2025年6月13日 7:08 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2021年第22卷第1期 >205-213. DOI:10.13430/j.cnki.jpgr.20200527002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
渝17S对低温胁迫的响应及耐冷机制初步研究
DOI:
10.13430/j.cnki.jpgr.20200527002
CSTR:
作者:
  • 潘晓雪 1

    潘晓雪

    重庆市农业科学院生物技术研究中心 / 逆境农业研究重庆市重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张现伟 2

    张现伟

    重庆市农业科学院重庆再生稻研究中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李经勇 2

    李经勇

    重庆市农业科学院重庆再生稻研究中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 雷开荣 1

    雷开荣

    重庆市农业科学院生物技术研究中心 / 逆境农业研究重庆市重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1 重庆市农业科学院生物技术研究中心 / 逆境农业研究重庆市重点实验室,重庆 401329; 2 重庆市农业科学院重庆再生稻研究中心,重庆 402160

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市农业科学院青年创新团队项目(NKY-2018QC04)


The Effect of Low Temperature Stress on the Growth of‘Yu17S’and a Preliminary Study of Cold-resistance Mechanisms
Author:
  • PAN Xiao-xue 1

    PAN Xiao-xue

    Biotechnology Research Center, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xian-wei 2

    ZHANG Xian-wei

    Chongqing Ratooning Rice Research Center, Chongqing Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Jing-yong 2

    LI Jing-yong

    Chongqing Ratooning Rice Research Center, Chongqing Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LEI Kai-rong 1

    LEI Kai-rong

    Biotechnology Research Center, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1Biotechnology Research Center, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329; 2Chongqing Ratooning Rice Research Center, Chongqing Academy of Agricultural Sciences, Chongqing 402160

Fund Project:

Program for Young Innovative Research Team in Chongqing Academy of Agricultural Sciences(NKY-2018QC04)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    重庆及西南稻区水稻幼苗期倒春寒频发,常常导致秧苗生长迟缓,白化、烂秧等发生,制约了优质水稻安全生产和 轻简化技术的应用。本研究以耐冷性较强的渝 17S 和对低温敏感的 Y58S 为材料,对比研究了 3 叶龄幼苗经 4 ℃低温处理 后,二者可溶性糖、海藻糖、脯氨酸、丙二醛和过氧化氢的含量,超氧化物歧化酶、过氧化氢酶和抗坏血酸过氧化物酶的活性, 以及荧光定量 PCR 检测胁迫相关的 9 个基因的表达情况。结果表明:与 Y58S 相比,渝 17S 具有更强的苗期耐冷性,在低温 胁迫下,其死苗率为 7.5%,而 Y58S 死苗率高达 96.7%;低温胁迫下 2 个品种叶片中丙二醛和 H2O2 含量均升高,但渝 17S 增 幅较小;渝 17S 叶片中抗氧化酶( 超氧化物歧化酶、过氧化氢酶和抗坏血酸过氧化物酶)活性,可溶性糖和海藻糖含量,以及 OsCATB、 OsSOD、 OsAPx8, OsTPS1、 OsTPP1、 OsMKK6、 OsMAPK3 和 OsICE1 基因表达量均呈不同程度增加; 2 个品种叶片 中脯氨酸含量和脯氨酸合成限速酶基因( OsP5CS)的表达量未见明显差异。初步认为, H2O2 信号分子和海藻糖可以调控渝 17S 对低温胁迫的响应,从而增强其幼苗的抗寒性。

    关键词:水稻;低温胁迫;苗期;耐寒机制
    Abstract:

    “Late spring coldness” negatively affects rice seedling establishment and leads to rice growth retardation, albinism and rotten in Chongqing and southwest China, which severely restricts the production of high-quality rice and the application of optimal cultivation technologies. To investigate the cold tolerance of the chilling-tolerant indica cultivar Yu17S and chilling-sensitive indica cultivar Y58S seedlings, different parameters including the contents of soluble sugar, trehalose, proline, MDA and H2O2, the activities of antioxidant enzyme( SOD, POD and CAT), and the relative expression of stress relative genes were deployed. If compared with Y58S with the dead seedlings rate of up to 96.7%, Yu17S represented 7.5% of the dead seedlings rate, suggesting a stronger cold tolerance at the seedling stage upon the low temperature stress. The contents of both H2O2 and MDA increased in both cultivars under the low temperature stress, whereas both values of Yu17S were lower than these of Y58S. In Yu17S, the CAT, SOD and APX activity, soluble sugar and trehalose content, as well as the transcripts of genes OsCATB, OsSOD, OsAPx8, OsTPS1, OsTPP1, OsMKK6, OsMAPK3 and OsICE1 have been observed to be significantly increased. No significant differences on the proline content and on the expression of OsP5CS that controls the proline biosynthesis in both cultivars were observed. It is possible that the H2O2 signal molecule and trehalose of Yu17S may respond to the low temperature stress at the seedling stage, thus resulting in an enhancement on cold resistance.

    Key words:rice;low temperature stress; seedling; cold-resistance mechanisms
    参考文献
    [1] Chinnusamy V, Zhu J H, Zhu J K. Cold stress regulation of gene expression in plants. Trends in Plant Sci, 2007, 12(10): 444-451.
    [2] Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K.COLD1 confers chilling tolerance in rice. Cell, 2015, 160(6): 1209-1221.
    [3] Zhu, J K. Abiotic stress signaling and responses in plants. Cell, 167(2): 313-324.
    [4] Guo X Y, Liu D F, Chong K. Cold signaling in plants: insights into mechanisms and regulation. J Integr Plant Biol, 2018, 60(9): 745-756.
    [5] Xu L M, Zhou L, Zeng Y W, Wang F M, Zhang H L, Shen S Q, Li Z C. Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Sci, 2008, 174(3): 340-347.
    [6] Suh J P, Jeung J U, Lee J I, Choi Y H, Yea J D, Virk P S, Mackill D J, Jena K K. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theoretische und angewandte Genetik, 2010, 120(5): 985-995.
    [7] 盛文涛,柏斌,吴俊. 东乡野生稻有利性状鉴定与育种利用研究进展. 杂交水稻, 2016, 31(6): 1-6.Sheng W T, Bo B, Wu J. Research progress on identification of favorable characteristics in Dongxiang wild rice and utilization in rice breeding. Hybrid Rice,2016,31(6): 1-6.
    [8] 潘晓雪, 胡明瑜, 白文钦, 蒋晓英, 王春萍, 吴红, 雷开荣. 糯稻 89-1 渗入系苗期耐寒鉴定及生理机制初步分析. 分子植物育种, 2016, 14(10): 2798-2802.Pan X X, Hu M Y, Bai W Q, Jiang X Y, Wang C P, Wu H, Lei K R. Identification of cold tolerance and primary analysis of physiological mechanism of introgression lines of glutinous Rice 89-1 at seedling stage. Molecular Plant Breeding, 2016, 14(10):2798-2802.
    [9] 刘栋峰, 唐永严, 雒胜韬, 罗伟, 李志涛, 种康, 徐云远. 利用低温水浴鉴定水稻苗期耐寒性.植物学报, 2019, 54(4): 509-514.Liu D F, Tang Y Y, Luo S T, Luo W, Li Z T, Chong K, Xu Y Y. Identification of chilling tolerance of rice seedlings by cold water bath. Chinese Bulletin of Botany, 2019, 54 (4): 509-514.
    [10] Andaya V C, Tai T H. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theoretical and applied genetics, 2006, 113(3): 467-475.
    [11] Wang X, Dong X, Feng Y, Liu X, Wang J, Zhang Z, Li J, Zhao Y, Shi S, Tu P. H2O2 and NADPH oxidases involve in regulation of 2-(2-phenylethyl)chromones accumulation during salt stress in Aquilaria sinensis calli. Plant Sci, 2018, 269(5): 1-11.
    [12] 罗丹瑜,张小花,李巧丽,王娟,郑晟,张腾国. α-萘乙酸对低温胁迫下油菜幼苗抗寒性的影响. 生态学杂志, 2019: http://kns.cnki.net/kcms/detail/21.1148.Q.20191015.0849.002.html.Luo D Y, Zhang X F, Li Q L, Wang J, Zheng S, Zhang T G. Regulation of α-naphthaleneacetic acid on cold resistance of Brassica campestris seedlings under low temperature stress. Chinese Journal of Ecology, 2019: http://kns.cnki.net/kcms/detail/21.1148.Q.20191015.0849.002.html.
    [13] 朱鹏锦, 庞新华, 梁春, 谭秦亮, 严霖, 周全光, 欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响.作物杂志, 2018, 185(4): 137-143.Zhu P J, Pang X H, Liang C, Tan Q L, Yan L, Zhou Q G, Ou K W. Effects of cold stress on reactive oxygen metabolism and antioxidant enzyme activities of sugarcane seedlings. Crops, 2018, 185(4): 137-143.
    [14] 罗娅, 汤浩茹, 张勇. 低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响. 园艺学报, 2007, 34(6): 1405-1410.Luo Y, Tang H R, Zhang Y. Effect of low temperature stress on activities of SOD and enzymes of Ascorbate-Glutathione cycle. Acta Horticulturae Sinica, 2007, 34(6): 1405-1410.
    [15] 范博. 低温胁迫下ABA诱导冬小麦抗氧化防护系统的研究. 东北农业大学硕士学位论文,2012,pp 43-49.Fan B. Detection of antioxidant protection system in winter wheat at low temperature induced by ABA. Master Dissertation of Northeast Agricultural University, 2012,pp 43-49.
    [16] Simon-Plas F, Elmayan T, Blein J P. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. The Plant journal, 2002, 31(2): 137-147.
    [17] Gilroy S, Bia?asek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R. ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol, 2016, 171(3):1606-1615.
    [18] Furuya T, Matsuoka D, Nanmori T. Membrane rigidification functions upstream of the MEKK1-MKK2-MPK4 cascade during cold acclimation in Arabidopsis thaliana. FEBS Lett, 2014, 588(11): 2025-2030.
    [19] Gao J, Zhang S, He W D, Shao X H, Li C Y, Wei Y R, Deng G M, Kuang R B, Hu C H, Yi G J, Yang Q S. Comparative phosphoproteomics reveals an important role of MKK2 in Banana (Musa spp.) cold signal network. Scientific Rep, 7: 40852.
    [20] Huo C, Zhang B, Wang H, Wang F, Liu M, Gao Y, Zhang W, Deng Z, Sun D, Tang W. Comparative study of early cold-regulated proteins by two-dimensional difference gel electrophoresis reveals a key Role for phospholipase Dα1 in mediating cold acclimation signaling pathway in rice. Mol Cell Proteomics, 2016, 15(4): 1397-1441.
    [21] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 2004, 15(1): 141-152.
    [22] Xiong L Z, Yang Y N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell, 2003, 15(3):745-59.
    [23] Xie G, Kato H, Imai R. Biochemical identification of the OsMKK6–OsMPK3 signaling pathway for chilling stress tolerance in rice. Biochem J, 2012, 443(1): 95-102.
    [24] Zhao C Z, Zhang Z J, Xie S J, Si T, Li Y Y, Zhu J K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol, 2016, 171(4):2744-2759.
    [25] Zhang Z, Li J, Li F, et al.OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance.Developmental Cell, 43(6): 731-743.e735.
    [26] El-Bashiti T, Hamamci H, ?ktemac H A, Yücel M. Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci, 2005, 169(1):47–54.
    [27] Garg A K, Kim J K, Owens T G, Ranwala A P, Choi Y D, Kochian L V, Wu R J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(25): 15898-15903.
    [28] Ge L F, Chao D Y, Shi M, Zhu M Z, Gao J P, Lin H X. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 2008, 228(1):191-201.
    [29] Jang I C, Oh S J, Seo J S, Choi W B, Song S I, Kim C H, Kim Y S, Seo H S, Choi Y D, Nahm B H, Kim J K. Expression of a bifunctional fusion of the escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-Phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiology, 2003, 131(2): 516-524.
    [30] Mostofa M G, Hossain M A, Fujita M, Tran L S. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep, 5: 11433.
    [31] Nakamura J, Yuasa, T, Huong, T T, Harano, K, Tanaka, S, Iwata, T, Phan, T, Iwaya, M. Rice homologs of inducer of CBF expression (OsICE) are involved in cold acclimation. Plant Bio, 2011, 28(3): 303-309.
    [32] Yang L, Zhao, X J, Zhu, H., Paul, M, Zu, Y G, Tang, Z H. .Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front Plant Sci, 2014, 5: 570.
    [33] Nuccio M L, Wu J, Mowers R, Zhou H P, Meghji M, Primavesi L F, Paul M J, Chen X, Gao Y, Haque E, Basu S S, Lagrimini L M. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol, 2015, 33(8):862-869.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘晓雪,张现伟,李经勇,等.渝17S对低温胁迫的响应及耐冷机制初步研究[J].植物遗传资源学报,2021,22(1):205-213.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:969
  • 下载次数: 1856
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-05-27
  • 最后修改日期:2020-07-23
  • 录用日期:2020-08-24
  • 在线发布日期: 2021-01-07
  • 出版日期:
文章二维码
您是第5920720位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!