2025年5月9日 4:47 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2022年第23卷第1期 >1-11. DOI:10.13430/j.cnki.jpgr.20211202001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
作物及其种质资源与人文环境的协同演变学说
DOI:
10.13430/j.cnki.jpgr.20211202001
CSTR:
作者:
  • 刘旭 1

    刘旭

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李立会 1

    李立会

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 黎裕 1

    黎裕

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 谭光万 2

    谭光万

    中国农业科学院农业经济与发展研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 周美亮 1

    周美亮

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.中国农业科学院作物科学研究所;2.中国农业科学院农业经济与发展研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

农业财政专项:第三次全国农作物种质资源普查与收集行动(19200354)


Synergistic Evolution Theory of Crop Germplasm Resources and Cultural Environments
Author:
  • LIU Xu 1

    LIU Xu

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Li-hui 1

    LI Li-hui

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Yu 1

    LI Yu

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TAN Guang-wan 2

    TAN Guang-wan

    Institute of Agricultural Economics and Development
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Mei-liang 1

    ZHOU Mei-liang

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences;2.Institute of Agricultural Economics and Development

Fund Project:

the Third National Survey and Collection Action on Crop Germplasm Resource

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [93]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作物及其种质资源与人文环境的协同演变学说是关于作物及其种质资源与人文环境相互影响、相互作用和相互发展的理论。一方面,在一个特定环境中种植不同的作物或不同类型的作物会导致形成相应的饮食习惯与人文环境;另一方面,饮食习惯与人文环境又会对作物及其种质资源产生深刻影响,甚至可以引领其演变。其遗传基础是作物在传播和改良过程中发生自然杂交或突变后,在人文环境的人工选择作用下被定向固定,重组或突变基因频率在群体中不断累积提高,最终形成适应特定人文环境的新型作物及其种质资源。现代作物育种在一定程度上也受作物及其种质资源与人文环境的协同演变学说的指导,并且极大加速了作物及其种质资源的演变进程。本文以中国传统饮食文化习用体系为例,从糯性种质、蒸煮制度、蔬果丰富和物尽其用四个方面考察了作物及其种质资源与人文环境协同演变的关系。建议在作物种质资源保护和利用中要重视农民权利与作物传统生境保护,遵循“有差异,就选择;能遗传,可定向”的基本原则,强化地方品种与近缘野生种的高效利用,开展基因组学研究,正向推动作物改良与种质资源演变。

    关键词:作物种质资源;人文环境;协同演变;饮食习用
    Abstract:

    Synergistic evolution theory of crop germplasm resources and cultural environments is about the interference, interaction, and interpromotion between each other. On one hand, culturing different crops in a specific environment will lead to the formation of corresponding dietary traditions and cultural environments, on the other hand; dietary traditions and cultural environments will in turn have a profound influence on the formation of crop germplasm resources and might even lead their evolution. The genetic basis of this theory is that after the natural hybridization or mutations of the crops occurred during the processes of their dissemination and improvements, they are targeted and fixed under the artificial selection of the specific cultural environments, the frequency of the recombinant or mutant genes continues to accumulate and increase in the population, and finally form new crop and their germplasm resources adapted to the specific cultural environments. Modern crop breeding is also guided by this theory to a certain degree, which greatly promoted the evolution processes of crops and their germplasm resources. Taking the Customary System of Chinese traditional dietary culture as an example, this paper investigated the impact of dietary tradition on the evolution of crop germplasm resources from four aspects: waxy germplasm, steaming preference, rich varieties of vegetables and fruits, and use of whole-plant material. In view of the protection and utilization of crop germplasm resources in the future, suggestions were proposed, including paying attention to farmers’ rights and original habitats of crops, and following the basic law of “if there were character differences and genetic mutations, then select” to accelerating the landrace, crop wild relatives preservation and utilization, genomics research, and crop improvement as well as their positive evolution.

    Key words:crop germplasm; cultural environments; synergistic evolution; dietary tradition
    参考文献
    Ehrlich P R, Raven P H. Butterflies and plants: a study in coevolution. Evolution, 1964: 586-608
    Zhang X, Wang G, Zhang S, Chen S, Wang Y, Wen P, Ma X, Shi Y, Qi R, Yang Y, Liao Z, Lin J, Lin J, Xu X, Chen X, Xu X, Deng F, Zhao L, Lee YL Wang R, Chen XY Lin YR Zhang J, Tang H, Chen J, Ming R. Genomes of the Banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell, 2020, 183: 875-889
    McElroy J S. Vavilovian mimicry: Nikolai Vavilov and his little-known impact on weed science. Weed science, 2014, 62: 207-216
    Pasteur G. A classification review of mimicry systems. Annual Review of Ecology and Systematics, 1982, 13: 169-199
    杨筑慧. 糯的神性与象征性探迹: 以西南民族为例. 中央民族大学学报: 哲学社会科学版, 2016 (6): 97-104
    Yang Z H. Sanctity and Symbolism of Sticky Rice: Taking Some Ethnic Groups in Southwest China as an Example. Journal of Minzu University of China (Philosophy and Social Sciences Edition), 2016 (6): 97-104
    Fuller D Q, Rowlands M. Ingestion and food technologies: maintaining differences over the long-term in West, South and East Asia. Interweaving worlds—Systematic interactions in Eurasia, 7th to 1st millennia BC. Essays from a conference in memory of Professor Andrew Sherratt. 2011: 37-60
    余斌霞. 长沙马王堆汉墓出土动植物标本研究综述. 湖南省博物馆馆刊, 2012:78-85
    Yu B X. An overview of Researches on the Faunal and Floral Samples Unearthed from the Han Tombs at Mawangdui. Hunan Provincial Museum, 2012: 78-85
    Eriksson G. Waxy character. Hereditas.1969, 63: 180-204
    曾孟潜.我国糯质玉米的亲缘关系.作物品种资源,1987(3):8-10
    Zheng M Q. Genetic Relationship of waxy maize in China. Crop Variety Resources, 1987(3): 8-10
    Fuller D, Castillo C. Diversification and Cultural Construction of a Crop: The Case of Glutinous Rice And Waxy Cereals in the Food Cultures of Eastern Asia. Oxford University Press, 2015:1-18
    刘旭,郑殿升,董玉琛,朱德蔚,方嘉禾,费砚良,贾敬贤,蒋尤泉,杨庆文,王述民,黎裕,曹永生. 中国农作物及其野生近缘植物多样性研究进展. 植物遗传资源学报, 2008, 9(4): 411-416
    Liu X, Zheng D S, Dong Y C, Zhu D W, Fang J H, Fei Y L, Jia J X, Jiang Y Q, Yang Q W, Wang S M, Li Y, Cao Y S. Diversity Assessment of Crops and Their Wild Relatives in China. Journal of Plant Genetic Resources, 2008, 9(4): 411-416
    王艳杰,王艳丽,焦爱霞,才吉卓玛,杨京彪,阮仁超,薛达元. 民族传统文化对农作物遗传多样性的影响——以贵州黎平县香禾糯资源为例. 自然资源学报, 2015, 30(4): 617-628
    Wang Y J, Wang Y L, Jiao A X, Cai J ZM, Yang J B, Ruan R C, Xue D Y. Influence of National Traditional Culture on Crop Genetic Diversity-Take an example of Kam Sweet Rice in Liping County of Guizhou Province. Journal of Natural Resources, 2015, 30(4): 617-628
    杨富巍,张秉坚,潘昌初,曾余瑶. 以糯米灰浆为代表的传统灰浆——中国古代的重大发明之一. 中国科学: E 辑, 2009: 1-7
    Yang F W, Zhang B J, Pan C C, Zeng Y Y. Traditional Mortar Represented by Glutinous Rice Mortar-One of the Major Inventions in Ancient China. Scientia Sinica (Technologica), 2009: 1-7
    唐爱莲,刘笑甫,冯冬梅,唐桂兴,韦玉先. 糯稻根的化学成分及药理研究. 北方药学, 2006 (2): 18-19
    Tang A L, Liu X P, Feng D M, Tang G X, Wei Y X. Studies on Chemical Constituents and Pharmacology in Orgyza sativa L. root. Journal of North Pharmacy, 2006 (2): 18-19
    Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T. Production of waxy (amylose-free) wheats. Molecular and General Genetics, 1995, 248: 253-259
    刘广田,李继刚,尤明山,梁荣奇.糯性胚乳小麦的选育.农业生物技术学报, 2000(1):6
    Liu G T, Li J G, You M S, Liang R Q. Breeding Common Wheat with Waxy Endosperm. Journal of Agricultural Biotechnology, 2000(1):6
    谢玉珍,冯锡仲,宋长权,郭晓君,颜庭辉,刘恒立,李娇红. GB/T 22326-2008,糯玉米. 北京:中国粮食局,2008
    Xie Y Z, Feng X Z, Song C Q, Guo X J, Yan T H, Liu H L, Li J H. GB/T 22326-2008, Waxy corn. Beijing: State Adiministration of Grain,2008
    鲍坚东. 中国糯玉米起源与育种选择分子机制. 浙江大学, 2011:1-21
    Bao J D. The orgin and Selective breeding of Chinese waxy maize. Zhejiang University, 2011:1-21
    杨博文,向珣朝,许顺菊,付航,吴家富. 不同糯稻品种的稻米品质特性和遗传差异. 分子植物育种, 2016 (3): 712-717
    Yang B W, Xiang X C, Xu S J, Fu H, Wu J F. Quality Characteristics and Genetic Differences of Different Glutinous Rice Varieties. Molecluar Plant Breeding, 2016 (3): 712-717
    Olsen K M, Purugganan M D. Molecular evidence on the origin and evolution of glutinous rice. Genetics, 2002, 162: 941-950
    Yamanaka S, Nakamura I, Watanabe K N, Sato Y. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theoretical and Applied Genetics, 2004, 108: 1200-1204
    Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Harano H Y, Suzuki Y, Sano Y. Allelic diversification at the wx locus in landraces of Asian rice. Theoretical and Applied Genetics, 2008, 116: 979-989
    McIntyre C L, Drenth J, Gonzalez N, Henzell R G, Jorden D R. Molecular characterization of the waxy locus in sorghum. Genome, 2008, 51: 524-533
    Ma J, Jiang Q, Wei Y, Andre L, Lu Z, Chen G, Liu Y, Zheng Y. Molecular characterization and comparative analysis of two waxy alleles in barley. Genes Genomics, 2010, 32: 513-520
    Fukunaga K, Kawase M, Kato K. Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Molecular Genetics and Genomics, 2002, 268: 214-222
    Fukunaga K, Ichitani K, Kawase M. Phylogenetic analysis of the rDNA intergenic spacer subrepeats and its implication for the domestication history of foxtail millet, Setaria italica. Theoretical and Applied Genetics, 2006, 113: 261-269
    Hachiken T, Masunaga Y, Ishii Y, Ohta T, Ichitani K, Fukunaga K. Deletion commonly found in Waxy gene of Japanese and Korean cultivars of Job’s tears (Coix lacryma-jobi L.). Molecular Breeding, 2012, 30: 1747-1756
    Park Y J, Nishikawa T, Tomooka N, Nemoto K. The molecular basis of mutations at the Waxy locus from Amaranthus caudatus L.: evolution of the waxy phenotype in three species of grain amaranth. Molecular Breeding, 2012, 30: 511-520
    Chrungoo N K, Devadasan N, Kreft I, Gregori M. Identification and characterization of granule bound starch synthase (GBSS-I) from common buckwheat (Fagopyrum esculentum Moench). Journal of Plant Biochemistry and Biotechnology, 2013, 22: 269-276
    Sivak M N, Wagner M, Preiss J. Biochemical evidence for the role of the waxy protein from pea (Pisum sativum L.) as a granule-bound starch synthase. Plant Physiology, 1993, 103: 1355-1359
    樊志民. 问稼轩农史文集. 杨陵:西北农林科技大学出版社, 2006
    Fan Z M. Wenjiaxuannongshiwenji. Yangling:Northwest A F Unviersity Publisher, 2006
    俞为洁.中国食料史. 上海:上海古籍出版社,2011:31-33+143-146
    Yu W J. The History of Chinese foodstuff. Shanghai: Shanghai Ancient Book Publisher, 2011:31-33+143-146
    俞为洁. 有毒植物的食用历史. 农业考古, 2007 (4): 194-198
    Yu W J. The History of Eating Toxic Plants. Agricultural Archaeology, 2007 (4): 194-198
    靳桂云.中国早期小麦的考古发现与研究.农业考古,2007(4):11-20
    Jin G Y. Archaeological Discovery and Research of Wheat in Early China. Agricultural Archaeology, 2007 (4): 11-20
    Wang Z, Hao C, Zhao J, Li C, Jiao C, Xi W, Hou J, Li T, Liu H, Zhang X. Genomic footprints of wheat evolution in China reflected by a Wheat660K SNP array. The Crop Journal, 2021, 9: 29-41
    Li X, Li Y, Zhang M, Yu X, Hu R, Chang J, Yang G, Wang Y, He G. Diversity of Puroindoline genes and their association with kernel hardness in Chinese wheat cultivars and landraces. Molecular Breeding, 2019, 39: 1-13
    hen F, He Z, Xia X, Xia L, Zhang X, Lillemo M, Morris CF. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theoretical and Applied Genetics, 2006, 112: 400-409
    Ma X, Sajjad M, Wang J, Yang W, Sun J, Li X, Zhang A, Liu D. Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 2017, 17: 158
    Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Communications, 1983: 29-35
    Mastrangelo A M, Cattivelli L. What Makes Bread and Durum Wheat Different? Trends in Plant Science, 2021, 26:677-684
    王罡,季静,胡含. 等位基因变异对小麦品质的影响. 遗传, 1995, 17: 39-41
    Wang G, Ji J, Hu H. Effects of Allele Variation on Wheat Quality. Hereditas, 1995, 17: 39-41
    张学勇,庞斌双,游光霞,王兰芬,贾继增,董玉琛. 中国小麦品种资源 Glu—1 位点组成概况及遗传多样性分析. 中国农业科学, 2002, 35: 1302-1310
    Zhang X Y, Pang B S, You G X, W L F, Jia J Z, Dong Y C. Allie Variation and Genetic Diversity at Glu-1 loci in Chinese Wheat (Triticum aestivum L.) Germplasm. Scientia Agricultura Sinica, 2002, 35: 1302-1310
    曾雄生. 麦子在中国的本土化历程——从粮食作物结构的演变看原始农业对中华文明的影响.北京:中国高等科学技术中心,2001:125-140
    Zeng X S. Localization of Wheat in China. Beijing:China Center of Advanced Science and Technology,2001: 125-140
    浙江省博物馆自然组. 河姆渡遗址动植物遗存的鉴定研究. 考古学报, 1978,1:95-107+156-109
    Natural History Section, Chekiang Provincial Museum. A study of the Animal and Plant Remains Unearthed at Ho-Mu-Tu. Acta Archaeologica Sinica, 1978,1: 95-107+156-159
    刘忠松,游亮,杨柳,陈浩,杨斌,康雷.芥菜的起源与驯化探索.中国油料作物学报,2018,40: 649-655
    Liu Z S, You L, Yang L, Chen H, Yang B, Kang L. Origin and domestication discovery of Brassica juncea Czern. et Cross. Chinese Journal of Oil Crop Sciences, 2018, 40: 649-655
    Yang J, Zhang C, Zhao N, Zhang L, Hu Z, Chen S, Zhang M. Chinese root-type mustard provides phylogenomic insights into the evolution of the multi-use diversified allopolyploid Brassica juncea. Molecular Plant, 2018, 11: 512-514
    蒋慕东, 王思明. 辣椒在中国的传播及其影响. 中国农史, 2005, 24(2): 17-27
    Jiang M D, Wang S M. The Spread of Pepper and Its Influences in China. Agricultual History of China, 2005, 24(2): 17-27
    郑殿升, 游承俐, 高爱农, 李立会,刘旭. 云南及周边地区少数民族对农业生物资源的保护与利用. 植物遗传资源学报, 2012, 13: 699-703
    Zheng D S, You C L, Gao A N, Li L H, Liu X. Conservation and Utilization on Biologicial Resources of Agriculture of Minority Nationality in Yunnan Province and Its Preipheral Area. Journal of Plant Genetic Resources, 2012, 13: 699-703
    Li Y, Cao K, Zhu G, Fang W, Chen C, Wang X, Zhao P, Guo J, Ding T, Guan L, Zhang Q, Guo W, Fei Z, Wang L. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biology, 2019, 20: 36
    Cai X, Chang L, Zhang T, Chen H, Zhang L, Lin R, Liang J, Wu J, Freeling M, Wang X. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biology, 2021, 22: 166
    Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Chen J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Lin-Hu C, Zhou H, Lin H, Gonzalez-Morales S, Trojo-Saavedra D, Tian H,Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernández S, Leyva-González M A, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Li S, Wang J, Palloix A, Bosland P W, Li Y, Krogh A, Rivera-Bustamante R F, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 5135-5140
    Pan L, Zeng W, Niu L, Lu Z, Liu H, Cui G, Zhu Y, Chu J, Li W, Fang W, Cai Z, Li G, Wang Z. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015, 66: 7031-7044
    Zhou Y, Massonnet M, Sanjak J S, Cantu D, Gaut B S. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proceedings of the National Academy of Sciences of the Unitied States of America, 2017, 114: 11715-11720
    Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Fabbro C D, Alaux M, Gaspero G D, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Clainche I L, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe M E, Valle G, Morgante M, Caboche M, Adam-Blondon A F, Weissenbach J, Quetier F, Wincker P. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449: 463-467
    王柏中,刘萍,肖可意. 上甲族群彩棉文化探析. 广西民族大学学报: 哲学社会科学版, 2009 (6): 95-101
    Wang B Z, Liu P, Xiao K Y. On the Culture of Colored Cotton of the Shangjia Ethnic Group. Journal of Guangxi University for Nationalities (Philosophy and Social Science Edition), 2009 (6): 95-101
    卫斯. 中国丝织技术起始时代初探—兼论中国养蚕起始时代问题. 浙江丝绸工学院学报, 1993, 10(3): 26-32
    Wei S. Preliminary Studies on the Commencement of Chinese Silk Weaving, Including Sericulture. Journal of Zhejiang Institute of Silk Textiles, 1993, 10(3): 26-32
    Jiao F, Luo R, Dai X, Liu H, Yu G, Han S, Lu X, Su C, Chen Q, Song Q, Meng C, Li F, Sun H, Zhang R, Hui T, Qian Y, Zhao A, Jiang Y. Chromosome-level Reference genome and population genomic analysis provide insights into the evolution and improvement of domesticated mulberry (Morus alba). Molecular Plant, 2020, 13: 1001-1012
    Kohel R J. Genetic analysis of fiber color variants in cotton 1. Crop Science, 1985, 25: 793-797
    王利祥,刘海峰,肖向文,庞志乾,宋武,鲁春芳,罗城,刘戈宇,徐吉臣,李小兵,李晓波. 新疆彩色棉花遗传特性分析. 安徽农业科学, 2012, 40(7): 3926-3929
    Wang L X, Liu H F, Xiao X W, Pang Z Q, Song W, Lu C F, Luo C, Liu G Y, Xu J C, Li X B, Li X B. Genetic Properties of Colored Cotton in Xinjiang. Journal of Anhui Agricultural Science, 2012, 40(7): 3926-3929
    Wang Y, Li F, He Q, Bao Z, Zeng Z, An D, Zhang T, Yan L, Wang H, Zhu S, Liu T. Genomic analyses provide comprehensive insights into the domestication of bast fiber crop ramie (Boehmeria nivea). The Plant Journal, 2021, 107: 787-800
    顾可飞,杨海锋,秦秋伟,张栩.上海市崇明区两种甜芦粟营养品质差异性分析.保鲜与加工,2020,20(6):189-193
    Gu K F, Yang H F, Qin Q W, Zhang X. Differences Analysis on Nutritional Quality of Two Cultivars of Sweet Sorghum in Chongming District of Shanghai. Storage and Process,2020,20(6):189-193
    韦勤勋,涂佑能.红缨子高粱产业发展现状及对策浅析.南方农业,2020,14(22):56-58
    Wei Q X, Tu Y N. Development Status and Coutermeasures of “Hong Yingzi” Sorghum Industry. South China Agriculture,2020,14(22):56-58
    严洪冬,焦少杰,王黎明,姜艳喜,苏德峰,孙广全.帚用高粱新品种龙帚2号的选育及栽培技术.种子,2018,37(3):131-134
    Yan H D, Jiao S J, Wang L M, Jiang Y X, Su D F, Sun G Q. Breeding and Cultivation Techniques of A New Broom Sorghum Hybird Longzhou No.2. Seed,2018,37(3):131-134
    李祥艳,林超文,许文志,朱永群.苏丹草标准化栽培技术.农业技术与装备,2021(1):159-160
    Li X Y, Lin C W, Xu W Z, Zhu Y Q. Standardized Cultivation Techniques of Sudan Grass. Agricultural Technology and Equipment, 2021(1):159-160
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘旭,李立会,黎裕,等.作物及其种质资源与人文环境的协同演变学说[J].植物遗传资源学报,2022,23(1):1-11.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:1528
  • 下载次数: 3006
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-12-02
  • 最后修改日期:2021-12-02
  • 录用日期:2021-12-08
  • 在线发布日期: 2022-01-07
  • 出版日期:
文章二维码
您是第5824369位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!