Abstract:TALE (three-amino acid-loop-extension) are essential transcription factors that regulate the differentiation of meristem in the plant growth and development. In this study, a total of 40 TALE family genes on six chromosomes were identified by bioinformatical analysis of the whole genome of the Leguminosae model plant Lotus japonicus. Their conserved domain, gene structure, family evolution, chromosome distribution, physicochemical properties and expression differences were examined. As a result of the domain differences revealed that two major groups were divided into BELL and KNOX. Phylogenetic analysis found that the Lotus japonicus TALE family gene sequences was conservative in evolution, while Soybean TALE gene was distinctly different with Lotus japonicus in differentiation. The results of physicochemical properties showed their mainly possessed 4-6 exons encoding weak acid proteins of 290-792. The Real-time PCR result showed that TALE genes are diverse and exhibited different expression patterns in different tissues of Lotus japonicus, related to the number of motif elements. BELL subfamily is highly expressed in the terminal bud, while KNOX subfamily is Prominent in the root. This study lays a foundation for further study on the complicated biological functions of Lotus japonicus TALE.