2025年5月28日 6:32 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2022年第23卷第3期 >670-677. DOI:10.13430/j.cnki.jpgr.20211111001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
转录因子HY5在植物花青素合成中的调控作用
DOI:
10.13430/j.cnki.jpgr.20211111001
CSTR:
作者:
  • 赵亚男

    赵亚男

    河南科技大学园艺与植物保护学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张会灵

    张会灵

    河南科技大学园艺与植物保护学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张中华

    张中华

    河南科技大学园艺与植物保护学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘 菊

    刘 菊

    河南科技大学园艺与植物保护学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张菊平

    张菊平

    河南科技大学园艺与植物保护学院
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

河南科技大学园艺与植物保护学院

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省自然科学基金(202300410152);河南省高等学校青年骨干教师培养计划(2021GGJS049);河南省高等学校重点科研项目 (20A210009)


The Regulatory Role of Transcription Factor HY5 in Plant Anthocyanin Synthesis
Author:
  • ZHAO Ya-nan

    ZHAO Ya-nan

    College of Horticulture and Plant Protection,Henan University of Science and Technology
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Hui-ling

    ZHANG Hui-ling

    College of Horticulture and Plant Protection,Henan University of Science and Technology
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Zhong-hua

    ZHANG Zhong-hua

    College of Horticulture and Plant Protection,Henan University of Science and Technology
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Ju

    LIU Ju

    College of Horticulture and Plant Protection,Henan University of Science and Technology
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Ju-ping

    ZHANG Ju-ping

    College of Horticulture and Plant Protection,Henan University of Science and Technology
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

College of Horticulture and Plant Protection,Henan University of Science and Technology

Fund Project:

Natural Science Foundation of Henan(202300410152),Training Plan for Young Backbone Teachers in Colleges and Universities of Henan Province(2021GGJS049),Key Scientific Research Project for Colleges and Universities of Henan Province(20A210009)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    花青素是植物中重要的类黄酮化合物,在果实着色、抗逆境等方面起着重要的生理作用。富含花青素的食物对人 体也有良好的保健作用,如抗衰老、防止血管硬化等。花青素的生物合成与积累不仅受到自身结构基因、调节基因以及植物激 素的影响,也会受到外界环境因素(如光照、温度等)的影响。其中,光照是影响植物花青素合成与积累的重要因素之一,因此 解析植物从接收光信号到影响花青素合成的调控机制有重要的生物学意义。HY5(ELONGATED HYPOCOTYL5)作为碱性 亮氨酸拉链(bZIP,basic leucine zipper)类转录因子,在调控植物生长发育的过程中发挥着重要的作用,它是第一个被发现参 与光形态建成的转录因子,在植物花青素生物合成的过程中也发挥着关键性的调控作用。本文综述了 HY5 蛋白在植物花青 素合成通路中响应光信号机制并激活下游转录因子和结构基因的转录特征,概述了该转录因子与 BBX 蛋白互作进而调控花 青素合成积累过程,旨在为后续深入阐明 HY5 介导植株类黄酮化合物代谢及响应光信号机理提供理论依据。

    关键词:HY5;花青素合成;转录因子;转录调控
    Abstract:

    In plants,anthocyanins are a group of flavonoid compounds and play an important physiological role in fruit coloring and tolerance to stresses. Foods rich in anthocyanins also have good health effects on the human,such as anti-aging and preventing hardening of the arteries. The biosynthesis and accumulation of anthocyanins are not only affected by their own structural genes,regulatory genes and plant hormones,but also by external environmental factors(such as light,temperature,etc.). Among them,light is one of the important factors affecting the synthesis and accumulation of anthocyanins in plants. Therefore,it is of great biological significance to analyze the regulatory mechanism of plants from receiving light signals to affecting anthocyanin synthesis. HY5(ELONGATED HYPOCOTYL5)encodes an alkaline leucine zipper(bZIP)transcription factor, plays an important role in regulating plant growth and development. It is the first transcription factor found to be involved in photomorphgenesis. It also plays a key regulatory role in the biosynthesis of anthocyanins. Here,we review the role of HY5 protein in the pathway of anthocyanin synthesis,responses to light signals and activation of downstream transcription factors and structural genes,and interaction with BBX protein in regulation of anthocyanin synthesis and accumulation. We expect to provide insights for future exploring the functional basis of HY5 in the metabolic pathways of flavonoids and responses to light signals.

    Key words:HY5;anthocyanin synthesis;transcription factor;transcriptional regulation
    参考文献
    王峰,王秀杰,赵胜男,闫家榕,卜鑫,张颖,刘玉凤,许涛,齐明芳,齐红岩,李天来.光对园艺植物花青素生物合成的调控作用.中国农业科学,2020,53(23):4904-4917
    Wang F , Wang X J , Zhao S N , Yan J R , Bu X , Zhang Y , Liu Y F , Xu T , Qi M F , Qi H Y , Li T L . Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops. Scientia Agricultura Sinica, 2020, 53 (23) : 4904-4917
    宋建辉,郭长奎,石敏.植物花青素生物合成及调控.分子植物育种,2021,19(11):3612-3620
    Song J H , Guo C K , Shi M. Anthocyanin Biosynthesis and Transcriptional Regulation in Plant. Molecular Plant Breeding, 2021, 19 (11) : 3612-3620
    [3] 仇菊,朱宏,刘鹏,王靖,孙君茂.我国彩色马铃薯主栽品种的营养成分分析.中国食物与营养,2018,24(11):10-14
    Qiu J , Zhu H , Liu P , Wang J , Sun J M. Analysis on Nutrients of Main Cultivars of Colored Fleshed Potatoes in Chana. Food and Nutrition in China, 2018, 24 (11) : 10-14
    洪艳,武宇薇,宋想,李梦灵,戴思兰.光照调控园艺作物花青素苷生物合成的分子机制.园艺学报,2021,48(10):1969-1982
    Hong Y , Wu Y W , Song X , Li M L , Dai S L. Molecular Mechanism of Light-induced Anthocyanin Biosynthesis in Horticultural Crops. Acta Horticulturae Sinica, 2021, 48 (10) : 1969-1982
    [5] Yoon M K , Shin J , Choi G , Choi B S. Intrinsically unstructured N‐terminal domain of bZIP transcription factor HY5. Proteins: Structure, Function, and Bioinformatics, 2006, 65 (4 ) : 856-866
    [6] Holton T A , Cornish E C. Genetics and Biochemistry of Anthocyanin Biosynthesis. The Plant cell, 1995, 7 (7) : 1071-1083
    [7] Al Sane K O , Hesham A E L. Biochemical and genetic evidences of anthocyanin biosynthesis and accumulation in a selected tomato mutant. Rendiconti Lincei, 2015, 26 (3) : 293-306
    [8] 刘恺媛,王茂良,辛海波,张华,丛日晨,黄大庄.植物花青素合成与调控研究进展.中国农学通报,2021,37(14):41-51
    Liu K Y , Wang M L , Xin H B , Zhang H , Cong R C , Huang D Z. Anthocyanin Biosynthesis and Regulate Mechanisms in Plants: A Review. Chinese Agricultural Science Bulletin, 2021, 37 (14) : 41-51
    [9] Li Y K , Cui W , Qi X J , Qiao C K , Lin M M , Zhong Y P , Hu C , Fang J B. Chalcone Synthase-Encoding AeCHS is Involved in Normal Petal Coloration in Actinidia eriantha. Genes, 2019, 10 (12) : 949
    [10] Keykha F , Bagheri A , Moshtaghi N , Bahrami A R , Sharifi A. RNAi-induced silencing in floral tissues of Petunia hybrida by agroinfiltration: a rapid assay for chalcone isomerase gene function analysis. Cellular and molecular biology : Noisy-le-Grand, France, 2016, 62 (10) : 26-31
    [11] 冯志熙,刘应丽,朱佳鹏,罗超,黄武略,李新艺,蔡斌,黄海泉,黄美娟.滇水金凤黄烷酮3-羟化酶基因(IuF3H)的克隆及表达分析.分子植物育种,2021,19(1):65-71
    Feng Z X , Liu Y L , Zhu J P , Luo C , Huang W L , Li X Y , Cai B , Huang H Q , Huang M J. Cloning and Expression Analysis of IuF3H Gens in Impatiens uliginosa. Molecular Plant Breeding, 2021, 19 (1) : 65-71
    [12] 孙海燕,安泽伟,李琴,王健.三色堇DFR基因的克隆及表达分析.江苏农业科学,2015,43(11):34-37
    Sun H Y , An Z W , Li Q , Wang J. Cloning and Expression Analysis of Pansy DFR Gene. Jiangsu Agricultural Sciences, 2015, 43 (11) : 34-37
    [13] 杨慧珍.甘薯花青素合成酶(ANS)基因的克隆及其组织表达模式分析.山西农业科学,2020,48(11):1718-1723
    Yang H Z. Cloning of the ANS Gene and Analysis of Its Tissue Expression in Ipomoea batatas. Journal of Shanxi Agricultural Sciences, 2020, 48 (11) : 1718-1723
    [14] Mathews H , Clendennen S K , Caldwell C G , Liu X L , Connors K , Matheis N , Schuster D K , Menasco D J , Wagoner W , Lightner J , Wanger D R. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. The Plant Cell, 2003, 15 (8) : 1689-1703
    [15] Yan S S , Chen N , Huang Z J , Li D J , Zhi J J , Yu B W , Liu X X , Cao B H , Qiu Z K. Anthocyanin Fruit encodes an R2R3-MYB transcription factor, SlAN2‐like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytologist, 2020, 225(5) : 2048-2063
    [16] Quattrocchio F , Wing J F, Woude V D K , Mol J N M , Koes R. Analysis of bHLH and MYB domain proteins:species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. The Plant journal:for cell and molecular biology, 1998, 13 (4) : 475-488
    [17] Spelt C , Quattrocchio F , Mol J N M , Koes R. anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell, 2000, 12 (9) : 1619-1632
    [18] Payyavula R S , Singh R K , Navarre D A. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. Journal of Experimental Botany, 2013, 6 (16) : 5115-5131
    [19] 梁立军,杨祎辰,王二欢,邢丙聪,梁宗锁.植物花青素生物合成与调控研究进展.安徽农业科学,2018,46(21):18-24
    Liang L J , Yang Y C , Wang E H , Xing B C , Liang Z S. Research Progress on Biosynthesis and Regulation of Plant Anthocyanin. Journal of Anhui Agricultural Sciences, 2018, 46 (21) : 18-24
    [20] 庄维兵,刘天宇,束晓春,渠慎春,翟恒华,王涛,张凤娇,王忠.植物体内花青素苷生物合成及呈色的分子调控机制.植物生理学报,2018,54(11):1630-1644
    Zhuang W B , Liu T Y , Shu X C , Qu S C , Zhai H H , Wang T , Zhang F J , Wang Z. The Molecular Regulation Mechanism of Anthocyanin Biosynthesis and Coloration in Plants. Plant Physiology Journal, 2018, 54 (11) : 1630-1644
    [21] Baudry A , Heim M A , Dubreucq B , Caboche M , Weisshaar B , Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal, 2004, 39 (3) : 366-380
    [22] 高国应,伍小方,张大为,周定港,张凯旋,严明理.MBW复合体在植物花青素合成途径中的研究进展.生物技术通报,2020,36(1):126-134
    Gao Y G , Wu X F , Zhang D W , Zhou D G , Zhang K X , Yan M L. Research Progress on the MBW Complexes in Plant Anthocyanin Biosythesis Pathway. Biotechnology Bulletin, 2020, 36 (1) : 126-134
    Carey C C , Strahle J T , Selinger D A , Chandler V L. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. The Plant Cell, 2004, 16 (2) : 450-464
    [24] Liu H N , Su J , Zhu Y f , Yao G F , Allan A C , Charles A D , Shu Q , Kui L W , Zhang S L , Wu J. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture research, 2019, 6 (1) : 1-13
    [25] Hu J F , Fang H C , Wang J , Yue X X , Su M Y , Mao Z L , Zou Q , Jiang H Y , Guo Z W , Yu L , Feng T , Lu L , Peng Z G , Zhang Z Y , Wang N , Chen X S. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple. Plant Science, 2020, 292: 110377
    [26] 李闯.WRKY26-bHLH3共促进红皮梨花青苷合成及花青苷抑制黑曲霉侵染的分子机制研究.合肥工业大学,2020:2-3
    Li C. Molecular Mechanism of WRKY26-bHLH3 Co-promoting Red Pear Anthocyanin Synthesis and Anthocyanin Inhibition of Aspergillus Niger Infection. Hefei University of Technology, 2020: 2-3
    [27] Cong L , Qu Y Y , Sha G Y , Zhang S C , Ma Y F , Chen M , Zhai R , Yang C Q , Xu L F , Wang Z G. PbWRKY75 promotes anthocyanin synthesis by activating PbDFR, PbUFGT and PbMYB10b in pear. Physiologia plantarum, 2021, doi.org/10.1111/ppl.13525
    [28] Bai S L , Tao R Y , Yin L , Ni J B , Yang Q S , Yan X H , Yang F , Guo X P , Li H X , Teng Y W. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. The Plant Journal, 2019, 100 (6) : 1208-1223
    [29] An J P , Wang X F , Zhang X W , Bi S Q , You C X , Hao Y J. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant biotechnology journal, 2019, 17 (12) : 2231-2233
    [30] Gangappa S N , Botto J F . The Multifaceted Roles of HY5 in Plant Growth and Development. Molecular Plant, 2016, 9 (10) : 1353-1365
    [31] Zhao X C , Zeng X S , Lin N , Yu S W , Fernie A R , Zhao J. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network. Horticulture research, 2021, 8 (1) : 1-18
    [32] 王志冉,王红艳,邓海峰,许传强.转录因子HY5在植物光形态建成和氮代谢中的调控作用.中国蔬菜,2018,(5):20-27
    Wang Z R , Wang H Y , Deng H F , Xu C Q. Regulation of Transcription Factor HY5 in Plant Photomorphogenesis and Nitrogen Metabolism. China Vegetables, 2018, (5) : 20-27
    [33] Yoon M K , Shin J , Choi G , Choi B S. Intrinsically unstructured N-terminal domain of bZIP transcription factor HY5. Proteins, 2006, 65 (4) : 856-866
    [34] 孙梅,周波,王宇,李玉花.植物光调控因子COP1、HY5的研究进展.生物技术通讯,2009,20(2):291-294
    Sun M , Zhou B , Wang Y , Li Y H. Advances of Researches on Light Regulator COP1, HY5 in Plants. Biotechnology Bulletin, 2009, 20 (2) : 291-294
    [35] 张荔,周波,李玉花.植物HY5蛋白结构与功能的研究进展.植物生理学通讯,2010,46(10):985-990
    Zhang L , Zhou B , Li Y H. Advances in the Structure and Function of HY5 in Plant. Plant Physiology Journal, 2010, 46 (10) : 985-990
    [36] Shin J , Park E , Choi G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant journal:for cell and molecular biology, 2007, 49 (6) : 981-994
    [37] Liu C C , Chi C , Jin L J , Zhu J H , Yu J Q , Zhou Y H. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant, Cell Environment, 2018, 41 (8) : 1762-1775
    [38] Ang L H , Chattopadhyay S , Wei N , Oyama T , Okada K , Batschauer A , Deng X W. Molecular Interaction between COP1 and HY5 Defines a Regulatory Switch for Light Control of Arabidopsis Development. Molecular Cell, 1998, 1 (2) : 213-222
    [39] Zhang Y Q , Zheng S , Liu Z J , Wang L G , Bi Y R. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. Journal of Plant Physiology, 2011, 168 (4) : 367-374
    [40] Shin J , Park E , Choi G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directl binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant journal, 2007, 49 (6) : 981-994
    [41] Shin D H , Choi M G , Kim K , Bang G , Cho M , Choi S B , Choi G , Park Y. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Letters, 2013, 587 (10) : 1543-1547
    [42] Hoai N H , Young J C , Kang G H , Yoo S D , Hong S W , Lee H J. MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. The Plant journal : for cell and molecular biology, 2015, 84 (6) : 1192-1205
    [43] Liu W J ,Wang Y C , Sun J J , Jiang H Y , Xu H F , Wang N , Jiang S H , Fang H C , Zhang Z Y , Wang Y L , Chen X S. MdMYBDL1 employed by MdHY5 increases anthocyanin accumulation via repression of MdMYB16/308 in apple. Plant science : an international journal of experimental plant biology, 2019, 283: 32-40
    [44] Huang D , Yuan Y , Tang Z Z , Huang Y , Kang C Y , Deng X X , Xu Q. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange. Plant, Cell Environment, 2019, 42 (11) : 3092-3104
    [45] Wang Y Y , Zhang X D , Zhao Y R , Yang J , He Y Y , Li G C , Ma W R , Huang X L , Su J. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear ‘Yunhongli No. 1’. Plant Physiology and Biochemistry, 2020, 154: 665-674
    [46] 王玉龙.拟南芥转录因子HY5下游靶microRNA功能研究.河南农业大学,2018:1-3
    Wang Y L. Functional Characterization of MicroRNAs Regulated by Transcripyional Factor HY5 in Arabidopsis. Henan Agricultural University, 2018: 1-3
    [47] Wang Y L , Wang Y Q , Song Z Q , Zhang H Y. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis. Molecular plant, 2016, 9 (10) : 1395-1405
    [48] Gangappa S N , Botto J F . The BBX family of plant transcription factors. Trends in Plant Science, 2014, 19 (7) : 460-470
    [49] Yadav A , Ravindran N , Singh D , Rahul P V , Datta S. Role of Arabidopsis BBX proteins in light signaling. Journal of Plant Biochemistry and Biotechnology, 2020, 29: 1-13
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵亚男,张会灵,张中华,等.转录因子HY5在植物花青素合成中的调控作用[J].植物遗传资源学报,2022,23(3):670-677.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-11
  • 最后修改日期:2021-11-30
  • 录用日期:2021-12-30
  • 在线发布日期: 2022-05-10
  • 出版日期:
文章二维码
您是第5872816位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!