Abstract:To investigate the effect of exogenous pea ferritin gene (Pea-Fer) on major mineral elements accumulation in transgenic rice, a near isogenic line (NIL BC6F3) Fer34-XS11 was developed from the donor parent (exogenous ferritin transgenic pure line Fer34) and the recurrent parent (Oryza sativa ssp. japanica) (Xiushui 11) through repeated backcrossing and self-crossing. The contents of major mineral elements, including Fe, Ca, Mn, and Zn, from various tissues (i.e, root, stem, and leaf sheath) at different developmental stages (i.e., seedling, tillering, and maturing) of the transgenic plants and grains were further analyzed. The results showed that the iron content of Fer34-XS11 increased significantly in different organs, developmental stages, and grains, but no obvious difference was observed in other mineral elements (i.e., Ca, Mn, and Zn) compared to the wild type Xiushui 11. This result provides important information for further studying and utilizing the new transgenic iron-rich rice.