玉米出籽率全基因组关联分析
作者:
作者单位:

河南省农业科学院粮食作物研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省科技攻关项目(182102110368);河南省农业科学院优秀青年基金(2020YQ04)


Genome-wide Association Studies for Kernel Ratio in Maize
Author:
Affiliation:

Institute of Cereal Crops, Henan Academy of Agricultural Sciences

Fund Project:

the Science and Technology Project of Henan province (182102110368) and the Science-Technology Foundation for Outstanding Young Scientists of Henan Academy of Agricultural Sciences (2020YQ04)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    出籽率与玉米单穗产量密切相关,其遗传机制的解析对玉米高产育种具有重要意义。本研究利用309份玉米自交系为关联群体,利用FarmCPU(fixed and random model circulating probability unification)、CMLM(compressed mixed linear model)和MLMM(multiple loci mixed model)方法对2017和2019年原阳、郸城、三亚以及最佳线性无偏估计值(BLUE)的出籽率进行全基因组关联分析。共鉴定18个与出籽率显著关联的SNP(P < 1.72E-05),分别位于Bin1.02(1)、Bin1.08(1)、Bin1.12(1)、Bin2.05(5)、Bin2.06(1)、Bin2.10(1)、Bin4.08(1)、Bin4.09(1)、Bin5.02(1)、Bin5.04(1)、Bin5.05(1)、Bin6.05(1)、Bin8.03(1)和Bin9.04(1),其解释出籽率变异率为0.067%~15.43%。其中,S1_304584425、S5_11751831、S5_93814060、S5_186385476和S8_94354503的表型变异解释率介于10.09%~15.43%,为主效SNP。S2_87292896利用CMLM和MLMM方法在BLUE环境和原阳2019均检测到;在BLUE环境,S2_111319193利用FarmCPU和CMLM方法均检测到;在郸城2017,S5_93814060利用CMLM和MLMM方法均检测到。与前人研究结果比较发现,Bin1.08、Bin2.06、Bin4.09和Bin6.05可能是影响出籽率的重要区段。共挖掘32个候选基因,其中E3 泛素蛋白连接酶UPL1、DEAD盒ATP依赖的RNA解旋酶RH52、蛋白激酶同源子4、SNARE互作蛋白KEULE和延伸因子EF1A等可能是影响出籽率的重要基因。

    Abstract:

    Kernel ratio (KR) is closely associated with grain yield per ear in maize (Zea mays), and the analysis of genetic mechanism for kernel ratio is important for high yield breeding. We used 309 inbred lines of maize as an association population, and used FarmCPU (fixed and random model circulating probability unification), CMLM (compressed mixed linear model), and MLMM (multiple loci mixed model) to conduct genome-wide association studies for kernel ratio of maize grown in Yuanyang, Dancheng, and Sanya in 2017 and 2019, and best linear unbiased estimate (BLUE). Eighteen significant SNPs for KR were identified (P < 1.72E-05), which were located on Bin1.02(1), Bin1.08(1), Bin1.12(1), Bin2.05(5), Bin2.06(1), Bin2.10(1), Bin4.08(1), Bin4.09(1), Bin5.02(1), Bin5.04(1), Bin5.05(1), Bin6.05(1), Bin8.03(1), and Bin9.04(1). The phenotypic variation explanation for KR of the 18 SNPs ranged from 0.067% to 15.43%. Five SNPs (S1_304584425, S5_11751831, S5_93814060, S5_186385476, and S8_94354503) varied from 10.09% to 15.43%, and were considered as major SNPs. S2_87292896 was detected by CMLM and MLMM in BLUE environment and Yuanyang 2019. S2_111319193 was identified by FarmCPU and MLMM in BLUE environment. S5_93814060 was detected by CMLM and MLMM in Dancheng 2017. Bin1.08, Bin2.06, Bin4.09, and Bin6.05 might be important genomic regions for KR compared with results of previous studies. A total of 32 candidate genes were identified, among which E3 ubiquitin-protein ligase UPL1, DEAD-box ATP-dependent RNA helicase 52 RH52, protein kinase homolog4, SNARE-interacting protein KEULE, and elongation factor (EF1A) may be important genes for KR.

    参考文献
    相似文献
    引证文献
引用本文

马娟,王利锋,曹言勇,等.玉米出籽率全基因组关联分析[J].植物遗传资源学报,2021,22(2):448-454.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-22
  • 最后修改日期:2020-09-10
  • 录用日期:2020-10-09
  • 在线发布日期: 2021-03-09
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司