2025年6月8日 20:52 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2018年第19卷第1期 >112-121. DOI:10.13430/j.cnki.jpgr.2018.01.013 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
植物TCP转录因子的作用机理及其应用研究进展
DOI:
10.13430/j.cnki.jpgr.2018.01.013
CSTR:
作者:
  • 冯志娟

    冯志娟

    浙江省农业科学院蔬菜研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐盛春

    徐盛春

    浙江省农业科学院蔬菜研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘娜

    刘娜

    浙江省农业科学院蔬菜研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张古文

    张古文

    浙江省农业科学院蔬菜研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 胡齐赞

    胡齐赞

    浙江省农业科学院蔬菜研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 龚亚明

    龚亚明

    浙江省农业科学院蔬菜研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31601767和31372072);浙江省农业科学院青年人才培养项目(2016R23R08E06) ;浙江省自然科学基金项目(LY17C150007)


Molecular mechanisms and applications of TCP transcription factors in plants
Author:
  • feng zhijuan

    feng zhijuan

    Institute of Vegetables, Zhejiang Academy of Agriculture
    在期刊界中查找
    在百度中查找
    在本站中查找
  • xu shengchun

    xu shengchun

    Institute of Vegetables, Zhejiang Academy of Agriculture
    在期刊界中查找
    在百度中查找
    在本站中查找
  • liu na

    liu na

    Institute of Vegetables, Zhejiang Academy of Agriculture
    在期刊界中查找
    在百度中查找
    在本站中查找
  • zhang guwen

    zhang guwen

    Institute of Vegetables, Zhejiang Academy of Agriculture
    在期刊界中查找
    在百度中查找
    在本站中查找
  • hu qizan

    hu qizan

    Institute of Vegetables, Zhejiang Academy of Agriculture
    在期刊界中查找
    在百度中查找
    在本站中查找
  • gong yaming

    gong yaming

    Institute of Vegetables, Zhejiang Academy of Agriculture
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    TCP转录因子是一类植物特有蛋白,含有保守的TCP domain,其中由60个氨基酸组成的bHLH结构是结合DNA和蛋白互作所必需的。TCP转录因子由于其广泛参与调控植物的生长发育过程(如分枝、株高、叶型、花型等)而备受关注。最近有报道显示,TCP转录因子在植物逆境胁迫应答中(如低温和高盐)同样发挥重要作用。TCP蛋白参与多种信号转导途径(如油菜素内酯、茉莉酸、赤霉素、细胞分裂素等),可能是连接生长发育和介导胁迫响应的一个交叉点。本文从分子生物学角度,系统综述了植物TCP转录因子的作用机理及其在激素应答、发育调控及环境胁迫响应等过程中的功能,以期为基因工程方法改良作物生长模式和抗性提供参考。

    关键词:TCP转录因子;激素信号;生长发育;逆境应答;作用机理
    Abstract:

    TCP transcription factors (TFs) constitute a family of plant-specific proteins, with conserved motif known as the TCP domain. TCP domain contained 60 amino acids, and formed a bHLH structure involved in DNA-binding and protein-protein interaction. TCP TFs have been found to regulate many aspects of plant development, such as branching, height, leaf and flower growth. However, the study of TCP TFs in response to abiotic stress started relatively late. Accumulating evidence suggested that these proteins also played crucial roles in environmental stress responses, such as those mounted to cold and salt stresses. TCP TFs were involved in brassinolide, jasmonic acid, gibberellin and cytokinin signal transduction pathways. Thus, TCP proteins might be involved in the cross-talking between plant development and stress signal pathway. This paper systematically reviewed the latest advances on the functions and mechanisms of TCP TFs in plant developmental programs, hormonal interactions and environmental stresses, which may shed new lights on the applications of these proteins in modifying plant growth and resistance in desirable ways.

    Key words:TCP transcription factor; hormone response; growth and development; environmental stress; mechanism of action
    参考文献
    参考文献
    [1] Cubas P, Lauter N, Doebley J, et al. The TCP domain: a motif found in proteins regulating plant growth and development [J]. Plant J, 1999, 18(2):215-222
    [2] Doebley J, Stec A, Gustus C. Teosinte branche d1 and the origin of maize: evidence for epistasis and the evolution of dominance [J]. Genetics, 1995, 141 (1) :333-346
    [3] Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum [J]. Nature 1995, 383(6603) :794-799
    [4] Kosugi S and Ohashi Y. PCF1 and PCF2 specifically bind to cis-elements in the rice proliferating cell nuclear antigen gene [J]. Plant Cell 1997, 9 (9): 1607-1619
    [5] Mondragón-Palomino M, Trontin C. High time for a roll call: gene duplication and phylogenetic relationships of TCP -like genes in monocots [J]. Ann Bot, 2011,107(9):1533-1544.
    [6] Citerne HL, Le Guilloux M, Sannier J, et al. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots [J]. PLoS One, 2013, 8(9):e74803
    [7] Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants [J]. J Mol Evol, 2007, 65(1), 23-33
    [8] Li S. The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development [J]. Plant Signal Behav, 2015, 10(7): e1044192.
    [9] Lopez JA, Sun Y, Blair PB, et al. TCP three-way handshake: linking developmental processes with plant immunity [J]. Trends Plant Sci, 2015, 20(4):238-245
    [10] Manassero NG, Viola IL, Welchen E, et al. TCP transcription factors: architectures of plant form [J]. Biomol Concepts, 2013, 4(2):111-127
    [11] Aggarwal P, Das Gupta M, Joseph AP, et al. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis [J]. Plant Cell, 2010, 22(4): 1174-1189
    [12] Martin-Trillo M and Cubas P. TCP genes: a family snapshot ten years later [J]. Trends Plant Sci, 2010, 15(1), 31-39
    [13] Lupas A, Van Dyke M, Stock J. Predicting coil coils from protein sequences [J]. Science, 1991, 252(5009): 1162-1164
    [14] Horn S, Pabón-Mora N, Theu? VS, et al. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids [J]. Plant J, 2005, 81(4): 559-571.
    [15] Kosugi S and Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family [J]. Plant J, 2002, 30(3): 337-348
    [16] Viola I L, Uberti Manassero N G, Ripoll R, et al. The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain [J]. Biochem J, 2011, 435(1):143-155
    [17] Viola IL, Reinheimer R, Ripoll R, et al. Determinants of the DNA binding specificity of class I and class II TCP transcription factors [J]. J Biol Chem, 2012,287(1): 347- 56.
    [18] Pirozynski KA and Malloch DW. The origin of land plants: a matter of mycotrophism [J]. Biosystems, 1975,6(3):153-164
    [19] Howarth DG and Donoghue MJ. Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots [J]. Proc Natl Acad Sci U S A, 2006, 103(24): 9101– 9106
    [20] 陈雅琼, 孙亭亭, 陈蕾, 等. 烟草BRANCHED1-Like基因的克隆及表达分析[J]. 植物遗传资源学报, 2015,16(6):1321-1329
    [21] Mukhopadhyay P and Tyagi AK. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways [J]. Sci Rep, 2015, 5: 9998-10008
    [22] Tatematsu K, Nakabayashi K, Kamiya Y, et al. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana [J]. Plant J, 2008, 53(1): 42-52.
    [23] Uberti-Manassero NG, Lucero LE, Viola IL, et al. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins [J]. J Exp Bot, 2012, 63(2):809-823.
    [24] Li ZY, Li B, Dong AW. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Mol Plant, 2012 , 5(1):270-280
    [25] Li C, Potuschak T, Colón-Carmona A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways [J]. Proc Natl Acad Sci U S A, 2005, 102(36):12978-12983.
    [26] Danisman S, van der Wal F, Dhondt S, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically [J]. Plant Physiol, 159(4):1511-1523
    [27] Guan P, Ripoll JJ, Wang R, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci U S A, 2017,114(9):2419-2424,
    [28] Wu JF, Tsai HL, Joanito I, et al. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis [J]. Nat Commun, 2016, 7:13181-13190
    [29] Pruneda-Paz JL, Breton G, Para A, et al. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock [J]. Science, 2009, 323(5920):1481-1485
    [30] Guo Z, Fujioka S, Blancaflor EB, et al. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana [J]. Plant Cell, 2010, 22(4):1161-1173.
    [31] An J, Guo Z, Gou X, Li J. TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana [J]. Plant Signal Behav. 2011 Aug;6(8):1117-8.
    [32] Gao Y, Zhang D, Li J. TCP1 modulates DWF4 Expression via directly interacting with the GGNCCC motifs in the promoter region of DWF4 in Arabidopsis thaliana [J]. J Genet Genomics, 2015, 42(7):383-392
    [33] Koyama T, Mitsuda N, Seki M, et al. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis [J]. Plant Cell, 2010, 22(11):3574- 3588
    [34] Schommer C, Palatnik JF, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets [J]. PLoS Biol, 2008, 6(9):e230
    [35] Baba K, Nakano T, Yamagishi K, et al. Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of psbD [J]. Plant Physiol, 2001, 125(2):595-603.
    [36] Masuda HP, Cabral LM, De Veylder L, et al. ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription [J]. EMBO J, 2008, 27(20):2746-2756.
    [37] Crawford BC, Nath U, Carpenter R, et al. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum [J]. Plant Physiol, 2004, 135(1):244-253
    [38] Yang X, Zhao XG, Li CQ, et al. Distinct regulatory changes underlying differential expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR genes associated with petal variations in zygomorphic flowers of Petrocosmea spp. of the family gesneriaceae [J]. Plant Physiol, 2015,169(3):2138-2151
    [39] Schommer C, Debernardi JM, Bresso EG, et al. Repression of cell proliferation by miR319-regulated TCP4 [J]. Mol Plant, 2014, 7(10):1533-1544
    [40] Mao Y, Wu F, Yu X, et al. MicroRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in chinese cabbage by differential cell division arrest in leaf regions [J]. Plant Physiol, 2014, 164(2):710-720.
    [41] De Paolo S, Gaudio L, Aceto S. Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica [J]. Sci Rep, 2015, 5:16265-16275
    [42] Kosugi S and Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family [J]. Plant J, 2002, 30(3):337-348
    [43] 邹世慧,王会平,余勇,等. 矮牵牛ECE支TCP基因的克隆及表达分析 [J].园艺学报, 2013, 40(002): 307-316
    [44] Lin YF, Chen YY, Hsiao YY, et al. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris [J]. J Exp Bot, 2016, 67(17):5051-5066
    [45] Parapunova V, Busscher M, Busscher-Lange J, et al. Identification, cloning and characterization of the tomato TCP transcription factor family [J]. BMC Plant Biol, 2014, 14:157-173
    [46] Howarth DG and Donoghue MJ. Duplications and expression of DIVARICATA-like genes in dipsacales [J]. Mol Biol Evol. 2009, 26(6):1245-1258
    [47] Weir I, Lu J, Cook H, et al. CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum [J]. Development,2004,131(4): 915-922
    [48] Hammani K, Gobert A, Hleibieh K, et al. An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation. Plant Cell, 2011, 23(2):730-740
    [49] Davière JM, Wild M, Regnault T, et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height [J]. Curr Biol, 2014, 24(16):1923-1928
    [50] Trémousaygue D, Garnier L, Bardet C, et al. Internal telomeric repeats and “TCP-domain” protein binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells [J]. Plant J, 2003, 33(6):957-966
    [51] Li S and Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana [J]. Plant, 2013,76(6):901-913
    [52] Suzuki T, Sakurai K, Ueguchi C, et al. Two types of putative nuclear factors that physically interact with histidine containing phosphotransferase (Hpt) domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana [J]. Plant Cell Physiol 2001, 42(1):37-45
    [53] Steiner E, Efroni I, Gopalraj M, et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers [J]. Plant Cell, 2012,24(1):96-108.
    [54] Viola IL, Camoirano A, Gonzalez DH. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis [J]. Plant Physiol, 2016, 170(1):74-85
    [55] Creelman RA and Mullet JE. Biosynthesis and action of jasmonates in plants [J]. Annu Rev Plant Physiol Plant Mol Biol., 1997, 48: 355-381
    [56] Hao J, Tu L, Hu H, et al. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system [J]. J Exp Bot, 2012,63(17):6267-6281
    [57] Sugio A, Kingdom HN, MacLean AM, et al. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis [J]. Proc Natl Acad Sci U S A,2011, 108(48): E1254-1263
    [58] Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds [J]. Plant Cell, 2007,19(2):458-472
    [59] Shi P, Guy KM, Wu W, et al. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus [J]. BMC Plant Biol, 2016, 16:85-97
    [60] Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice [J]. Plant J, 2003, 3(3):513-520.
    [61] Braun N, de Saint Germain A, Pillot JP, et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching [J]. Plant Physiol, 2012,158(1):225-238
    [62] Martín-Trillo M, Grandío EG, Serra F, et al. Role of tomato BRANCHED1-like genes in the control of shoot branching [J]. Plant J, 2011, 67(4):701-714
    [63] Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs [J]. Nature,2003, 425(6955):257-263
    [64] Burko Y, Shleizer-Burko S, Yanai O. A role for APETALA1/fruitfull transcription factors in tomato leaf development [J]. Plant Cell, 2013,25(6):2070-2083
    [65] Wang J, Wang Y, Luo D. LjCYC genes constitute floral dorsoventral asymmetry in Lotus japonicus [J]. J Integr Plant Biol,2010 ,52(11):959-970
    [66] Li X, Zhuang LL, Ambrose M, et al. Genetic analysis of ele mutants and comparative mapping of ele1 locus in the control of organ internal asymmetry in garden pea [J]. J Integr Plant Biol,2010,52(6):528-535
    [67] Koyama T, Ohme-Takagi M, Sato F. Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana [J]. Plant Signal Behav, 2011, 6(5): 697-699
    [68] Giraud E, Ng S, Carrie C, et al. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana [J]. Plant Cell, 2010, 22(12): 3921- 3924
    [69] Nag A, King S, Jack T. MiR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis [J]. Proc Natl Acad Sci U S A,2009,106(52):22534-22539
    [70] Takeda T, Amano K, Ohto MA, et al. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development [J]. Plant Mol Biol,2006,61(1-2):165-177
    [71] Danisman S. TCP transcription factors at the Interface between environmental challenges and the plant's growth responses [J]. Front Plant Sci,2016, 7:1930
    [72] Huang T and Irish VF. Temporal control of plant organ growth by TCP transcription factors [J]. Curr Biol. 2015, 25(13):1765-1770
    [73] Wang S, Yang X, Xu M, et al. A rare snp identified a tcp transcription factor essential for tendril development in cucumber [J]. Mol Plant,2015,8(12):1795-1808
    [74] Wang ST, Sun XL, Hoshino Y, et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.) [J]. PLoS One,2014, 9: e91357
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯志娟,徐盛春,刘娜,等.植物TCP转录因子的作用机理及其应用研究进展[J].植物遗传资源学报,2018,19(1):112-121.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:2161
  • 下载次数: 5238
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-03-30
  • 最后修改日期:2017-05-23
  • 录用日期:2017-06-09
  • 在线发布日期: 2018-01-23
  • 出版日期:
文章二维码
您是第5905770位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!