2025年5月8日 16:15 星期四
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2021年第22卷第6期 >1732-1745. DOI:10.13430/j.cnki.jpgr. 20210625001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
花生花斑种皮花青素合成的转录组-代谢组联合分析
DOI:
10.13430/j.cnki.jpgr. 20210625001
CSTR:
作者:
  • 胡梦蝶 1

    胡梦蝶

    河北农业大学农学院 / 华北作物种质资源研究与利用教育部重点实验室 / 河北省种质资源实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李佳伟 1

    李佳伟

    河北农业大学农学院 / 华北作物种质资源研究与利用教育部重点实验室 / 河北省种质资源实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 崔顺立 1

    崔顺立

    河北农业大学农学院 / 华北作物种质资源研究与利用教育部重点实验室 / 河北省种质资源实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 侯名语 1

    侯名语

    河北农业大学农学院 / 华北作物种质资源研究与利用教育部重点实验室 / 河北省种质资源实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 杨鑫雷 1

    杨鑫雷

    河北农业大学农学院 / 华北作物种质资源研究与利用教育部重点实验室 / 河北省种质资源实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘立峰 1

    刘立峰

    河北农业大学农学院 / 华北作物种质资源研究与利用教育部重点实验室 / 河北省种质资源实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 蒋晓霞 2

    蒋晓霞

    河北易园生态农业科技有限公司
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 穆国俊 1

    穆国俊

    河北农业大学农学院 / 华北作物种质资源研究与利用教育部重点实验室 / 河北省种质资源实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1河北农业大学农学院 / 华北作物种质资源研究与利用教育部重点实验室 / 河北省种质资源实验室,保定 071001; 2 河北易园生态农业科技有限公司,保定 071000

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省高等学校科学技术研究项目(ZD2019051);河北省重点研发计划项目现代种业科技专项(19226363D)


Transcriptomic-Metabolomics Joint Analysis of Anthocyanin Synthesis for Variegated Testa in Peanut(Arachis hypogaea L.)
Author:
  • HU Meng-die 1

    HU Meng-die

    College of Agronomy,Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Germplasm Resources Laboratory
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Jia-wei 1

    LI Jia-wei

    College of Agronomy,Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Germplasm Resources Laboratory
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHI Shun-li 1

    CHI Shun-li

    College of Agronomy,Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Germplasm Resources Laboratory
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HOU Ming-yu 1

    HOU Ming-yu

    College of Agronomy,Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Germplasm Resources Laboratory
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Xin-lei 1

    YANG Xin-lei

    College of Agronomy,Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Germplasm Resources Laboratory
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Li-feng 1

    LIU Li-feng

    College of Agronomy,Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Germplasm Resources Laboratory
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIANG Xiao-xia 2

    JIANG Xiao-xia

    Hebei Yiyuan Ecological Agriculture Technology Co,Ltd
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MU Guo-jun 1

    MU Guo-jun

    College of Agronomy,Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Germplasm Resources Laboratory
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1College of Agronomy,Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Hebei Germplasm Resources Laboratory,Baoding 071001; 2 Hebei Yiyuan Ecological Agriculture Technology Co,Ltd,Baoding 071000

Fund Project:

Key project of science and technology research in colleges and universities of the department of education in Hebei Province (ZD2019051), Key project of science and technology research of modern seed industry of the department of S&T in Hebei Province(19226363D)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    花生是重要的油料和经济作物,花生种皮色泽存在较大差异,具有白色、红色、紫色、粉色及花斑类型,花斑种皮花生是其中的独特成员。有关花斑花生种皮花青素合成的分子机制存在深入研究的必要性。本研究以花斑种皮花生VG-02为研究材料,采用液相色谱串联质谱(LC-MS/MS)法检测不同发育阶段种皮中花青素的相对含量变化,共检测到12种与种皮颜色相关的代谢物质。在花生种皮着色区(F)与非着色区(B)开花下针(DAF)45天的F2-B2比较组中差异代谢产物最多,结果表明矢车菊素3-O-半乳糖苷和矢车菊素O-丁香酸含量着色区低于非着色区,差异倍数分别为0.63和2.35;松香花青素O-己糖苷,原花青素A1、A2、B2、B3、矢车菊素,花翠素,花翠素3-O葡萄糖苷,矢车菊素3-O-半乳糖苷含量着色区高于非着色区,差异倍数1.05~11.55。花翠素和矢车菊素是导致着色区与非着色区颜色差异的主要代谢物。RNA-seq分析表明,1050个差异基因中筛选出与花斑种皮颜色形成高度相关的差异表达基因共27个,包括3个PAL,1个C4H,2个CHS,1个F3H,1个F3’H,2个DFR,2个LAR,2个IAA,4个bHLH和9个MYB,其中上调13个下调14个。KEGG(Kyoto Encyclopedia of Genes and Genomes)分析表明与种皮颜色合成相关所富集的代谢通路有苯丙氨酸代谢,苯丙醇生物合成,黄酮和黄酮醇生物合成,类黄酮生物合成,植物激素信号转导以及昼夜节律植物,其中类黄酮生物合成代谢途径是花生种皮花斑形成最直接的代谢途径。对20个差异基因进行qPCR验证,结果表明差异基因qPCR表达趋势与转录组测序结果显著一致。本研究结果对进一步揭示花生花斑种皮花青素合成调控机制具有一定的参考意义。

    关键词:花生;种皮;花青素;黄酮生物合成代谢途径;RNA-seq;Qpcr
    Abstract:

    Peanut (Arachis hypogaea L.) is an important oil crop with economical interest. Peanut testa showed difference in colors, such as white, red, purple, pink and variegated. The molecular mechanism of the anthocyanin synthesis in variegated testa merit further in-depth research. In this study, the variegated testa peanut VG-02 was analyzed using Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis, in order to detect the relative changes in content of anthocyanins in variegated testa at different developmental stages. Twelve metabolites associating with the testa color were detected. In the comparison of F2-B2 at DAF45 (45 days after flowering and needling) stage the highest number of differential metabolites was revealed. The relative contents of cyanidin 3-O-galactoside and cyanidin O-syringic acid were lower by 0.63 and 2.35 fold in the pigmented area than that in the non-pigmented area, respectively. The relative contents of rosinidin O-hexoside, procyanidin A1, A2, B2, B3, cyanidin, delphinidin, delphinidin 3-O glucoside and cyanidin 3-O-galactoside were higher by 1.05 to 11.55 fold in the pigmented area than that in the non-pigmented area, respectively. Cyanidin and delphinidin were the main metabolites that caused the difference in color between the pigmented area and the non-pigmented area. RNA-seq analysis revealed 1,050 differentially-expressed genes (DEGs), which included 27 DEGs highly related to the synthesis of variegated testa color. Thirteen were up-regulated and 14 were down-regulated, including 3 PALs, 1 C4H, 2 CHSs, 1 F3H, 1 F3'H, 2 DFRs, 2 LARs, 2 IAAs, 4 bHLHs, and 9 MYBs. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis suggested that the metabolic pathways related to anthocyanin biosynthesis included phenylalanine metabolism, phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, flavonoid biosynthesis, plant hormone signal transduction and circadian rhythm plant, among which flavonoid biosynthesis was proposed to be relevant with the testa variegation. Moreover, twenty DEGs were subjected for qPCR analysis. The similarity on transcriptional pattern revealed by qPCR and RNA-seq was observed. Collectively, the results of this study should help to further reveal the molecular regulatory mechanism of anthocyanin synthesis of the variegated testa in peanut.

    Key words:peanut; variegated testa; anthocyanin; flavonoid biosynthesis metabolic pathway; RNA-seq; qPCR
    参考文献
    [1] 王颖, 王建忠, 林秋君, 郭春景, 任志莹, 李会, 陈芳芳, 花生黄曲霉毒素防控及检测方法研究进展. 辽宁农业科学, 2019. 05 (05):66-68.Wang Y, Wang J Z, Lin Q J, Guo C J, Ren Z Y, Li H. Research progress of peanut aflatoxin control and detection methods. Liaoning Agricultural Sciences. 2019. 05, 66-68.
    [2] Bulgakov, V P, T V AvramenkoG S Tsitsiashvili. Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: focus on anthocyanins. Crit Rev Biotechnol, 2017. 37 (6): 685-700.
    [3] 王少青, 紫色甘薯块根花青素积累的分子生理机制研究. 2016.Wang S Q. Molecular physiological mechanism of anthocyanin accumulation in purple sweet potato tubers. Fujian Agriculture and Forestry University .2016.
    [4] Chen D Y, Liu S, Yin J, Qiu Q, Jin G J, King J, Wang X, Ge Z Li. Alternatively Spliced BnaPAP2.A7 Isoforms Play Opposing Roles in Anthocyanin Biosynthesis of Brassica napus L. Front Plant Sci, 2020. 11:983.
    [5] 孙奇泽, 高波, 刘辰, 孙莲强, 顾学花, 张倩, 崔莎莎李向东, 彩色花生种皮色泽变化及色素沉积规律. 花生学报, 2015. 44 (02):1-6.Sun Q Z, Gao B, LIU C, Sun L Q, Gu X H, Zhang Q, Cui S S, Li X D. Regulation of color formation and pigment deposition in skin development process of colored peanut cultivars[J]. Journal of peanut science, 2015, 2:1-6.
    [6] Hu J H, Fang J, Wang X, Yue M, Su Z, Mao Q, Zou H, Jiang Z, Guo L, Yu T, Feng L, Lu Z, Peng Z, Zhang N, Wang X. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple. Plant Sci, 2020. 292:110377.
    [7] Fukusaki E K, Kawasaki S, Kajiyama C I, An K, Suzuki Y, TanakaA Kobayashi. Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J Biotechnol, 2004. 111 (3):229-40.
    [8] 陈清, 汤浩茹, 董晓莉, 侯艳霞, 罗娅, 蒋艳, 黄琼瑶, 植物Myb转录因子的研究进展. 基因组学与应用生物学, 2009. 28 (02):365-372.Chen Q, Tang H R, Dong X L, Hou Y X, Luo Y, Jiang Y, Huang Q Y. Research progress of MYB transcription factors in plants. Genomics and Applied Biology.2009. 28 (02): 365-372.
    [9] van der Krol, A R, L A Mur, P de Lange, J N MolA R Stuitje, Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol, 1990. 14 (4):457-66.
    [10] Yamazaki, M, J Nakajima, M Yamanashi, M Sugiyama, Y Makita, K Springob, M AwazuharaK Saito. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens. Phytochemistry, 2003. 62 (6):987-95.
    [11] 祝志欣, 鲁迎青. 花青素代谢途径与植物颜色变异. 植物学报, 2016. 51 (01):107-119.Zhu Z X, Lu Y Q. Anthocyanin metabolic pathway and plant color variation. Acta Botanica Sinica. 2016. 51 (01):107-119.
    [12] 张晓楠, ANS、ANR和LAR基因在草莓花青素代谢途径中的调控作用. 2013.Zhang X N. Regulation of ANS, ANR and LAR genes in anthocyanin metabolism of Strawberry. Sichuan Agricultural University. 2013.
    [13] 陈宇宏, 茶树CsUGGT基因克隆及其功能验证. 2017.Chen Y H. Cloning and functional verification of CsUGGT gene from tea plant. Hunan Agricultural University. 2017.
    [14] Elomaa P, A Uimari, M Mehto, V A Albert, R A LaitinenT H Teeri. Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant Physiol, 2003. 133 (4):1831-42.
    [15] Baudry A, M A Heim, B Dubreucq, M Caboche, B WeisshaarL Lepiniec. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J, 2004. 39 (3):366-80.
    [16] Almeida J, R Carpenter, T P Robbins, C MartinE S Coen. Genetic interactions underlying flower color patterns in Antirrhinum majus. Genes Dev, 1989. 3 (11):1758-67.
    [17] Xiang L L, Liu X F, Li X, Yin X R, D Grierson, F LiK S Chen. A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.). PLoS One, 2015. 10 (11):e0143892.
    [18] Xia H L, Zhu C, Zhao K, Li C, Shang L, Hou M, Wang J, Shi S, Fan X, Wang. Comparative transcriptome analysis of anthocyanin synthesis in black and pink peanut. Plant Signal Behav, 2020. 15 (2):1721044.
    [19] 尚啸, 王健, 李琴, 龚胜, 孙海燕, 张玄兵, 植物花斑形成分子机理研究进展. 园艺学报, 2014. 41 (07):1485-1494.Shang X, Wang J, Li Q, Gong S, Sun H Y, Zhang X B. Advances in molecular mechanism of plant spot synthesis. Journal of Horticulture. 2014. 41 (07):1485-1494.
    [20] Koseki, M, K Goto, C MasutaA Kanazawa. The star-type color pattern in Petunia hybrida 'red Star' flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol, 2005. 46 (11):1879-83.
    [21] Ma, DC P Constabel. MYB Repressors as Regulators of Phenylpropanoid Metabolism in Plants. Trends Plant Sci, 2019. 24 (3):275-289.
    [22] Chiou, C YK W Yeh. Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Mol Biol, 2008. 66 (4):379-88.
    [23] 李海芬, 邱金梅, 陈小平, 洪彦彬, 梁炫强, 花生花青素合成相关基因的表达与种皮颜色关系. 中国油料作物学报, 2017. 39 (05):600-605.Li H F, Qiu J M, Sun, X P. Liang, X Q. Cloning and sequence analysis of genes related to anthocyanin synthesis in Peanut Cultivars with different testa colors. Journal of Tropical Crops. 2017. 39 (05):600-605.
    [24] Wan L, B Li, Y Lei, L Yan, D Huai, Y Kang, H Jiang, J Tan, B Liao. Transcriptomic profiling reveals pigment regulation during peanut testa development. Plant Physiol Biochem, 2018. 125:116-125.
    [25] 李明, 王玉红, 李长生, 侯蕾, 赵传志, 赵术珍, 夏晗, 王兴军, 花生黄烷酮3-羟化酶基因AhF3H的克隆和表达分析. 山东农业科学, 2013. 45 (11):1-6.Li M, Wang Y H, Li C S, Hou L, Zhao S Z, Xia H, Wang X J. Cloning and expression analysis of peanut Flavanone-3-hydroxylase Gene ahf3h. Shandong Agricultural Sciences. 2013. 45 (11):1-6.
    [26] Ye J, G Wang, J Tan, J Zheng, X Zhang, F Xu, S Cheng, Z Chen, W Zhang Y Liao. Identification of candidate genes involved in anthocyanin accumulation using Illmuina-based RNA-seq in peach skin. Scientia Horticulturae, 2019. 250.
    [27] Liu, T, Y Zhang, X Zhang, Y Sun, H Wang, J SongX Li. Transcriptome analyses reveal key genes involved in skin color changes of 'Xinlimei' radish taproot. Plant Physiol Biochem, 2019. 139:528-539.
    [28] 贾展慧, 王涛, 潘德林, 王刚, 黄胜男, 张计育, 郭忠仁.‘红阳’猕猴桃果实发育过程中果肉色素代谢变化研究.中国园艺学会第十三次全国会员代表大会暨2017年学术年会. 2017.中国云南昆明.Jia Z H, Wang T, Pan D L, Wang G, Huang S N, Zhang J Y, Guo Z R. Transcriptome and anthocyanin accumulation mechanism in fruit synthesis of 'Hongyang' Kiwifruit. in School of Chinese Academy of Sciences. 2017. Kunming, Yunnan, China.
    [29] 金雪花, 基于高通量测序的瓜叶菊花青素苷合成途径研究. 2013.Jin X H. Synthesis of anthocyanin from Chrysanthemum morifolium based on high throughput sequencing. Beijing Forestry University, 2013.
    [30] Bai Y, L Dougherty K Xu. Towards an improved apple Reference transcriptome using RNA-seq. Mol Genet Genomics, 2014. 289 (3):427-38.
    [31] Venturini, L, A Ferrarini, S Zenoni, G B Tornielli, M Fasoli, S Dal Santo, A Minio, G Buson, P Tononi, E D Zago, G Zamperin, D Bellin, M PezzottiM Delledonne. De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genomics, 2013. 14:41.
    [32] Li Y, W Cui, X Qi, M Lin, C Qiao, Y Zhong, C Hu, J Fang. MicroRNA858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit (Actinidia arguta). Plant Sci, 2020. 296:110476.
    [33] Zhang D, L Liu, D Zhou, X Liu, Z LiuM Yan. Genome-wide identification and expression analysis of anthocyanin biosynthetic genes in Brassica juncea. Journal of Integrative Agriculture, 2020. 19 (05):1250-1260.
    [34] Wishart, D S, T Jewison, A C Guo, M Wilson, C Knox, Y Liu, Y Djoumbou, R Mandal, F Aziat, E Dong, S Bouatra, I Sinelnikov, D Arndt, J Xia, P Liu, F Yallou, T Bjorndahl, R Perez-Pineiro, R Eisner, F Allen, V Neveu, R GreinerA Scalbert. HMDB 3.0--The Human Metabolome Database in 2013. Nucleic Acids Res, 2013. 41 (Database issue):D801-7.
    [35] Zhu Z J, A W Schultz, J Wang, C H Johnson, S M Yannone, G J PattiG Siuzdak. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc, 2013. 8 (3):451-60.
    [36] Livak, K JT D Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25 (4):402-8.
    [37] Jin X, H Huang, L Wang, Y SunS Dai. Transcriptomics and Metabolite Analysis Reveals the Molecular Mechanism of Anthocyanin Biosynthesis Branch Pathway in Different Senecio cruentus Cultivars. Front Plant Sci, 2016. 7:1307.
    [38] 邓素芳, 基于全转录组学的野生蕉(Musa itinerans)低温胁迫响应机制研究. 2018.Deng S F. Study on the molecular mechanism of color difference synthesis of wild banana peel based on RNA seq. Fujian Agriculture and Forestry University, 2018.
    [39] Gao J, W B Li, H F LiuF B Chen. De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. BMC Mol Cell Biol, 2019. 20 (1):45.
    [40] Ohno, S, W Hori, M Hosokawa, F TatsuzawaM Doi. Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) 'Yuino'. Planta, 2018. 247 (2):413-428.
    [41] Enrique, G A, G Ana, G Antonia, G V Ana, G M F JavierR S Beatriz. Elicitation with Bacillus QV15 reveals a pivotal role of F3H on flavonoid metabolism improving adaptation to biotic stress in blackberry. PloS one, 2020. 15 (5).
    [42] Brugliera, F, G Q Tao, U Tems, G Kalc, E Mouradova, K Price, K Stevenson, N Nakamura, I Stacey, Y Katsumoto, Y TanakaJ G Mason. Violet/blue chrysanthemums--metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol, 2013. 54 (10):1696-710.
    [43] 李莹, 高振蕊, 张驰, 李楠, 刘琛, 花青素合成途径中分子调控机制的研究进展. 生态学杂志, 2015. 34 (10):2937-2942.Li Y, Gao, Z R, Zhang C, Li N, Liu C. Research progress of molecular regulation mechanism in anthocyanin synthesis pathway. Journal of ecology. 2015.34 (10):2937-2942.
    [44] Johnson, E T, S Ryu, H Yi, B Shin, H CheongG Choi. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J, 2001. 25 (3):325-33.
    [45] 王惠聪, 黄旭明, 胡桂兵, 黄辉白, 荔枝果皮花青苷合成与相关酶的关系研究. 中国农业科学, 2004 (12):2028-2032.Wang H C, Huang X M, Hu, G B, Huang H B. Study on the relationship between anthocyanin synthesis and related enzymes in Litchi Pericarp. Agricultural Science in China. 2004 (12):2028-2032.
    [46] 沈媛, 樱桃果实营养成分和花青素的研究. 2014.Shen Y. Study on nutritional components and anthocyanins of cherry fruit. Nanjing Forestry University. 2014.
    [47] Gao J, R Ren, Y Wei, J Jin, S Ahmad, C Lu, J Wu, C Zheng, F Yang, G Zhu. Comparative Metabolomic Analysis Reveals Distinct Flavonoid BiosynthesisRegulation for Leaf Color Development of Cymbidium sinense 'Red Sun'. Int J Mol Sci, 2020. 21 (5).
    [48] Liu X, B Zhang, J Wu, Z Li, F Han, Z Fang, L Yang, M Zhuang, H Lv, Y Liu, Z Li, H Yu, X LiY Zhang. Pigment variation and transcriptional response ofthe pigment synthesis pathway in the S2309 triple-color ornamental kale (Brassica oleracea L. var. acephala) line. Genomics, 2020. 112 (3): 2658-2665.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡梦蝶,李佳伟,崔顺立,等.花生花斑种皮花青素合成的转录组-代谢组联合分析[J].植物遗传资源学报,2021,22(6):1732-1745.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:972
  • 下载次数: 2291
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-06-25
  • 最后修改日期:2021-06-25
  • 录用日期:2021-06-25
  • 在线发布日期: 2021-11-04
  • 出版日期:
文章二维码
您是第5823161位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!