组织区,而几乎所有的染色体最多只有1个核仁组织区、因此所有物种核仁组织区数量少于染色体数^[9]。

参与细胞生长、增殖、分化等活动的各种蛋白质均来自于核糖体的生物功能,因此,蛋白质的需求状况调控着核糖体的生物合成。核糖体的产生数量与细胞蛋白质的合成过程紧密相关,在细胞生长和增殖过程中发挥着基础性作用。核仁作为核糖体的合成场所,其数量和活性直接控制着核糖体的生物合成过程。在旺盛生长细胞中,蛋白质生物合成旺盛,核糖体的需求量大,NOR就会非常活跃;而在分化程度较高、处于静止状态的细胞中核糖体的数量也相对减少,同时核仁的活性也降低[10]。在大多数动物和植物中,rDNA基因以三种活性形式存在:永久沉默状态、暂时沉默状态和活跃状态。永久沉默的rDNA基因往往发生深度甲基化,整个NOR区域所有rDNA基因都处于异染色质状态,基因无法转录,这种表观遗传修饰状态可在细胞分裂

甚至生物繁殖过程中稳定传递。而活跃和暂时沉默状态下的NOR基因甲基化程度低,细胞分裂间期处于常染色质状态。细胞有丝分裂形成新的子细胞后,核仁在活跃的NOR区域重新形成,首先Pol I转录串连重复的rDNA基因生成核糖体RNA前体,接着参与核糖体RNA前体剪接的相关蛋白和参与核糖体合成的相关蛋白在此处聚集并组装成核糖体亚基,此时在NOR处形成核仁[11-12]。随着对核仁研究的深入,核仁新的功能逐渐被揭示,如细胞周期调节、细胞衰老和信号粒子组装、tRNA修饰和应对不良环境胁迫等。

2 rDNA基因表达调控机制

在人工合成多倍体中,某一基因组的rDNA基 因发生沉默不形成核仁,只表达其他基因组的 rDNA基因,推动该基因组的染色体形成核仁,此现 象被称作核仁显性。rDNA基因表达调控是一种大 规模的表观遗传调节模式。研究发现rDNA基因转 录调节是对整个串联重复序列整簇进行,而不是对 单个基因调控。而且发现转录调控机制是通过调 节染色质所处的状态,而不受基因前的序列影 响[13]。生物通过关闭一部分rDNA基因(整个核仁 组织区甚至整个基因组的所有 NOR)的转录实现对 细胞生长发育状态的控制,因此常出现有些核仁组 织区不形成核仁的情况[14]。RNA Pol I 是整个调控 过程的起点,细胞通过感知所处的环境条件和生理 状态,决定rDNA基因转录的起始;转录形成rRNA 的数量,决定核糖体合成速率,从而进一步影响细 胞蛋白质合成速度,最终控制细胞的生长和 增殖[15-16]。

多倍体核仁显性现象的发生与rDNA基因的表达紧密相关,rDNA基因的表达调控研究是揭示核仁显性规律的重要途径[17-18]。当前研究发现rDNA基因表达调控主要有以下四种机制:(1)rDNA基因的表达受NOR所处位置的影响,于异染色质区段中心的NOR,其基因表达相对较弱,而处于常染色质区域的NOR,其基因表达较强[19]。(2)表观遗传修饰引起的基因沉默是rDNA基因表达调控的主要手段[20]。rDNA基因上游富含GC区段易发生胞嘧啶甲基化,较多甲基的引入在空间上阻碍转录因子与DNA启动子结合致使下游基因无法正常转录,发生甲基化的同时往往伴随发生组蛋白的去乙酰化,这种组蛋白的表观遗传变化也不利于基因表达,引起相应基因的沉默[21-22]。(3)多倍体rDNA基因的数

量远多于自身需求,过量的rDNA基因被组装成异染色质状态形成稳定沉默的基因,生物对rDNA基因的调控是通过调节活性基因的数量实现,而不是通过改变全部基因的转录速率实现的,多倍体通过沉默来自某一亲本基因组的rDNA基因,只表达另一亲本的rDNA基因来实现rRNA表达量的控制,便出现了核仁显性现象[23]。(4) RNA干扰(RNAi)控制的核仁显性途径,在物种特异的RNA聚合酶指导下转录形成单链RNA,再以单链RNA为模板合成双链RNA,经切割形成24个碱基的RNA。该RNA控制DNA的甲基化,并进一步促使组蛋白的去乙酰化致使相关基因沉默[24-25]。

3 多倍化推动植物进化历程

多倍化在植物自然进化历程中发挥了巨大作 用,自然界约70%的开花植物是多倍体,而且多种 重要的栽培植物,如小麦、烟草、咖啡、棉花和甘蓝 型油菜等都是在进化史上经过多倍化形成的异源 多倍体。基因组序列研究结果表明所有植物经历 过至少一次的多倍化[26]。例如小麦的形成是在大 约50万年前,乌拉尔图小麦(Triticum urartu Thum. ex Gandil)与拟山羊草(Aegilops speltoides Tausch) 天然杂交,随后基因组加倍形成四倍体野生二粒小 麦(T.dicoccoides(Körn.)Körn.ex Schweinf.);约8000 年前,二粒小麦又与山羊草属的另一种植物粗山羊 草(A.tauschii(Coss.)Schmal.)发生杂交和基因组加 倍,最终形成当前广泛种植的普通小麦(T. aestivum L.)[27]。在众多芸薹属栽培植物中,有3个二倍体基 本种和3个四倍体复合种,早在1935年就提出由3 个二倍体种两两杂交形成3个四倍体复合种的说 法,被称作禹氏三角,即白菜(Brassica rapa L.)与甘 蓝(B.oleracea L.)杂交形成甘蓝型油菜(B. napus L.)、 白菜与黑芥(B. nigra (L.) W. D. J. Koch)杂交形成 芥菜型油菜(B. juncea (L.) Czern.)、黑芥与甘蓝杂 交形成埃塞俄比亚芥(B. carinata A. Braun)[28]。模 仿自然界多倍化过程进行多倍体育种是植物遗传 改良的常用方法[29-30],但只有极少数人工多倍体应 用到了生产中,如八倍体小黑麦。自然界成功进化 出了大量多倍体植物,而人工合成多倍体却不尽人 意,推测其原因在于两个不同物种的遗传物质进入 同一杂种细胞严重地破坏了原有的遗传平衡,造成 多倍体形成早期遗传组成极不稳定,这种现象叫做 基因组冲击。伴随着植物的多倍化进程,染色体消 除、DNA重排、基因沉默、转座子激活和基因组印记 等大量的遗传和表观遗传变化发生^[31-32]。核仁显性现象就是植物多倍化进程中发生的一种大规模基因沉默现象,以此应对多倍化引起的遗传变化。

4 核仁显性在植物多倍化中普遍发生

多倍体形成过程中常发生核仁显性现象,即仅 由1个亲本的染色体形成细胞核仁。在小麦与山羊 草种间杂种中,C基因组的NOR位点表现为显性, 其他基因组的NOR位点不表达,这种关系不受两亲 本正反交组合的影响。在不同的多倍体杂种中C基 因组还表现出不同强度的显性,在四倍体三芒山羊 草(Aegilops triuncialis L., CtCtUtUt)中C基因组所有 染色体NOR位点都有活性,但在四倍体圆柱山羊草 (A. cylindrica Host, CcCcDcDc)中,C基因组只有一 对染色体(1Cc 或 5Cc)有活性[33]。诱导多倍体沉默 的核仁组织区去甲基化,NOR可重新获得表达活 性,但会给多倍体带来不利影响,如诱导细茎野燕 麦(Avena barbata Pott ex Link)×燕麦(A. sativa L.) 获得的八倍体去甲基化作用,种子萌发受到抑制, 植物生长减少,胚乳发育明显异常[34]。可见,植物 通过核仁显性沉默掉部分rDNA对多倍体形成有重 要意义。

核仁显性具有一定的稳定性。四倍体植物牧豆树(Prosopis juliflora (Sw.) DC.)中来自1个祖先的染色体组rDNA基因处于非活性状态,另一亲本染色体组的NOR有活性形成核仁。非活性的NOR染色质高度浓缩处于异染色质状态,这种NOR转录活性的抑制在多倍体胚胎形成的早期就已经建立^[35]。异源四倍体短柄草(Brachypodium hybridum Catalán, Joch. Müll., Hasterok & G. Jenkins)中NOR显性总是发生在D染色体组上,不受杂种基因组结构影响,也不受个体发育阶段的影响^[36-37]。

核仁显性还具有组织器官特异性。尾稃草属植物不但有二倍体种,也进化出了多种四倍体。作为与小麦有较近亲缘关系的单子叶植物,具有很强的耐热特性。Urochloa ruziziensis(R. Germ. & C. M. Evrard)Crins与臂形草 U. brizantha(Hochst. ex A. Rich.)R. D. Webster两个四倍体杂交后代中,在叶片中 U. brizantha(Hochst. ex A. Rich.)R. D. Webster rDNA 基因表达占优势,而另一亲本Urochloa ruziziensis(R. Germ. & C. M. Evrard)Crins的rDNA基因不表达,在根中两亲本的rDNA基因全都正常表达。由此可推断这是一个组织特异性核仁显性模型[38]。

5 核仁显性与染色体消除

5.1 染色体消除伴随植物多倍化进程

染色体消除是指远缘杂交时,某基因组的染色体在杂种合子或幼胚发育初期细胞有丝分裂过程中丢失的现象,杂种细胞单一亲本基因组的染色体消除在多种生物中发生^[39-41]。杂种体内来自不同亲本基因组的染色体稳定性不同,即染色体消除在基因组间不是随机发生的,而是有选择性的。有些基因组的染色体在细胞分裂期易于消除,而有些基因组的染色体可比较稳定地向子细胞传递,比如在小麦与燕麦、玉米、珍珠粟等植物的杂种中,总是非小麦基因组的染色体消除^[42]。

染色体基因组间选择性消除在多种植物的远 缘杂交中被发现[43-44],诱导杂种某一亲本基因组的 染色体全部消除也是诱导单倍体的有效途径[45-46]。 以球茎大麦(Hordeum bulbosum L.)为父本对栽培 大麦(H. vulgare L.)授粉后,杂种胚发育的早期出现 了球茎大麦的染色体全部消除,产生了只有栽培大 麦基因组的单倍体。该诱导染色体消除的方法称 为"球茎大麦法",采用此方法在球茎大麦与大麦属 其他种间的杂交中也成功获得了单倍体[47]。玉米 (Zea mays L.)与小麦(Triticeae Dumort.)杂交也可 高效地诱导玉米染色体消除产生单倍体小麦[48]。 在十字花科植物杂交中,以诸葛菜 (Orychophragmus violaceus (L.) O. E. Schulz)为父 本进行杂交也可诱导染色体消除,以诸葛菜为父本 对芸薹属六倍体(AABBCC)授粉,六倍体发生了C 基因组的染色体全部消除,产生了形态与芥菜型油 菜极其相似的四倍体(AABB)[49]。

5.2 核仁显性维持相应染色体组的稳定

自从20世纪50年代,染色体消除现象在普通烟草与蓝茉莉叶烟草的杂种和普通大麦与球茎大麦的杂种中发现以来,学者们对其遗传机制进行了深入研究。从细胞水平和分子水平对杂种体内染色体消除作出了解释:(1)由于两亲本细胞周期不同步,引起不同基因组的染色体行为差异,或者核蛋白合成不同步,致使某一基因组的染色体在细胞分裂过程中丢失。(2)来自不同基因组的染色体在细胞分裂过程中丢失。(2)来自不同基因组的染色体在细胞分裂过程中形成引起染色体消除[50]。(3)某一基因组的染色体在多倍体杂种细胞背景下不能正常与着丝粒蛋白相连,缺少纺缍丝牵引致使染色体在细胞分裂过程中消除[49]。

杂种细胞内染色体消除与rDNA基因的沉默有相同的规律,即发生染色体消除的基因组的rDNA基因往往被抑制,而染色体较稳定的基因组的rDNA基因往往能正常表达并形成核仁,表现出核仁显性现象。例如芸薹属3个二倍体栽培种的基因组在自然多倍体和人工合成多倍体杂种细胞中稳定性关系均表现为B>A>C,而它们的核仁显性的关系也表现为B>A>C^[51-52]。因此有学者提出rRNA基因的表达有助于该基因组染色体的稳定^[53]。rDNA基因表达产物参与细胞内所有蛋白的合成,可能对细胞的染色体行为产生影响,也可能影响到染色体组的稳定性^[54]。

rRNA 是核糖体的一种重要成分,通过参与所 有 mRNA 的合成影响着整个细胞蛋白质的合成。 rDNA 基因和 NOR 是影响整个细胞行为的一个潜 在因素,它影响着细胞周期调控、细胞衰老与凋亡、 细胞分化、基因表达以及细胞内和细胞间物质与信 息的传递[55-56]。远缘杂种细胞内某一基因组rRNA 基因表达有助于维持本基因组所有染色体的稳定, 而且rRNA基因多拷贝的重复序列对维持基因组的 稳定也起着十分重要的作用[57]。来自不同物种的 rDNA基因具有特异性,构成核糖体的蛋白质在不 同物种间也存在差异,这形成了核糖体的种间特异 性。核糖体筛选学说认为,在合成蛋白质的过程 中,组成核糖体的rRNA、核糖体蛋白质与作为模板 的mRNA之间的正确识别与互作是决定蛋白质合 成的重要因素。因此由某一物种基因组产生的 rRNA和核糖体蛋白质组成的核糖体优先与该基因 组的mRNA结合,从而支持自身基因组的基因表 达[58]。在杂种体内某基因组的rDNA基因正常表达 形成该基因组特异的核糖体,从而表达该基因组特 异的着丝粒蛋白来稳定其染色体。而rDNA基因不 表达的基因组不能合成该基因组特异的着丝粒蛋 白,致使其染色体无法招募到纺缍丝,缺少纺缍丝 牵引的染色体在细胞分裂时容易丢失[59]。因此,某 一亲本基因组的核仁显性会影响到该基因组所有 染色体的正常功能,从而有助于该基因组的染色体 稳定[60]。

6 结论与展望

杂交使不同遗传物质进入同一细胞给植物带来了极大的基因组冲击,相伴发生的基因组加倍又引起巨大的遗传变化。植物通过表观遗传学手段

大规模地调节 rDNA 表达控制细胞内核糖体的数 量,从而使多倍体有效应对大规模遗传变化带来的 影响。虽然细胞内存在过量的基因,但通过控制其 表达量可实现生物代谢的经济性[61]。有些植物甚 至需要采用更剧烈的手段(染色体消除)来应对多 倍化带来的影响,大量研究表明核仁显性也与染色 体消除密切关联。可见,核仁显性在植物多倍体形 成过程中发挥着重要作用,是植物多倍化进程的缓 冲剂[62]。虽然对植物多倍化进程中核仁显性现象 研究取得了较大进展,但核仁显性的深层机制还有 待进一步研究,比如多倍体杂种选择某一染色体组 NOR失活的原因,rDNA沉默的深层表观遗传机制, 某一染色体组核仁显性世代间传递的稳定性原理 等。当前大量研究致力于揭示核仁显性规律及其 深层遗传机理,对核仁显性现象更全面深入的认识 将有利于通过甲基化、去乙酰化等表观遗传学手段 操控rDNA的表达,从而控制人工合成多倍体的遗 传及表观遗传变异。比如人为抑制多倍体rDNA基 因表达诱导相应基因组染色体消除创建新物种;或 通过抑制或提高人工合成多倍体某一基因组的 rDNA基因表达改变整个基因组的表达状况,从而 改变个体发育的方向创造有价值的多倍体植物。

参考文献

- [1] Navashin M. Chromosome alterations caused by hybridization and their bearing upon certain general genetic problems. Cytologia, 1934, 5(2): 169-203
- [2] Mc Clintock M. The relationship of a particular chromosomal element to the developmet nucleoli *Zei mays*. External Resources Cross Reference, 1934, 21: 294-328
- [3] Wallace H, Langridge W H R. Differential amphiplasty and the control of ribosomal RNA synthesis. Heredity, 1971, 27(1): 1-13
- [4] Zhao Y, Zhang W Y, Wang R L, Niu D L. Divergent domains of 28S ribosomal RNA gene: DNA barcodes for molecular classification and identification of mites. Parasites Vectors, 2020, 13: 251
- [5] Patel J, Lama L, Hoffmann N A. RNA polymerase III initiation on coligo DNA templates containing loops of variable sequence, size and nucleotide chemistry. Gene, 2017, 612: 49-54
- [6] Schäffer A A, McVeigh R, Robbertse B, Schoch C L, Johnston A, Underwood B A, Mizrachi I K, Nawrocki E P. Ribovore: Ribosomal RNA sequence analysis for GenBank submissions and database curation. BioMed Central Bioinformatics, 2021, 22: 400
- [7] Correll C C, Bartek J, Dundr M. The Nucleolus: A multiphase

- condensate balancing ribosome synthesis and translational capacity in health, aging and ribosomopathies. Cells, 2019, 8 (8): 869
- [8] Micol-Ponce R, Sarmiento-Manus R, Ruiz-Bayón A, Montacié C, Saez-Vasquez J, Ponce M R. Arabidopsis ribosomal RNA processing7 is required for 18s rRNA maturation. The Plant Cells, 2018, 30: 2855-2872
- [9] Tomecki R, Sikorski P J, Laczek M Z. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells-focus on coordinated action of endo-and exoribonucleases. Federatoin of European Biochemical Societies Letters, 2017, 591(13): 1801-1850
- [10] Phan T, Khalid F, Iben S. Nucleolar and ribosomal dysfunctiona common pathomechanism in childhood progerias. Cells, 2019, 8(6): 534
- [11] Moss T, Mars J C, Tremblay M G, Sabourin-Felixe M. The chromatin landscape of the ribosomal RNA genes in mouse and human. Chromosome Research, 2019, 27: 31-40
- [12] Pecoraro A, Pagano M, Russo G, Russo A. Ribosome biogenesis and cancer: Overview on ribosomal proteins. International Journal of Molecular Sciences, 2021, 22(11): 5496
- [13] Ferreira M T M, Rocha L C, Vitoriano M B Z, Mittelmann A, Techio V H. Relationship between epigenetic marks and the behavior of 45S rDNA sites in chromosomes and interphase nuclei of Lolium-Festuca complex. Molecular Biology Reports, 2018, 45: 1663-1679
- [14] Saradadevi G, Priyadarshini N, Bera A. Together we are on together we are off -a conserved rule for ribosomal RNA (rRNA) gene regulation. Journal of Plant Biochemistry and Biotechnology, 2020, 29: 743-753
- [15] Saez-Vasquez J, Delseny M. Ribosome biogenesis in plants: From functional 45s ribosomal DNA organization to ribosome assembly factors. The Plant Cell, 2019, 31(9):1945-1967
- [16] Ilyeong C, Young J, Youngki Y, Hyun-Soo C, Hyun-Sook P. The *in vivo* functions of ARPF2 and ARRS1 in ribosomal RNA processing and ribosome biogenesis in *Arabidopsis*. Journal of Experimental Botany, 2020 (9): 9
- [17] Liu Y, Ryozo I. Function of plant dexd/h-box RNA helicases associated with ribosomal RNA biogenesis. Frontiers in Plant Science, 2018, 9: 125
- [18] Greil F, Ahmad K. Nucleolar dominance of the Y chromosome in *Drosophila melanogaster*. Genetics, 2012, 191 (4): 1119-1128
- [19] Horigome C, Kobayashi T. Rejuvenation of ribosomal RNA gene repeats at the nuclear pore. Current Genetics, 2020, 66: 7-13
- [20] Chen X S, Lu L, Qian S M. Canonical and noncanonical actions of arabidopsis histone deacetylases in ribosomal RNA processing. Plant Cell, 2018, 30: 134-152
- [21] Chen X, Ding A B, Zhong X. Functions and mechanisms of plant histone deacetylases. Science China Life Sciences, 2020, 63: 206-216
- [22] 王蓉. 柑橘体细胞杂种核仁共显性机制研究. 武汉: 华中农

- ₩大学, 2016
- Wang R. Mechanism of nucleolus co-dominance in citrus somatic hybrids. Wuhan: Huazhong Agriculture University, 2016
- [23] Vallabhaneni A R, Kabashi M, Haymowicz M, Bhatt K, Wayman V, Conrad-Webb S A H. HSF₁ induces RNA polymerase II synthesis of ribosomal RNA in S. cerevisiae during nitrogen deprivation. Current Genetics, 2021, 67: 937-951
- [24] Hao Q, Prasanth K V. Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mammalian Genome, 2022, 33: 402-411
- [25] Kim H K, Fuchs G, Wang S C, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu J P, Chu K, Zhang F J, Chua M S, So S, ZhangQ F, Sarnow P, Kay M A. A transfer-RNAderived small RNA regulates ribosome biogenesis. Nature, 2017, 552(7683): 57-62
- [26] Fawcett J, Maere S, Vajknm de Peer Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proceedings of the National Academy of Sciences of The United States of America, 2009, 106(14): 5737-5742
- [27] Marcusse N T, Sandve S R, Heier L. Ancienthy-hybridizatons among theanestral genome of breadwheat. Science, 2014, 354 (6194): 1250092
- [28] Nagaharu U. Genome analysis in *Brassica* with special reference to the experimental formation of *B*. napus and peculiar mode of fertilization. Japanese Journal of Botany, 1935, 7(2): 389-452
- [29] Lunerová J, Renny-Byfield S, Matyášek R, Leitch A, Kovařík A. Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in *Nicotiana tabacum* allotetraploid. Plant Systematics and Evolution, 2017, 303: 1043-1060
- [30] 邵玉娇, 曾攀, 李再云. 芸薹属种间和属间杂种和异源多倍体的偏亲表型及遗传机制. 植物遗传资源学报, 2021, 22 (6): 1474-1482 Shao Y J, Zeng P, Li Z Y. Phenotypic bias and genetic
 - Shao Y J, Zeng P, Li Z Y. Phenotypic bias and genetic mechanisms in interspecific/intergeneric hybrids and allopolyploids of *Brassica*. Journal of Plant Genetic resources, 2021, 22(6): 1474-1482
- [31] Kozlowski D K L, Hassanaly-Goulamhoussen R, Rocha M D, Koutsovoulos G D, Bailly-Bechet M, Danchin E G J. Movements of transposable elements contribute to the genomic plasticity and species diversification in an asexually reproducing nematode pest. Evolutionary Applications, 2021, 14: 1844-1866
- [32] Shang J Z, Tian J P, Cheng H H, Yan Q M, Li L, Jamal A, Xu Z P, Xiang L, Saski C A, Jin S X, Zhao K G, Liu X Q, Chen L Q. The chromosome-level wintersweet (*Chimonanthus praecox*) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology, 2020, 21(1): 200
- [33] Mirzaghaderi G, Abdolmalaki G, Zohouri M, Moradi Z,

- Mason A S. Dynamic nucleolar activity in wheat \times Aegilops hybrids: Evidence of C-genome dominance. Plant Cell Reports, 2017, 36(8): 1277-1285
- [34] Florek M, Kosina R. rDNA cytogenetics and some structural variability in an *Avena barbata* Pott ex Link × *A. sativa* subsp. nuda (L.) Gillet et Magne amphiploid after 5-azaC treatment. Genetic Resources and Crop Evolution, 2017, 64: 1723-1741
- [35] Fernando T P. Differential amphiplasty and nucleolar dominance in somatic metaphase cells as evidence of hybridization in *Prosopis juliflora* (Leguminosae, Mimosoideae): Regular article. Cytologia, 2020, 85(4): 295-299
- [36] Natalia B Z, Ewa R, Elzbieta W, Alexander B, Robert H. Ribosomal DNA loci derived from *Brachypodium stacei* are switched off for major parts of the life cycle of *Brachypodium hybridum*. Journal of Experimental Botany, 2019, 70(3): 805-815
- [37] Natalia B Z, Ales K, Ewa R, Metin T, Savas T G, Sean G, Vogel J P, Robert H. The fate of 35S rRNA genes in the allotetraploid grass *Brachypodium hybridum*. The Plant Journal for Cell and Molecular Biology, 2020, 103(5): 1810-1825
- [38] Santos Y D, Pereira W A, de Paula C M P, Rume G C, Lima A A, Chalfun-Junior A, Sobrinho F S, Techio V H. Epigenetic marks associated to the study of nucleolar dominance in *Urochloa* P. Beauv.. Plant Molecular Biology Reporter, 2020, 38: 380-393
- [39] Sosnowska K, Majka M, Majka J, Jan Bocianowski, Kasprowicz M, KsiążczykT, Szała L Cegielska-Taras T. Chromosome instabilities in resynthesized *Brassica napus* revealed by FISH. Journal of Applied Genetics, 2020, 61: 323-335
- [40] Bobkov S V, Selikhova T N. Marker-assisted selection of pea interspecific hybrids with introgressive alleles of convicilin. // Popkova E G, Sergi B S. Sustainable Agriculture. Environmental footprints and eco-design of products and processes. Singapore: Springer, 2022; 283-293
- [41] 李亚洲, 罗江陶, 张舒洁, 黄磊, 张连全, 袁中伟, 甯顺腙, 刘登才, 郝明. 合成小麦-黑麦杂种 D染色体优先消除的细胞 学基础分析//中国作物学会. 第十届全国小麦基因组学及分子育种大会摘要集. 烟台: 中国作物学会, 2019: 298
 Li Y Z, Luo J T, Zhang S J, Huang L, Zhang L Q, Yuan Z W, Ning S Z, Liu D C, Hao M. Cytological analysis of preferential elimination of D chromosome in synthetic wheatrye hybrid//Crop Science Society of China. The 10th national congress on wheat genomics and molecular breeding. Yantai: Crop Science Society of China, 2019: 298
- [42] Jiang M D, He M D, Ding M Q, Rong J K. Chromosome elimination of hexaploid common wheat mediated by interaction between chinese spring cytoplasm and a genetic factor(s) on chromosome arm 1BL of wild emmer. Euphytica, 2016, 209 (3): 615-625
- [43] Polgári D, Mihók E, Sági L. Composition and random elimination of paternal chromosomes in a large population of

- wheat × barley (*Triticum aestivum* L. × *Hordeum vulgare* L.) hybrids. Plant Cell Reports, 2019, 38: 767-775
- [44] Thomas B, Murray B G, Murphy D J. Encyclopedia of applied plant sciences. Second Edition. Massachusetts: Acidamic Press, 2017:147-151
- [45] Sharma P, Chaudhary H K, Manoj N V, Singh K, Relan A, Sood V Kl. Haploid induction in Triticale × Wheat and Wheat × Rye derivatives following imperata cylindricamediated chromosome elimination approach. Cereal Research Communications, 2019, 47: 701-713
- [46] Chaudhary H K, Badiyal A, Jamwal N S, Sharma P, Manoj N V, Singh K. Recent advances in chromosome eliminationmediated doubled haploidy breeding: Focus on speed breeding in bread and durum wheats//Gosal S, Wani S. Accelerated plant breeding. Cham: Springer, 2020: 167-189
- [47] Mehta I, Chaudhary H K, Sharma P, Manoj N V, Singh K, Sran R S. In vivo colchicine manipulation for enhancing DH production efficiency in *Triticum durum* using Imperata cylindrica-mediated chromosome elimination approach. Cereal Research Communications, 2020, 48:217-224
- [48] Kapoor C, Chaudhary H K, Relan A, Manoj A V, Singh K, Sharmaet P. Haploid induction efficiency of diverse Himalayan maize (*Zea mays*) and cogon grass (*Imperata cylindrica*) gene pools in hexaploid and tetraploid wheats and triticale following chromosome elimination-mediated approach of doubled haploidy breeding. Cereal Research Communications, 2020, 48:539-545
- [49] Ge X H, Wang J, Li Z Y. Different genome-specific chromosome stabilities in synthetic *Brassica* allopolyploids revealed by wide cross with *Orychophragms*. Annals of Botany, 2009, 104(1): 19-31
- [50] Carmen E M, Clara M. Histone H3 phosphorylation and elimination of paternal X chromosomes at early cleavages in sciarid flies. Journal of Cell Science, 2013, 126(14): 3214-3222
- [51] Watts A, Sankaranarayanan S, Raipuria R K, Watts A. Production and application of doubled haploid in *Brassica* improvement//Wani S, Thakur A, Jeshima Khan Y. Brassica improvement. Cham: Springer, 2020: 67-84
- [52] Zhou J N, Tan C, Cui C, Ge X H, Li Z Y. Distinct subgenome stabilities in synthesized *Brassica* allohexaploids. Theoretical and Applied of Genetics, 2016, 129: 1257-1271
- [53] Kobayashi T. A new role of the rDNA and nucleolus in the nucleus—rDNA instability maintains genome integrity. Biology Essays, 2008, 30(3): 267-272
- [54] Byrne M E. A role for the ribosome in development. Trends Plant Science, 2009, 14(9): 512-519
- [55] Potapova T A, Gerton J L. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Research, 2019, 27: 109-127
- [56] Zhu M, Mu H, Jia M, Deng L, Dai X. Control of ribosome synthesis in bacteria: The important role of rRNA chain elongation rate. Science China Life Sciences, 2021, 64: 795-802

- [57] Denisenko O. Epigenetics of ribosomal RNA genes. Biochemistry Moscow, 2022, 87: S103-S110
- [58] Dong H J, Zhang R, Kuang Y, Wang X X. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Archives of Microbiology, 2021, 203: 1021-1032
- [59] Xue S F, Barna M. Specialized ribosomes: A new frontier in gene regulation and organismal biology. Nature Reviews Molecular Cell Biology, 2012, 13: 355-369
- [60] Paredes S, Branco AT, Hartl DL, Maggert KA, Lemos B,

- Clark A G. Ribosomal DNA deletions modulate genome-wide gene expression: "rDNA-sensitive" genes and natural variation. The Public Library of Science Genetics, 2011, 7(4): 1376-1382
- [61] Khaova E A, Kashevarova N M, Tkachenko A G. Ribosome hibernation: Molecular strategy of bacterial survival (review). Applied Biochemistry and Microbiology, 2022, 58:213-231
- [62] Chandrasekhara C, Mohannath G, Blevins T, Pontvianne F, Pikaard C S. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in *Arabidopsis*. Genes and Development, 2016, 30(2):177-190