2025年6月12日 22:44 星期四
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2020年第21卷第1期 >113-120. DOI:10.13430/j.cnki.jpgr.20191031006 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
甘蓝型油菜角果特异白化种质的遗传和生理特性
DOI:
10.13430/j.cnki.jpgr.20191031006
CSTR:
作者:
  • 江莹芬

    江莹芬

    安徽省农业科学院作物研究所 / 国家油料改良中心合肥油菜分中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 吴新杰

    吴新杰

    安徽省农业科学院作物研究所 / 国家油料改良中心合肥油菜分中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 费维新

    费维新

    安徽省农业科学院作物研究所 / 国家油料改良中心合肥油菜分中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李强生

    李强生

    安徽省农业科学院作物研究所 / 国家油料改良中心合肥油菜分中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 荣松柏

    荣松柏

    安徽省农业科学院作物研究所 / 国家油料改良中心合肥油菜分中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 初明光

    初明光

    安徽省农业科学院作物研究所 / 国家油料改良中心合肥油菜分中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈凤祥

    陈凤祥

    安徽省农业科学院作物研究所 / 国家油料改良中心合肥油菜分中心
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

安徽省农业科学院作物研究所 / 国家油料改良中心合肥油菜分中心,合肥 230031

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目 (2016YFD0100202-16、2018YFD0100604);国家科技重大专项 (2018ZX08020001-005)


Genetic and Physiological Characteristics of Brassica napus Germplasm Resources Showing Albino Silique
Author:
  • JIANG Ying-fen

    JIANG Ying-fen

    Institute of Crop Science,Anhui Academy of Agricultural Science/National Oil Crops Improvement Center, Hefei Rapeseed Sub-center
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Xin-jie

    WU Xin-jie

    Institute of Crop Science,Anhui Academy of Agricultural Science/National Oil Crops Improvement Center, Hefei Rapeseed Sub-center
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FEI Wei-xin

    FEI Wei-xin

    Institute of Crop Science,Anhui Academy of Agricultural Science/National Oil Crops Improvement Center, Hefei Rapeseed Sub-center
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Qiang-sheng

    LI Qiang-sheng

    Institute of Crop Science,Anhui Academy of Agricultural Science/National Oil Crops Improvement Center, Hefei Rapeseed Sub-center
    在期刊界中查找
    在百度中查找
    在本站中查找
  • RONG Song-bai

    RONG Song-bai

    Institute of Crop Science,Anhui Academy of Agricultural Science/National Oil Crops Improvement Center, Hefei Rapeseed Sub-center
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHU Ming-guang

    CHU Ming-guang

    Institute of Crop Science,Anhui Academy of Agricultural Science/National Oil Crops Improvement Center, Hefei Rapeseed Sub-center
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Feng-xiang

    CHEN Feng-xiang

    Institute of Crop Science,Anhui Academy of Agricultural Science/National Oil Crops Improvement Center, Hefei Rapeseed Sub-center
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Institute of Crop Science,Anhui Academy of Agricultural Science/National Oil Crops Improvement Center, Hefei Rapeseed Sub-center,Hefei 230001

Fund Project:

the National Key Research and Development Project (2016YFD0100202-16、2018YFD0100604);National Science and Technology Major Project (2018ZX08020001-005)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究对在甘蓝型油菜中发现的一种新型角果特异白化种质的形态特征、遗传及生理特性进行了研究,结果表明: 该种质具经济器官特异性白化的特点,即营养器官正常,生殖生长阶段所有的经济器官如花蕾、花、角果、种子均表现为白化突 变。白化株结实性差,纯合白化种子未发育成熟就干瘪萎缩。通过对该角果特异白化株与野生型油菜杂交创建的分离群体分 离比进行统计,表明该性状为 1 对核基因控制的不完全显性突变。纯合白化株系中几乎没有叶绿素和类胡萝卜素,但有少量 生育酚的合成,光合速率显著低于野生型或接近于零,超微结构观察也未发现有完整叶绿体结构。结合已有研究报道,初步推 断该特异白化种质为类胡萝卜素合成调控基因或决定叶绿体发育基因发生突变所引起。因角果是油菜最重要的光合器官,对 油菜产量形成起着至关重要的作用,本研究为进一步揭示叶绿体发育以及角果光合作用形成的分子生理奠定了基础。

    关键词:油菜;角果特异白化;叶绿素;叶绿体;光合作用
    Abstract:

    Chlorophyll is the most important organism where plant photosynthesis takes place,and plays a curial role in plant growth and crop yield production. Albino plants showed complete loss of chlorophyll. In this study,the genetic,morphological and physiological characteristics of an albino silique mutant in Brassica napus were carried out. No chlorophyll was found on the reproductive tissues such as the buds,flowers,siliques and developing seeds,while vegetative tissues including leaves and stems kept green as wild type plants. This mutant that are heterozygous at albino locus exhibited lower fertility,while the mutant being homozygous were completely sterile. By genetic and phenotypic analysis of reciprocal F1 as well as was observed and F2 segregating population,the silique showing albino phenotype was controlled by one pair of nuclear gene in an incomplete dominant manner. Almost no chlorophyll and carotenoids,but a small amount of tocopherol were detected in homozygous albino mutant,and no intact chloroplast structure was found through Transmission Electron Microscope. The photosynthetic rate was also significantly lower than that of the wild type or close to zero. Gained from the knowledge in previous studies,the preliminary result suggested that the albino phonotype in this mutant was likely resulted from the mutations of the genes involved in the synthesis of carotenoids or the development of chloroplast. Thus,this work laid a foundation for future isolating the albino gene and further revealing the molecular mechanism of chloroplast development and silique photosynthesis.

    Key words:Brassica napus;silique specific albino;chlorophyll;chloroplast;photosynthesis
    参考文献
    [1]朱明库,胡宗利,周爽,李亚丽,陈国平.植物叶色白化研究进展. 生命科学, 2012, 24(3): 255-261Zhu M K, Hu Z L, Zhou Sh, Li Y L, Chen G P. Research progress of plant leaf albino. Chinese Bulletin of Life Sciences, 2012, 24(3): 255-261
    [2]Kumari M, Clarke H J, Small I, Siddique, K. H. M. . Albinism in plants: a major bottleneck in wide hybridization, androgenesis and doubled haploid culture.SCritical Reviews in Plant Sciences,S28(6), 393-409.
    [3]赵懿. 油菜光合功能衰退研究.[D] 北京:中国农业科学院, 2006.Zhao Y. Study on photosynthetic functional decline for oilseed rape (Brassica napus L). [D] Beijing: Chinese academy of agricultural sciences, 2006
    [4]李凤阳, 何激光, 官春云. 油菜叶片和角果光合作用研究进展. 作物研究. 2011, 25(4):405-409Li F Y, He J G, Guan C Y. Research progress of photosynthesis of rape leaves and siliques. Crop Research, 2011, 25(4):405-409
    [5]宋桂云, 徐正进, 苏慧, 王翠花, 宫雅琴, 孙海燕. 不同穗型的两个水稻品种株型的研究. 内蒙古民族大学学报: 自然科学版, 2006, 21(3): 294-299.Song G Y, Xu Z J, Su H, Wang C, Gong Y Q, Sun H Y. The study on plant shape of different panicle rice varieties. Journal of Inner Mongolia University for Nationalitie: Natural Sciences Edition,2006, 21(3): 294-299
    [6]Lichtenthaler H K.Chlorophylls and carotinoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148:350–382
    [7]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and gene mapping of a dominant presenescing leaf gene PSL3 in rice (Oryza sativa L.).Chinese Science Bulletin, 2010, 55: 1676–1681
    [8]Zhang W, Liu T, Ren G, H?rtensteiner S, Zhou Y, Cahoon E B, and Zhang C. Chlorophyll Degradation: The Tocopherol Biosynthesis-Related Phytol Hydrolase in Arabidopsis Seeds Is Still Missing. Plant Physiology, 2014, 166:70-79.
    [9]Hunter, S C, Cahoon E B. Enhancing vitamin e in oilseeds: unraveling tocopherol and tocotrienol biosynthesis.SLipids,S2007,42(2), 97-108
    [10]Norris S R, Barrette T R and DellaPenna D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation.SThe Plant Cell,S1995, 7(12), 2139-2149
    [11]Qin G, Gu H, Ma L, Peng Y, Qu L J. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 2007, 17(5):471-482.
    [12]Wilson F M., Harrison K, Armitage A D, Simkin A J, Harrison R J. Crispr/cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry.SPlant Methods,S2019, 15:45.
    [13]Quadrana L, Rodriguez M C, Mariana López, Luisa Bermúdez, Nunes-Nesi A, Fernie A R. Coupling virus-induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics in arabidopsis and across all stages of tomato fruit development.SPlant Physiology,S2011, 156(3), 1278-1291.
    [14]孙亚利, 李万昌, 姬生栋. 水稻苗期叶色失绿基因的研究概况. 湖北农业科学, 2015, 54(11): 2564-2568.Sun W J, Li W C, Ji S D. Research overview on the rice seeding leaf chlorosis genes. Hubei Agriculture Science, 2015, 54(11): 2564-2568
    [15]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Iba K, Paek N C. Rice Virescent3 and Stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiology, 2009, 150: 388-401.
    [16]Kusumi K, Mizutani A, Nishimura M, Iba K. A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant Journal, 1997, 12: 1241-1250.
    [17]Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant Journal, 2011, 68: 1039-1050.
    [18]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiology, 2004, 45: 985-996.
    [19]Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant Journal, 2007, 52: 512-527.
    [20]Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiology, 2013, 162: 1867-1880.
    [21]Tan J, Tan Z, Wu F, Sheng P, Heng Y, Wang X, Ren Y, Wang J, Guo X, Zhang X, Cheng Z, Jiang L, Liu X, Wang H, Wan J. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Molecular Plant, 2014, 7: 1329-1349.
    [22]Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. Frontiers in Plant Science, 2017, 8: 1116.
    [23]Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Lei C, Wang J, Zhu S, Zhao Z, Wan J. WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. Plant Molecular Biology, 2016, 92: 581-595.
    [24]Zhou K N, Ren Y L, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y H, Zhao S L, Ma W W, Zhang H, Wang L W, Wang C M, Wu F Q, Zhang X, Guo X P, Cheng Z J, Wang J L, Lei C L, Jiang L, Li Z F, Wan J M. Young Seedling Stripe1 encodes a chloroplast nucleoidassociated protein required for chloroplast development in rice seedlings. Planta, 2017, 245: 45-60.
    [25]Sheng P, Tan J, Jin M, Wu F, Zhou K, Ma W, Heng Y, Wang J, Guo X, Zhang X, Cheng Z, Liu L, Wang C, Liu X, Wan J. Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Reports, 2014, 33: 1581-1594.
    [26]Nagata N,Tanaka R,Satoh S,Tanaka A.Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. The plant cell, 2005, 17( 1) : 233-240.
    [27]Nagata N,Tanaka R,Tanaka A.The major route for chlorophyll synthesis includes[3,8-divinyl]-chlorophyllide a reduction in Arabidopsis thaliana. Plant Cell Physiology,2007,48( 12) : 1803-1808.
    [28]Wang Y, Wang C, Zheng M, Lyu J, Xu Y, Li X, Niu M,Long W, Wang D, Wang H, Terzaghi W, Wang Y, Wan J. WHITE PANICLE 1, a Val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development. Plant Physiology, 2016, 170(4): 2110.
    [29]王晓雯, 蒋钰东, 廖红香, 杨波, 邹帅宇, 朱小燕, 何光华, 桑贤春. 水稻白穗突变体wp4 的鉴定与基因精细定位. 作物学报, 2015, 41(6): 838-844.Wang X W, Jiang Y D, Niao H X, Yang B, Zou S Y, Zhu X Y, He G H, Sang X C. Identification and gene mapping of white panicle mutant wp4 in Oryza sativa. Journal of Crops, 2015, 41(6): 838-844.
    [30]从夕汉,阮新民,罗志祥,白一松,杨联松,罗玉祥,施伏芝. 水稻白穗突变体wp6的发现及研究. 安徽农业科学.2018,46(36):29-31Cong X H, Ruan X M, Luo Z X, Bai Y S, Yang L S, Luo Y X, Shi F Z. Discovery and Study of White Panicle Mutant wp6 in Rice. Journal of Anhui Agricultural Sciences. 2018,46(36):29-31
    [31]李红昌, 钱前, 王赟, 李晓波, 朱立煌, 徐吉臣. 水稻白穗突变体基因的鉴定和染色体定位. 科学通报, 2003, 48(3): 268-270.Li H C, Qian Q, Wang Y, Li X B, Zhu L H, Xu J C. Identification and gene mapping of white panicle mutant in rice. Chinese Science Bulletin, 2003, 48(3): 268-270.
    [32]Song J, Wei X J, Shao G N, Sheng Z H, Cheng D, Liu C, Jiao G A, Xie L H, Tang S Q, Hu P S. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Molecular Biology, 2014,84: 301-314.
    [33]陈叶平, 翟哲, 杨文君, 孙健, 舒小丽, 吴殿星. 水稻条白叶和白穗突变基因St-wp的遗传分析与精细定位. 核农学报, 2015, 29(7): 1246-1252.Chen Y P, Zhai Z, Yang W J, Sun J, Shu X L, Wu D X. Genetic analysis and fine mapping of St-wp gene in mutant rice with stripe white leaf and white panicle. Journal of Nuclear Agricultural Science, 2015, 29(7): 1246-1252.
    [34]周坤能, 夏加发, 马廷臣, 王元垒, 李泽福. 水稻条纹叶和白穗基因slwp的定位及变异分析.中国水稻科学,2018, 155(04):17-26.
    [35]陈德西, 李婷, 曲广林, 黄文娟, 何忠全, 李仕贵. 水稻条斑和颖花异常突变体st-fon的鉴定与遗传分析. 中国水稻科学,2012, 26: 677–685Chen D X, Li T, Qu G L, Huang W J, He Z Q, Li S G. Characterization and genetic analysis of a streaked and abnormal glumous flower mutant st-fon. Chinese Journal of Rice Science, 2012, 26: 677–685
    [36]金怡, 刘合芹, 汪得凯, 陶跃之. 一个水稻苗期白条纹及抽穗期白穗突变体的鉴定和基因定位. 中国水稻科学, 2011, 25(5): 461-466Jin Y, Liu H Q, Wang D K, Tao Y Z. Genetic analysis and gene mapping of a white striped leaf and white panicle mutant in rice. Chinese Journal of Rice Science, 2011, 25(5): 461-466.
    [37]Zhang Z G, Cui X A, Wang Y W, Wu J X, Gu X F, Lu T G. The RNA editing actor WSP1 is essential for chloroplast development in rice. Molecular Plant, 2017, 10(1):86-98
    [38]李玲锋, 熊玉毅, 欧阳林娟, 彭小松, 陈小荣, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 徐杰, 贺浩华, 孙晓棠, 朱昌兰. 水稻白条纹叶及白穗突变体wlp6的鉴定与基因定位.S中国水稻科学, 2018, 32(06): 22-32.Li L F, Xiong Y Y, Ouyang L J, Peng X S, He X P, Fu J R, Bian J M, Hu L F, Xu J He H H, Sun X T, Zhu C L. Identification and Gene Mapping of White Stripe Leaf and White Panicle Mutant wlp6 in Rice. Chinese Journal of Rice Science, 2018, 32(06): 22-32.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江莹芬,吴新杰,费维新,等.甘蓝型油菜角果特异白化种质的遗传和生理特性[J].植物遗传资源学报,2020,21(1):113-120.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:1292
  • 下载次数: 3812
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-10-31
  • 最后修改日期:2019-11-06
  • 录用日期:2019-11-12
  • 在线发布日期: 2020-01-17
  • 出版日期:
文章二维码
您是第5919339位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!