2025年6月10日 23:39 星期二
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2022年第23卷第3期 >738-745. DOI:10.13430/j.cnki.jpgr.20211021003 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
小麦花药培养体系优化及高再生力基因型的筛选
DOI:
10.13430/j.cnki.jpgr.20211021003
CSTR:
作者:
  • 李 慧 1

    李 慧

    长江大学农学院 / 主要粮食作物产业化湖北省协同创新中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵林姝 2

    赵林姝

    中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 古佳玉 2

    古佳玉

    中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭会君 2

    郭会君

    中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 谢永盾 2

    谢永盾

    中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 熊宏春 2

    熊宏春

    中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵世荣 2

    赵世荣

    中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 丁玉萍 2

    丁玉萍

    中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐延浩 3

    徐延浩

    长江大学农学院 / 主要粮食作物产业化湖北省协同创新中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘录祥 2

    刘录祥

    中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.长江大学农学院 / 主要粮食作物产业化湖北省协同创新中心;2.中国农业科学院作物 科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国防科工局核能开发科研项目“核辐射作物品种改良与害虫防控”


Optimizing of Anther Culture System and Screening Wheat Genotypes with Higher Regeneration Ability
Author:
  • LI Hui 1

    LI Hui

    College of Agriculture,Yangtze University/Hubei Collaborative Innovation Center for Grain Industry,Hubei Jingzhou
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Lin-shu 2

    ZHAO Lin-shu

    Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GU Jia-yu 2

    GU Jia-yu

    Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Hui-jun 2

    GUO Hui-jun

    Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIE Yong-dun 2

    XIE Yong-dun

    Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIONG Hong-chun 2

    XIONG Hong-chun

    Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Shi-rong 2

    ZHAO Shi-rong

    Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DING Yu-ping 2

    DING Yu-ping

    Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Yan-hao 3

    XU Yan-hao

    College of Agriculture,Yangtze University/Hubei Collaborative Innovation Center for Grain Industry,Hubei Jingzhou
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Lu-xiang 2

    LIU Lu-xiang

    Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Agriculture,Yangtze University/Hubei Collaborative Innovation Center for Grain Industry,Hubei Jingzhou;2.Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement

Fund Project:

Nuclear Energy Development Research Program of the State Administration of Science,Technology and Industry for National Defense“Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation”

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前花药培养白苗再生较多,因此选取不同成分的碳源对花药培养体系进行优化,并利用优化的体系连续 2 年 对 22 个小麦品种(系)的培养力进行了鉴定。结果表明,以国药公司蔗糖为碳源进行离体培养的花药没有产生胚状体;以 Sigma 公司麦芽糖和 Phytotech 公司麦芽糖为碳源时,花药均可以脱分化形成胚状体并进一步再生植株,绿苗产率在此 2 种 麦芽糖间无显著差异,但白苗产率在 2 种麦芽糖间差异显著,Sigma 麦芽糖条件下白苗产率显著高于 Phytotech 麦芽糖,说 明利用 Phytotech 麦芽糖能减少白苗的再生。22 个品种(系)的绿苗及白苗产率差异显著,筛选出高绿苗再生力基因型河 农 6425(33.97%)、洛麦 28(22.28%)和郑麦 136(15.63%),高白苗再生力基因型小偃 22(39.69%)、郑麦 136(33.99%)、洛 麦 28(42.17%)和豫农 903(28.59%),高植株再生力基因型小偃 22(46.69%)、郑麦 136(49.62%)、洛麦 28(64.45%)、河农 6425 (41.47%)和豫农 903(31.69%)。本研究鉴定筛选的高再生力基因型可作为单倍体育种、基因定位或遗传转化研究的基础材料。

    关键词:小麦;花药培养体系优化;基因型;碳源;植株再生能力
    Abstract:

    The high rate of albino plants is an issue in wheat anther culture system. In this study,carbon sources with different components were selected to optimize the anther culture system,followed by evaluating the culture ability of 22 wheat varieties (lines) samples harvested at two consecutive years. The anthers cultured in vitro with Sinopharm sucrose did not produce embryoids,whereas anthers succeeded in dedifferentiation into embryoids and further regenerate plantlets when using maltose from Sigma and Phytotech. No significant difference in the green plantlets per 100 anthers,but a significant difference in the albino plantlets per 100 anthers between the two kinds of maltose were observed. The albino plantlets per 100 anthers using Sigma maltose was significantly higher than that using Phytotech maltose. Moreover,the green/albino plantlets per 100 anthers was significantly different among 22 varieties (lines). The genotypes showing high green plantlet regeneration ability were henong 6425 (33.97%),Luomai 28 (22.28%) and Zhengmai 136 (15.63%),and the genotypes showing high albino plantlet regeneration ability were Xiaoyan 22 (39.69%),Zhengmai 136 (33.99%), Luomai 28 (42.17%) and Yunong 903 (28.59%),and the genotypes showing high plantlet regeneration ability were Xiaoyan 22 (46.69%),Zhengmai 136 (49.62%),Luomai 28 (64.45%),Henong 6425 (41.47%) and Yunong 903 (31.69%). Through identifying the genotypes with high regeneration ability,this study provided the genotypes suitable for haploid breeding,gene mapping and genetic transformation in common wheat.

    Key words:wheat;optimization of anther culture system;genotype;carbon source;plant regeneration ability
    参考文献
    [1] 周霞, 邓英, 陈劲枫. 瓜类作物离体雌核诱导单倍体研究进展. 园艺学报, 2020, 47(9): 1810-1826.Zhou X, Deng Y, Chen J F. Research Progress on Haploid Induction of Cucurbitaceous Crops Based on in Vitro Gynogenesis. Acta Horticulturae Sinica, 2020, 47(9): 1810-1826.
    [2] Lantos C, Pauk J. Anther culture as an effective tool in winter wheat (Triticum aestivum L.) breeding. Genetika, 2016, 52(8): 910-8.
    [3] Lantos C, Purgel S, ács K, Langó B, Bóna L, Boda K, Békés F, Pauk J. Utilization of in Vitro Anther Culture in Spelt Wheat Breeding. Plants (Basel), 2019, 8(10): 436.
    [4] Begheyn R F, Yates S A, Sykes T, Studer B. Genetic Loci Governing Androgenic Capacity in Perennial Ryegrass (Lolium perenne L.). G3 Genes Genomes Genetics, 2018, 8(6): 1897-1908.
    [5] Jiao Y Y, Li J L, Li W, Chen M, Li M R, Liu W X, Liu C X, Chen S J. QTL Mapping and Prediction of Haploid Male Fertility Traits in Maize (Zea mays L.). Plants, 2020, 9(7): 836-847.
    [6] Rustgi S, Ankrah N O, Brew-Appiah R A T, Sun Y, Liu W, Von Wettstein D. Doubled Haploid Transgenic Wheat Lines by Microspore Transformation. Methods in Molecular Biology, 2017, 1679: 213-234.
    [7] Ohnoutková L, Vl?ko T. Homozygous Transgenic Barley (Hordeum vulgare L.) Plants by Anther Culture. Plants (Basel), 2020, 9(7): 918.
    [8] Lichter, Robert. Induction of Haploid Plants From Isolated Pollen of Brassica Napus. Zeitschrift Für Pflanzenphysiologie, 1982, 105(5): 427-434.
    [9] Belogradova K, Lewicka I, Heberle-Bors E, Touraev A. An Overview on Tobacco Doubled Haploids. Advances in Haploid Production in Higher Plants, 2009: 75-85.
    [10] Yuan S X, Su Y B, Liu Y M, Li Z S, Fang Z Y, Yang L M, Zhuang M, Zhang Y Y, Lu H H, Sun P T. Chromosome Doubling of Microspore-Derived Plants from Cabbage (Brassica oleracea var. capitata L.) and Broccoli (Brassica oleracea var. italica L.). Frontiers in Plant Science, 2015, 6: 1118.
    [11] Esteves P, Belzile F J. Isolated Microspore Culture in Barley. Methods in Molecular Biology, 2019, 1900: 53-71.
    [12] Chiancone B, Germanà M A. Microspore Embryogenesis Through Anther Culture in Citrus clementina Hort. ex Tan. Methods in Molecular Biology, 2016, 1359: 475-487.
    [13] Mejza S J, Morgant V, Dibona D E, Wong J R. Plant regeneration from isolated microspores of Triticum aestivum. Plant Cell Reports, 1993, 12(3): 149-153.
    [14] Tuvesson I K D, ?hlund R C V. Plant regeneration through culture of isolated microspores of Triticum aestivum L. Plant Cell, Tissue and Organ Culture, 1993, 34(2): 163-167.
    [15] 何婷, 郭桂梅, 陈志伟, 张述伟, 宗营杰, 陆瑞菊, 王亦菲, 刘成洪. 小麦小孢子培养愈伤组织的高频诱导及其绿苗再生. 上海农业学报, 2018, 34(2): 39-42.He T, Guo G M, Chen Z W, Zhang S W, Zong Y J, Lu R J, Wang Y F, Liu C H. The high-frequency callus induction and green plantlet regeneration under in vitro culture of wheat microspores. Acta Agriculturae Shanghai, 2018, 34(2): 39-42.
    [16] Wang H M, Enns J L, Nelson K L, Brost J M, Orr T D, Ferrie A M R. Improving the efficiency of wheat microspore culture methodology: evaluation of pretreatments, gradients, and epigenetic chemicals. Plant Cell, Tissue and Organ Culture (PCTOC), 2019, 139(6): 589-599.
    [17] Weigt D, Siatkowski I, Magaj M, Tomkowiak A, Nawraca?a J. Impact of Ionic Liquids on Induction of Wheat Microspore Embryogenesis and Plant Regeneration. Agronomy, 2020, 10(6): 839.
    [18] Lantos C, Bóna L, Nagy E, Békés F, Pauk J. Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 133(3): 385-393.
    [19] 兰素缺, 李光威, 权书月, 李杏普, 刘玉平, 侯红军, 高红欣. 碳源组份及浓度对小麦花药培养和游离小孢子培养的影响. 华北农学报, 2002(S1): 93-97.Lan S Q, Li G W, Quan S Y, Li X P, Liu Y P, Hou H J, Gao H X. Effects of Carbohydrate Composition and Concentration on Anther Culture and Isolated Microspores Culture in Wheat (Triticum aestivum L.). Acta Agriculturae Boreali-Sinica, 2002(S1): 93-97.
    [20] 赵林姝, 刘录祥, 古佳玉, 谢永盾, 郭会君, 赵世荣, 李军辉, 熊宏春. 冬小麦高花药培养力基因型的筛选. 麦类作物学报, 2017, 37(10): 1294-1300.Zhao L S, Liu L X, Gu J Y, Xie Y D, Guo H J, Zhao S R, Li J H, Xiong H C. Screening of Winter Wheat Germplasms with High Anther Culture Ability. Journal of Triticeae Crops, 2017, 37(10): 1294-1300.
    [21] 吕学莲, 白海波, 蔡正云, 董建力, 高晓原, 陈雪, 李树华. 小麦花药培养的基因型效应及优良基因型筛选. 中国农学通报, 2011, 27(33): 13-17.Lv X L, Bai H B, Cai Z Y, Dong J L, Gao X Y, Chen X, Li S H. Effect of Genotype on Wheat Anther Culture and Selection of Choiceness Genotype. Chinese Agricultural Science Bulletin, 2011, 27(33): 13-17.
    [22] Guan P F, Lu L H, Jia L J, Kabir M R, Zhang J B, Lan T Y, Zhao Y, Xin M M, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Peng H R. Global QTL Analysis Identifies Genomic Regions on Chromosomes 4A and 4B Harboring Stable Loci for Yield-Related Traits Across Different Environments in Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018, 9: 529.
    [23] Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2020, 216(1): 3-14.
    [24] Xu Q, Xu F C, Qin D D, Li M F, Fedak G, Cao W G, Yang L J, Dong J. Molecular Mapping of QTLs Conferring Fusarium Head Blight Resistance in Chinese Wheat Cultivar Jingzhou 66. Plants (Basel), 2020, 9(8): 1021.
    [25] 高洁, 王姣, 张淑娟, 郭栋, 李玉莲, 宋国琦, 陈雪燕, 李根英. 以花药为受体的小麦转基因技术体系的构建. 山东农业科学, 2014, 46(01): 1-5+18+ 165.Gao J, Wang J, Zhang S J, Guo D, Li Y L, Song G Q, Chen X Y, Li G Y. Construction of Wheat Transgenetic Technology System using Isolated Anthers as Particle Bombardment Receptor. Shandong Agricultural Sciences, 2014, 46(01): 1-5+18+165.
    [26] Han Y, Broughton S, Liu L, Zhang X Q, Zeng J B, He X Y, Li C D. Highly efficient and genotype-independent barley gene editing based on anther culture. Plant Commun, 2020, 2(2): 100082.
    [27] Sue, Broughton. Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture, 2008, 95: 187.
    [28] 王炜, 陈琛, 叶春雷, 贺小宝, 杜旺喜, 王云贵, 杨芳萍, 杨文雄, 杨随庄, 王方, 罗俊杰. 甘肃主栽小麦品种及骨干亲本花药培养特性评价及分析.核农学报, 2016, 30(06): 1059-1066.Wang W, Chen C, Ye C L, He X B, Du W X, Wang Y G, Yang F P, Yang W X, Yang S Z, Wang F, Luo J J. Evaluation and Analysis of Anther Culture Characteristics in Gansu Wheat Cultivars and Backbone Parents. Journal of Nuclear Agricultural Sciences, 2016, 30(06): 1059-1066.
    [29] 李光威, 兰素缺, 孙宝启. 小麦游离小孢子培养的研究. 华北农学报, 2001(01): 83-87.Li G W, Lan S Q, Sun B Q. Study on Isolated Microspore Culture in Wheat (Triticum aestivum L.). Acta Agriculturae Boreali-Sinica, 2001(01): 83-87.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李 慧,赵林姝,古佳玉,等.小麦花药培养体系优化及高再生力基因型的筛选[J].植物遗传资源学报,2022,23(3):738-745.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:359
  • 下载次数: 1194
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-10-21
  • 最后修改日期:2022-02-08
  • 录用日期:2022-02-09
  • 在线发布日期: 2022-05-10
  • 出版日期:
文章二维码
您是第5912404位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!