2025年5月22日 22:08 星期四
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2021年第22卷第6期 >1708-1715. DOI:10.13430/j.cnki.jpgr. 20210405002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
玉米穗轴粗和出籽率全基因组预测分析
DOI:
10.13430/j.cnki.jpgr. 20210405002
CSTR:
作者:
  • 马娟

    马娟

    河南省农业科学院粮食作物研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 曹言勇

    曹言勇

    河南省农业科学院粮食作物研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 朱卫红

    朱卫红

    河南省农业科学院粮食作物研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

河南省农业科学院粮食作物研究所,郑州 450002

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省科技攻关项目(192102110008;212102110279);河南省农业科学院优秀青年基金(2020YQ04)


Genome-Wide Prediction Analysis for Ear Cob Diameter and Kernel Ratio in Maize
Author:
  • MA Juan

    MA Juan

    Institute of Cereal Crops,Henan Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CAO Yan-yong

    CAO Yan-yong

    Institute of Cereal Crops,Henan Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Wei-hong

    ZHU Wei-hong

    Institute of Cereal Crops,Henan Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Institute of Cereal Crops,Henan Academy of Agricultural Sciences,Zhengzhou 450002

Fund Project:

Science and Technology Project of Henan Province (192102110008; 212102110279), Science-Technology Foundation for Outstanding Young Scientists of Henan Academy of Agricultural Sciences (2020YQ04)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    穗轴粗和出籽率均是典型的数量性状,在不同程度上影响玉米产量。全基因组选择整合全基因组关联分析(GWAS,genome-wide association study)的先验信息是提高性状预测准确性的有效方法。本研究利用309份玉米自交系穗轴粗和出籽率表型和基因分型测序技术获得的基因型数据,研究基因组最佳线性无偏预测(GBLUP,genomic best linear unbiased prediction)、贝叶斯A(Bayes A)和再生核希尔伯特空间(RKHS,reproducing kernel Hilbert space)模型对2种GWAS方法即固定和随机模型交替概率统一(FarmCPU,fixed and random model circulating probability unification)和压缩混合线性模型(CMLM,compressed mixed linear model)衍生的不同密度标记集、随机选择标记集和所有标记对预测准确性的影响。对于2个性状FarmCPU和CMLM衍生标记集,3个预测模型间的预测准确性差异较小,变异范围介于0-0.03。对于随机标记集,相比其他2个模型的预测准确性,RKHS对穗轴粗可提高3.57%-15.91%,而3个预测模型对出籽率具有相似的预测效果。除了50和100个标记,3个模型利用CMLM衍生标记对2个性状的预测效果均优于FarmCPU。相比随机标记集,穗轴粗GWAS衍生标记的预测准确性可提高15.52%-88.37%;出籽率利用衍生标记可提高1-5.89倍。所有衍生标记集的预测准确性均高于所有标记。这些结果均表明,全基因组选择整合GWAS衍生标记有利于提高穗轴粗和出籽率的预测准确性。

    关键词:全基因组关联分析衍生标记;全基因组预测;基因组最佳线性无偏预测;再生核希尔伯特空间;贝叶斯A
    Abstract:

    Maize ear cob diameter (CD) and kernel ratio (KR) are controlled by multiple quantitative loci and both traits associate with the yield production. The genomic selection in conjugation with information identified by genome-wide association study (GWAS) is an effective method to improve the prediction accuracy. By taking use of the phenotypic datasets of CD and KR and the genotypic data derived from genotyping-by-sequencing in 309 maize inbred lines, here we investigated the genomic prediction accuracy using three GS models (genomic best linear unbiased prediction, GBLUP; Bayes A; reproducing kernel Hilbert space, RKHS) and different marker subsets (GWAS-derived markers: fixed and random model circulating probability unification, FarmCPU; compressed mixed linear model, CMLM; randomly selected markers, and all markers). By taking use of FarmCPU- and CMLM-derived markers at both traits, only slight difference (0 to 0.03) on the prediction accuracy using three prediction models was observed. For random markers, GS using RKHS model represented higher prediction accuracy of CD (3.57-15.91%) if compared to two other models, whereas no difference for KR was detected. Except for 50 and 100 markers, the prediction accuracy of CMLM-derived marker using three models were higher than that of FarmCPU-derived markers. Compared to random markers, GWAS-derived markers were able to increase the prediction accuracy (15.52%-88.37% for CD; 1 to 5.89-fold for KR). The prediction accuracy by deployment of GWAS-derived marker subsets was higher than that of all markers. Collectively, these results indicated that genomic selection using GWAS-derived markers could improve the prediction accuracy of CD and KR in maize.

    Key words:markers derived from genome-wide association study; genome-wide prediction; genomic best linear unbiased prediction; reproducing kernel Hilbert space; Bayes A
    参考文献
    [1] 马娟, 曹言勇, 李会勇.玉米穗轴粗全基因组关联分析. 作物学报, 2021, DOI: 10.3724/SP.J.1006.2021.03048.
    Ma J, Cao Y, Li H. Genome-wide association study of ear cob diameter in maize. Acta Agronomica Sinica, 2021, DOI: 10.3724/SP.J.1006.2021.03048.
    [2] 马娟,王利锋,曹言勇,李会勇.玉米出籽率全基因组关联分析. 植物遗传资源学报, 2021, 22(2): 448-454.
    Ma J, Wang L, Cao Y, Li H. Genome-wide association studies for kernel ratio in maize. Journal of Plant Genetic Resources, 2021, 22(2): 448-454.
    [3] Su C, Wang W, Gong S, Zuo J, Li S, Xu S. High density linkage map construction and mapping of yield trait QTLs in maize (Zea mays) using the genotyping-by-sequencing (GBS) technology. Frontiers in Plant Science, 2017, 8: 706-719.
    [4] 赵小强,任斌,彭云玲,徐明霞,方鹏,庄泽龙,张金文,曾文静,高巧红,丁永福,陈奋奇. 8 种水旱环境下 2 个玉米群体穗部性状 QTL 间的上位性及环境互作效应分析. 作物学报, 2019, 45(6): 856-871.
    Zhao X Q, Ren B, Peng Y L, Xu M X, Fang P, Zhuang Z L, Zhang J W, Zeng W J, Gao Q H, Ding Y F, Chen F Q. Epistatic and QTL×environment interaction effects for ear related traits in two maize(Zea mays)populations under eight watering environments. Acta Agronomica Sinica, 2019, 45(6): 856-871.
    [5] Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu, R, Meisel, B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna B, Banziger M, Crossa J. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Science, 2015, 55(1): 154-163.
    [6] Massman J M, Jung H J G, Bernardo R. Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Science, 2013, 53(1): 58-66.
    [7] Beyene Y, Gowda M, Olsen M, Robbins K R, Pérez-Rodríguez P, Alvarado G, Dreher K, Gao S Y, Mugo S, Prasanna B M, Crossa J. Empirical comparison of tropical maize hybrids selected through genomic and phenotypic selections. Frontiers in Plant Science, 2019, 10: 1502.
    [8] Gianola D, van Kaam, J B. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics, 2008, 178(4): 2289-2303.
    [9] HayesBJ, PryceJ, ChamberlainAJ, Bowman P J, GoddardM E. Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS genetics,2010, 6(9): e1001139.
    [10] Rahaman M M, Ahsan M A, Chen M. Data-mining techniques for image-based plant phenotypic traits identification and classification. Science Reports, 2019, 9(1): 19526.
    [11] Li G, Dong Y, Zhao Y, Tian X, Liu W. Genome-wide prediction in a hybrid maize population adapted to Northwest China. The Crop Journal, 2020, 8(5): 830-842.
    [12] Ali M, Zhang Y, Rasheed A, Wang J, Zhang L. Genomic prediction for grain yield and yield-related traits in Chinese winter wheat. International Journal of Molecular Sciences, 2020, 21(4): 1342.
    [13] Bernardo R, Yu J. Prospects for genomewide selection for quantitative traits in maize. Crop Science, 2007, 47(3): 1082-1090.
    [14] Calus M P, Veerkamp R F. Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. Journal of Animal Breeding and Genetics, 2007, 124(6): 362-368.
    [15] Solberg T R, Sonesson A K, Woolliams J A, Meuwissen T H. Genomic selection using different marker types and densities. Journal of Animal Science, 2008, 86(10): 2447-2454.
    [16] Liu X, Wang H, Hu X, Li K, Liu Z, Wu Y, Huang C. Improving genomic selection with quantitative trait loci and nonadditive effects revealed by empirical evidence in maize. Frontiers in Plant Science, 2019,10: 1129.
    [17] Yuan, Y, Cairns, J. E, Babu, R, Gowda, M, Makumbi, D, Magorokosho, C, Zhang, A, Liu, Y, Wang, N, Hao, Z, San, V. F, Olsen M S, Prasanna B M, Lu Y, Zhang, X. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Frontiers in Plant Science, 2019, 9: 1919.
    [18] An Y, Chen L, Li Y X, Li C, Shi Y, Zhang D, Li Y, Wang T. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC plant biology, 2020, 20(1): 490.
    [19] Sitonik C, Suresh L M, Beyene Y, Olsen M S, Makumbi D, Oliver K, Das B, Bright J M, Mugo S, Crossa J, Tarekegne A, Prasanna B M, Gowda M. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theoretical and Applied Genetics, 2019, 132(8): 2381-2399.
    [20] Pérez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 2014, 198(2): 483-495.
    [21] Pérez-Rodríguez P, Gianola D, González-Camacho J M, Crossa J, Manès Y, Dreisigacker S. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3-Genes Genomes Genetics, 2012, 2(12): 1595-1605.
    [23] Crossa J, Beyene Y, Kassa S, Pérez P, Hickey J M, Chen C, de los Campos G, Burgue?o J, Windhausen V S, Buckler E, Jannink J L, Lopez Cruz M A, Babu R. Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3-Genes Genomes Genetics, 2013, 3(11): 1903-1926.
    [24] Hao Y, Wang H, Yang X, Zhang H, He C, Li D, Li H, Wang G, Wang J, Fu J. Genomic prediction using existing historical data contributing to selection in biparental populations: a study of kernel oil in maize. The Plant Genome, 2019, 12 (1): 180025.
    [25] Hayes B J, Visscher P M, Goddard M E. Increased accuracy of artificial selection by using the realized relationship matrix. Genetical Research, 2009, 91(1): 47-60
    [26] Liu X, Wang H, Wang H, Guo Z, Xu X, Liu J, Wang S, Li W X, Zou C, Prasanna B M, Olsen M S, Huang C, Xu Y. Factors affecting genomic selection revealed by empirical evidence in maize. The Crop Journal, 2018, 6(4): 341-352.
    [27] Islam M S, Fang D D, Jenkins J N, Guo J, McCarty J C, Jones D C. Evaluation of genomic selection methods for predicting fiber quality traits in Upland cotton. Molecular Genetics and Genomics, 2020, 295(1): 67-79.
    [28] Rice B, Lipka A E. Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum. The Plant Genome, 2019, 12(1): 180052-180065.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马娟,曹言勇,朱卫红.玉米穗轴粗和出籽率全基因组预测分析[J].植物遗传资源学报,2021,22(6):1708-1715.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:720
  • 下载次数: 2220
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-04-05
  • 最后修改日期:2021-06-03
  • 录用日期:2021-06-03
  • 在线发布日期: 2021-11-04
  • 出版日期:
文章二维码
您是第5859066位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!