2025年5月25日 5:45 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2021年第22卷第1期 >102-114. DOI:10.13430/j.cnki.jpgr.20200505001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
小麦芒基因定位及其与农艺性状的相关性分析
DOI:
10.13430/j.cnki.jpgr.20200505001
CSTR:
作者:
  • 李玲

    李玲

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘盼

    刘盼

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张蕾

    张蕾

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张浩

    张浩

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 贾继增

    贾继增

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 高丽锋

    高丽锋

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

中国农业科学院作物科学研究所,北京 100081

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31971882)


Awn Genes Mapping and Correlation Analysis for Agronomic Traits in Wheat
Author:
  • LI Ling

    LI Ling

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Pan

    LIU Pan

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Lei

    ZHANG Lei

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Hao

    ZHANG Hao

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIA Ji-zeng

    JIA Ji-zeng

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Li-feng

    GAO Li-feng

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081

Fund Project:

The National Natural Science Foundation (31971882)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    芒是位于植物穗上的针状结构,广泛存在于禾本科作物水稻、小麦、高粱和大麦中,不同作物芒的结构存在差异。 小麦中,芒对提高穗光合效率和产量、防鸟、抗虫及抗逆有重要作用。前人已经对抑制小麦芒发育的主要基因进行了定位和遗 传分析, 4 个主效基因中仅有 B1( Tipped1)基因被克隆。本研究基于人工群体云南 3 号和偃展 1 号 BC3F6 群体( YN3/YZ1) 和自然群体,分析了芒与其他农艺性状的关系,发现芒对株高和产量性状有显著影响;用小麦 660K SNP 芯片扫描 YN3/YZ1 和自然群体,全基因组关联分析( GWAS)显示小麦染色体 5AL 和 6BL 存在与芒性状显著相关的基因组区域,分别对应于小 麦芒抑制基因 B1 和 B2;长芒和顶芒近等基因系转录组分析发现,在 6BL 候选区间内有 23 个差异表达基因。本研究将为进 一步克隆 B2 基因提供参考。

    关键词:小麦;芒;小麦660K SNP芯片;GWAS;RNA-seq
    Abstract:

    Awn is a needle-like structure located on the ear of plants. It is widely found in the grass family such as rice, wheat, sorghum and barley, and the structure of awn varies in different crops. In wheat, awn plays an important role in improving the photosynthetic efficiency and yield, and in preventing damages caused by pest birds, insects and adverse conditions. Genes related to the development of wheat awn have already been mapped and genetically analyzed, but only one of the four major awn-inhibiting genes, B1( Tipped1), has been cloned. In this study, conducted on a BC3F6 genetic population( YN3/YZ1) and a natural population, we estimated the relationship between the awn and agronomic traits, and found that awn had significant effects on plant height and yield. Genome-wide association studies( GWAS) based on wheat 660K SNP array identified genomic regions on chromosomes 5AL and 6BL significantly related to awn trait, which corresponded to awn-inhibiting genes B1 and B2 respectively. From transcriptome data of long-awned and tip-awned near-isogenic lines( NILs), 23 differentially expressed genes were identified from the 6BL candidate interval. These results will facilitate the B2 gene cloning in the future.

    Key words:wheat; awn; Wheat 660K SNP array; GWAS; RNA-seq
    参考文献
    [1] Kuang H. H., Chang Y. H., Tu D. S.. Studies on the variation of polyhusks in cultivated rice (Oryza sativa L.). Journal of Genetics, 1946, 47(3): 260-270.
    [2] Hsieh S. C.. Genetic analysis in rice Ⅰ: Corloration genes and inheritance of other characters in rice. Botanical Bulletin Academia Sinica, 1960, 1: 117-132.
    [3] Nagao S., Takahashi M. E.. Trial construction of twelve linkage groups in Japanese rice. Journal of Faculty of Agriculture Hokkaido University, 1963, 53: 72-130.
    [4] Iwata N., Omura T.. Linkage analysis by reciprocal translocation method in rice plants (Oryza sativa L.) II. Linkage groups corresponding to the chromosomes 5, 6, 8, 9, 10 and 11. Science Bulletin of the Faculty of Agriculture Kyushu University, 1971, 25: 137-153.
    [5] 王忠, 高煜珠. 小麦穗的光合特性. 植物学报, 1991, 33 (4): 286-291.
    Wang Z., Gao Y. Z.. The photosynthetic characteristics of wheat ear. Bulletin of Botany, 1991, 33(4): 286-291.
    [6] 巴青松, 傅兆麟, 白凡杰. 小麦芒的研究. 淮北师范大学学报(自然科学版), 2010, 31(1): 29-33.
    Ba Q. S., Fu Z. L., Bai F. J.. The research of wheat awns. Journal of Huaibei Coal Industry Teachers College (Natural Science) , 2010, 31(1): 29-33.
    [7] Sato S., Ishikawa S., Shimono M., Shinjyo C. Genetic studies on an awnness gene An-4 on chromosome 8 in rice (Oryza sativa L.). Breeding Science, 1996, 46(4): 321-327.
    [8] 陈培元, 李英. 小麦芒的功能及去芒对籽粒重的影响. 作物学报, 1981(7) : 279-282.
    Chen P. Y., Li Y.. The effect of wheat awns on grain weight and their physiological function. Acta Agronomica Sinica, 1981(7): 279-282.
    [9] Luo J. H., Liu H., Zhou T. Y., Gu B. G., Huang X. H., Shangguan Y. Y., Zhu J. J., Li Y., Zhao Y., Wang Y., Zhao Q., Wang A., Wang Z., Sang T., Wang Z., Han B.. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. The Plant Cell, 2013, 25(9): 3360-3376.
    [10] Hua L., Wang D. R., Tan L., Fu Y., Liu F., Xiao L., Zhu Z., Fu Q., Sun X., Gu P., Cai H., McCouch S. R., Sun C.. LABA1, a domestication gene associated with long, barbed awns in wild rice. The Plant Cell, 2015, 27(7): 1875-1888.
    [11] Toriba T., Hirano H. Y.. The DROOPING LEAF and OsEETIN2 genes promote awn development in rice. The Plant Journal, 2014, 77(4): 616-626.
    [12] Gu B., Zhou T., Luo J. H., Liu H., Wang Y., Shangguan Y., Zhu J., Li Y., Sang T., Wang Z., Han B.. An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice . The Molecular Plant, 2015, 8(11): 1635-1650.
    [13] Bessho-Uehara K., Wang D. R., Furuta T., Minami A., Nagai K., Gamuyao R., Asano K., Angeles-Shim R. B., Shimizu Y., Ayano M., Komeda N., Doi K., Miura K., Toda Y., Kinoshita T., Okuda S., Higashiyama T., Nomoto M., Tada Y., Shinohara H., Matsubayashi Y., Greenberg A., Wu J., Yasui H., Yoshimura A., Mori H., McCouch S. R., Ashikari M.. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (32): 8969-8974.
    [14] Yuo T., Yamashita Y., Kanamori H., Matsumoto T., Lundqvist U., Sato K., Ichii M., Jobling S A., Taketa S.. A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. Experimental Botany, 2012, 63: 5223-5232.
    [15] Liller C. B., Walla A., Boer M. P., Pete H., Malcolm M., Sieglinde E., Maria K., G. Wilma E., Maarten K.. Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. Theoretical and Applied Genetics, 2017,130(2): 269-281.
    [16] Müller K. J., Romano N., Gerstner O., Garcia-Maroto F., Pozzi C., Salamini F., Rohde W.. The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature, 1995, 374(6524): 727-730.
    [17] Sears E. R.. The aneuploids of common wheat. Research Bulletin Missouri of Agricultural Experiment Station, 1954, 572: 1-58.
    [18] Sourdille P., Cadalen T., Gay G., Gill B., Bernard M.. Molecular and physical mapping of genes affecting awning in wheat. Plant Breeding, 2002, 121 (4): 320-324.
    [19] Yoshioka M., Iehisa J. C. M., Ohno R., Kimura T., Enoki H., Nishimura S., Nasuda S., Takumi S.. Three dominant awnless genes in common wheat: Fine mapping, interaction and contribution to diversity in awn shape and length. PLoS ONE, 2017, 12 (4): e0176148.
    [20] 张传量, 简俊涛, 冯洁, 崔紫霞, 徐小宛. 基于90K芯片标记的小麦芒长QTL定位. 中国农业科学, 2018, 51 (1): 17-25.
    Zhang C. L., Jian J. T., Feng J., Cui Z. X., Xu X. W.. QTL identification for awn length based on 90K Array mapping in wheat. Scientia Agricultura Sinica, 2018, 51(1): 17-25.
    [21] Nishijima R., Ikeda T. M., Takumi S..SGenetic Mapping reveals a dominant awn-inhibiting gene related to differentiation of the variety anathera in the wild diploid wheatSAegilops tauschii. Genetica, 2018, 146 (1): 75-84.
    [22] DeWitt N., Guedira M., Lauer E., Sarinelli M., Tyagi P., Fu D. L., Hao Q. Q., Murphy J. P., Marshall D., Akhunova A., Jordan K., Akhunov E., Brown-Guedira G.. Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat. New Phytologist, 2020, 225(1): 326-339.
    [23] Huang D. Q., Zheng Q., Melchkart T., Bekkaoui Y., Konkin D. J. F., Kagale S., Martucci M., You F. M., Clarke M., Adamski N. M., Chinoy C., Steed A., McCartney C. A., Cutler A. J., Nicholson P., Feurtado J. A.. Dominant inhibition of awn development by a putative zinc-?nger transcriptional repressor expressed at the B1 locus in wheat. New Phytologist, 2020, 225(1): 340–355.
    [24] Wang D. Z., Yu K., Jin D., Sun L., Chu J., Wu W., Xin P., Gregová E., Li X., Sun J., Yang W., Zhan K., Zhang A. M., Liu D. C.. Natural variations in the promoter of Awn Length Inhibitor 1 (ALI‐1) are associated with awn elongation and grain length in common wheat. The Plant Journal, 2019, 101(5): 1075-1090.
    [25] Mortazavi A., Williams B. A., Mccue K., Schaeffer L., Wold B.. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621–628.
    [26] IWGSC, Rudi A., Kellye E., Nils S., Catherine F., Beat K., Jane R., Curtis J. P., Frédéric C., Assaf D., Jesse P.. Shifting the limits in wheat research and breeding using a fully annotated Reference genome. Science, 2018, 361 (7191): 1-13.
    [27] Grundbacher F. J.. The physiological function of the cereal awn. Botanical Review, 1963, 29: 366-381.
    [28] Blum A.. Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. Journal of Experimental Botany, 1985, 36 (3): 432-440.
    [29] 杜斌, 崔法, 王洪刚, 李兴锋. 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析. 分子植物育种, 2010, 8 (2) : 259-264.
    Du B., Cui F., Wang H. G., Li X. F.. Characterization and genetic analysis of near-isogenic lines of common wheat for awn-inhibitor gene B1. Molecular Plant Breeding, 2010, 8 (2): 259-264.
    [30] Maydup M. L., Antonietta M., Graciano C., Guiamet J., Tambussi E.. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: Responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Research, 2014, 167: 102-111.
    [31] Reynolds M., Tuberosa R.. Translational research impacting on crop productivity in drought-prone environments. Current Opinion in Plant Biology, 2008, 11 (2): 171-179.
    [32] Rebetzke G. J., Bonnett D. G., Reynolds M. P.. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. Journal of Experimental Botany, 2016, 67 (9): 2573-2586.
    [33] Motzo R., Giunta F.. Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat. Australia Journal Agricultural Research, 2002, 53: 1285-1293.
    [34] Mckenzie H.. Adverse influence of awns on yield of wheat. Canadian Journal of Plant Science, 1972, 52 (1): 81-87.
    [35] Hisashi K., Hitoshi H.. Effects of cool water irrigation treatment on the awn characters in rice. Tohoku Journal of Crop Science, 1997, 40: 1-3.
    [36] 金迪, 王冬至, 王焕雪, 李润枝, 陈树林, 阳文龙, 张爱民, 刘冬成, 詹克慧. 小麦芒长抑制基因B2的精细定位与候选基因分析. 作物学报, 2019, 45(6): 807-817.
    Jin D., Wang D. Z., Wang H. X., Li R. Z., Chen S. L., Yang W. L., Zhang A. M., Liu D. C., Zhan K. H.. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat. Acta Agronomica Sinica, 2019, 45(6): 807-817.
    [37] Prasad K, Parameswaran S, Vijayraghavan U.. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. The Plant Journal, 2005, 43: 915–928.
    [38] Li H., Liang W., Hu Y., Zhu L., Yin C., Xu J., Dreni L., Kater M. M., Zhang D.. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell, 2011, 23 (7): 2536-2552.
    [39] Ohmori S., Kimizu M., Sugita M., Miyao A., Hirochika H., Uchida E., Nagato Y., Yoshida H.. MOSAIC FLORAL ORGANS1, an AGL6-like MADS-box gene, regulates floral organ identity and meristem fate in rice. The Plant Cell, 2009, 21 (10): 3008-3025.
    [40] Su Y. L., Liu J. X., Liang W. Q., Dou Y., Fu R., Li W., Feng C., Gao C., Zhang D., Kang Z., Li H.. Wheat AGAMOUS LIKE 6 transcription factors function in stage development by regulating the expression of TaAPETALA3. Development, 2019, 146 (20).
    [41] Zhang J. A., Nallamilli B. R., Mujahid H., Peng Z. H.. OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa). The Plant Journal, 2010, 64: 604-617.
    [42] Yadav S. R., Khanday I., Majhi B. B., Veluthambi K., Vijayraghavan U.. Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility. Plant Cell Physiology, 2011, 52: 2123-2135.
    [43] 刘颖慧, 董志平. 植物B3转录因子的结构和功能. 分子植物育种, 2017, 15(5):1868-1873.
    Liu Y. H., Dong Z. P.. The function and structure of plant B3 transcription factor. Molecular Plant Breeding, 2017, 15(5): 1868-1873.
    [44] Mantegazza O., Gregis V., Mendes M. A., Morandini P., Alves-Ferreira M., Patreze C. M., Nardeli S. M., Kater M. M., Colombo L.. Analysis of the Arabidopsis REM gene family predicts functions during flower development. Annals of Botany, 2014, 114(7): 1507-1515.
    [45] King G. J., Chanson A. H., Mccallum E. J., Ohme-Takagi M., Byriel K., Hill J. M., Martin J. L., Mylne J. S.. The Arabidopsis B3 domain protein VERNALIZATION1 (VRN1) is involved in processes essential for development, with structural and mutational studies revealing its DNA-binding surface. Journal of Biological Chemistry, 2013, 288(5): 3198-3207.
    [46] Mendes M. A., Guerra R. F., Berns M. C., Manzo C., Masiero S., Finzi L., Kater M. M., Colombo L.. MADS domain transcription factors mediate Short-Range DNA Looping that is essential for target gene expression in Arabidopsis. The Plant Cell, 2013, 25(7): 2560-2572.
    [47] Satoh, N., Itoh, J. I., Nagato Y.. The Shootless2 and Shootless1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells. Genetics, 2003, 164: 335–346.
    [48] Itoh J. I., Kitano H., Matsuoka M., Nagato Y.. Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. The Plant Cell, 2000, 12: 2161–2174.
    [49] Sameri M., Takeda K., Komatsuda T.. Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental-and occidental-type barley cultivars. Breed Science, 2006, 56: 243–252.
    [50] Wang T., Zou T., He Z. Y. Yuan G., Luo T., Zhu J., Liang Y., Deng Q., Wang S., Zheng A., Liu H., Wang L., Li P., Li S.. GRAIN LENGTH AND AWN 1 negatively regulates grain size in rice. Journal of Integrative Plant Biology, 2018, 61(10): 1036-1042.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李玲,刘盼,张蕾,等.小麦芒基因定位及其与农艺性状的相关性分析[J].植物遗传资源学报,2021,22(1):102-114.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:1652
  • 下载次数: 3489
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-05-05
  • 最后修改日期:2020-11-21
  • 录用日期:2020-06-24
  • 在线发布日期: 2021-01-07
  • 出版日期:
文章二维码
您是第5865081位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!