2025年5月28日 20:46 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2022年第23卷第3期 >811-822. DOI:10.13430/j.cnki.jpgr.20211203002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
小麦不育小穗数 QTL-qSsnps-5D 遗传及育种选择效应解析
DOI:
10.13430/j.cnki.jpgr.20211203002
CSTR:
作者:
  • 马天航 1

    马天航

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 蔡益彪 1

    蔡益彪

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 熊永星 2

    熊永星

    聊城市农业科学院现代育种技术中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐勤青 3

    徐勤青

    山东省农业技术推广中心
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 周晓涵 1

    周晓涵

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 孔文超 1

    孔文超

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李晶雪 1

    李晶雪

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 程 蕊 1

    程 蕊

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李诗慧 1

    李诗慧

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 曹鸣苏 1

    曹鸣苏

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王晨阳 1

    王晨阳

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵春华 1

    赵春华

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 秦 冉 1

    秦 冉

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 孙 晗 1

    孙 晗

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 吴永振 1

    吴永振

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 崔 法 1

    崔 法

    鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.鲁东大学农学院 / 山东省高等学校作物高产抗逆分子模块重点实验室;2.聊城市农业科学院现代育种技术中心;3.山东省农业技术推广中心

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省重点研发计划(2019GNC106126);国家自然科学基金(31871612);山东省高等学校“青创科技计划”(2019KJF002);烟台 市科技计划项目(2020XCZX045)


Genetic Effect of Sterile Spikelet Number-related QTL-qSsnps-5D and Its Use in Wheat Varieties
Author:
  • MA Tian-hang 1

    MA Tian-hang

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CAI Yi-biao 1

    CAI Yi-biao

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIONG Yong-xing 2

    XIONG Yong-xing

    Modern Breeding Technology Center,Liaocheng Academy of Agricultural Sciences,Shandong Liaocheng
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Qin-qing 3

    XU Qin-qing

    Shandong Agricultural Technology Extension Center
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Xiao-han 1

    ZHOU Xiao-han

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • KONG Wen-chao 1

    KONG Wen-chao

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Jing-xue 1

    LI Jing-xue

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Rui 1

    CHENG Rui

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Shi-hui 1

    LI Shi-hui

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CAO Ming-su 1

    CAO Ming-su

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Chen-yang 1

    WANG Chen-yang

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Chun-hua 1

    ZHAO Chun-hua

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIN Ran 1

    QIN Ran

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Han 1

    SUN Han

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Yong-zhen 1

    WU Yong-zhen

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CUI Fa 1

    CUI Fa

    School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Agriculture,Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong;2.Modern Breeding Technology Center,Liaocheng Academy of Agricultural Sciences,Shandong Liaocheng;3.Shandong Agricultural Technology Extension Center

Fund Project:

Shandong Provincial Key Research and Development Program(2019GNC106126),National Natural Science Foundation of China(31871612),Youth Innovation Science and Technology Program of Colleges and Universities in Shandong Province (2019KJF002),Yantai Science and Technology Planning Project(2020XCZX045)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    qSsnps-5D 为一个控制不育小穗数的主效稳定 QTL,其优异等位基因来自小麦骨干亲本京 411。本研究利用科农 9204× 京 411 衍生的包含 187 个家系的重组自交系群体(KJ-RIL,recombinant inbred lines derived from the cross of Kenong 9204 and Jing 411)及 314 份育成品种(系)组成的自然群体对其进行遗传及育种选择效应解析,明确其对产量性状的遗传 效应,分析其在育种过程中的选择应用情况,评价其未来育种应用潜力。试验结果表明,qSsnps-5D 在 8 套数据集中被定位 于 5D 染色体上 0.72~4.13 Mb 之间,跨度约 3.41 Mb。基于 KJ-RIL 群体及自然群体分析结果均表明,来自京 411 的优异等位 基因可增加单株穗数,但对千粒重表现为极显著负向效应;其对穗粒数、单株产量的影响在两套群体的分析结果不一致。在 qSsnps-5D 靶区间内选择 2 个紧密连锁的 SNP 标记 AX-110565536 和 AX-86170796 对 314 份自然群体进行目标 QTL 单倍型 分析;结果显示,国外品种对 qSsnps-5D 优异单倍型(Hap-GG-CC)的选择利用率最高;中国品种中青海省、四川省和河南省 3 个省份优异单倍型品种占比较高,而山东、北京、陕西和河北 4 地对 qSsnps-5D 优异单倍型选择利用率较低。时间跨度显 示,qSsnps-5D 优异单倍型 Hap-GG-CC 选择利用效率随时间推移在我国呈下降趋势。为便于 qSsnps-5D 后期分子育种应用, 本研究开发了一个基于 PCR 检测技术的 InDel 分子标记,命名为 5D-1620921,其带型扩增清晰,可重复性好,为 qSsnps-5D 分 子育种应用提供理论支撑。

    关键词:小麦(Triticum aestivum L.);不育小穗数;主效 QTL;遗传效应解析;分子标记
    Abstract:

    qSsnps-5D,derived from the backbone parental line Jing 411(J411),is a major stable QTL for sterile spikelet number per spike(SSNPS). This study aimed to decipher the genetic effect of this QTL and its use in wheat varieties. Two populations,including a recombinant inbred lines derived from the cross of Kenong 9204(KN9204)and Jing 411(KJ-RIL),and a natural mapping population comprised by 314 wheat authorized varieties or advanced lines,were involved. The experiment results showed that qSsnps-5D was confirmed in an interval of 3.41 Mb from 0.72 Mb to 4.13 Mb on chromosome 5D among 8 datasets. Excellent allele of qSsnps5D from J411 could increase spikes per plant but significantly decrease thousand kernel weight in both KJ-RIL and the natural mapping populations. However,the genetic effects of qSsnps-5D on kernel number per spike and yield per plant were differing between the two populations. Two close linkage markers of qSsnps-5D,i.e.,AX110565536 and AX-86170796 were used to specify the breeding utilization characteristics of qSsnps-5D in the natural mapping population. The excellent haplotype for qSsnps-5D(Hap-GG-CC)was often found(80.60%) in the foreign varieties. Among the Chinese varieties,higher rates of excellent haplotype(Hap-GG-CC)were found from varieties of Qinghai province,Sichuan province and Henan province,but the rates of haplotype HapGG-CC were lower in varieties of Shandong,Beijing,Shaanxi and Hebei. The rates of Hap-GG-CC in varieties released from 1980 s to present were constantly declined. To facilitate the application of qSsnps-5D in future molecular breeding programs,we developed a PCR-based InDel molecular marker named as 5D-1620921. Altogether,this study provided insights for the application of qSsnps-5D in molecular breeding programs of wheat.

    Key words:wheat(Triticum aestivum L.);sterile spikelet number per spike;major QTL;genetic effect analysis;molecular marker
    参考文献
    [1]刘阳娜,刘丽华,张风廷,张立平,苑少华,张明明,李宏博,庞斌双,赵昌平. 利用永久F2群体定位小麦穗部性状相关的QTL. 麦类作物学报, 2021, 41(05):525-531.
    Liu Y N, Liu L H, Zhang FT, Zhang L P, Yuan S H, Zhang MM, Li H B, Pang B S, Zhao C P. QTL mapping for spike traits of wheat using immortalized F2 population. Journal of Triticeae Crops, 2021, 41(05):525-531.
    [2] Sreenivasulu N, Schnurbusch T. A genetic playground for enhancing grain number in cereals. Trends Plant Science, 2012, 17(2):91-101.
    [3] Gupta P K, Mir R R, Mohan A, Kumar J. Wheat genomics: present status and future prospects. International journal of plant genomics, 2008, 2008 : 896451.
    [4]周阳,何中虎,陈新民,王德森,张勇,张改生. 30余年来北部冬麦区小麦品种产量改良遗传进展.作物学报,2007,(09):1530-1535.
    Zhou Y, He Z H, Chen X M, Wang D S, Zhang Y, Zhang G S. Genetic gain of wheat breeding for yield in northern winter wheat zone over 30 years. Acta Agronomica Sinica, 2007, (09):1530-1535.
    [5]刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春,陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因.作物学报,2016,42(06):820-831.
    Liu K, Deng Z Y, Li Q F, Zhang Y, Sun CL, Tian J C, Chen J S. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agronomica Sinica, 2016,42(06):820-831.
    [6] Brancourt-Hulmel M, Doussinault G, Lecomte C, Bérard P, Le Buanec B, Trottet M. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Science, 2003, 43:37-45.
    [7]李维平.高产小麦育种如何取得突破.科技导报,1998,(04):45-47.
    Li W P. Strategy for higher yield of China’s wheat breeding. Science & Technology Review, 1998, (04):45-47.
    [8]胡文静,李东升,裔新,张春梅,张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证.作物学报,2021,1-12.
    Hu WJ, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agronomica Sinica, 2021, 1-12.
    [9] Chen Z, Cheng X, Chai L, Wang Z, Du D, Wang Z, Bian R, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020,133(6):1825-1838.
    [10]王佳佳.小麦基部小穗不育突变体穗部性状的QTL定位.山东:山东农业大学, 2014.
    Wang JJ. QTL Mapping for spike related traits using a mutant line of basal spikelets sterile in wheat. Shandong: Shandong Agricultural University,2014.
    [11] Cui F, Ding A M, Li J, Zhao C H, Wang L, Wang X Q, Qi X L, Li X F, Li G Y, Gao J R, Wang H G. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 2012, 186: 177–192.
    [12] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 2014, 127(3):659-75.
    [13] Huang X Q, Kempf H, Canal M W, Roder M S. Advanced back-cross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 933–943.
    [14] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F,Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Molecular Genetics and Genomics, 2007, 277: 31–42.
    [15] Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theoretical and Applied Genetics, 2011, 122:281–289.
    [16] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X B, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theoretical and Applied Genetics, 2021, 134(11):3625-3641.
    [17] Xu H W, Zhang R Q, Wang M M, Li L H, Yan L, Wang Z, Zhu J, Chen X Y, Zhao A J, Su Z Q, Xing J W, Sun Q X, Ni Z F. Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. Theoretical and Applied Genetics, 2021, doi: 10.1007/s00122-021-03971-3. Online ahead of print.
    [18] Yang Y, Amo A, Wei D, Chai Y M, Zheng J, Qiao P F, Cui C, Lu S, Chen L, Hu Y G. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 2021, 134(9):3083-3109.
    [19]武炳瑾,简俊涛,张德强,马文洁,冯洁,崔紫霞,张传量,孙道杰. 利用90k芯片技术进行小麦穗部性状QTL定位.作物学报,2017,43(07):1087-1095.
    Wu BJ, Jian J T, Zhang D Q, Ma W J, Feng J, Cui Z X, Zhang C L, Sun D J. QTL mapping for spike traits of wheat using 90K chip technology. Acta Agronomica Sinica, 2017,43(07):1087-1095.
    [20]肖永贵,路亚明,闻伟锷,陈新民,夏先春,王德森,李思敏,童依平,何中虎. 小麦骨干亲本京411及衍生品种苗期根部性状的遗传.中国农业科学,2014,47(15):2916-2926.
    Xiao Y G, Lu Y M, Wen W E, Chen X M, Xia X C, Wang D S, Li S M, Tonf Y P, He Z H. Genetic contribution of seedling root traits among elite wheat parent Jing 411 to its derivatives. Scientia Agricultura Sinica, 2014,47(15):2916-2926.
    [21] Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 2017, 7(1):3788.
    [22] Cui F, Fan X L, Chen M, Zhang N, Zhao C H, Zhang W, Han J, Ji J, Zhao X Q, Yang L J, Zhao Z W, Tong Y P, Wang T, Li J M. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theoretical and Applied Genetics, 2016, 129(3):469-84.
    [23]赵春华,樊小莉,王维莲,张玮,韩洁,陈梅,纪军,崔法,李俊明. 小麦候选骨干亲本科农9204遗传构成及其传递率.作物学报,2015,41(04):574-584.
    Zhao C H, Fan X L, Wang W L, Zhang W, Han H, Chen M, Ji J, Cui F, Li J M. Genetic composition and its transmissibility analysis and wheat candidate backbone parent Kenong 9204. Acta Agronomica Sinica, 2015,41(04):574-584.
    [24]刘朦朦,张萌娜,张倩倩,刘锡建,郭宇航,孙靳惠,武亚瑞,王素容,吴永振,孙晗,崔法,赵春华. 小麦旗叶宽主效QTL QFlw-5B遗传效应解析. 麦类作物学报,2019,39(12):1399-1405.
    Liu M M, Zhang M N, Zhang Q Q, Liu X J, Guo Y H, Sun Q H, Wu Y R, Wang S R, Wu Y Z, Sun H, Cui F, Zhao C H. Genetic analysis of a major stable QTL QFlw-5B for wheat flag leaf width. Journal of Triticeae Crops, 2019, 39(12):1399-1405.
    [25]崔俊鹏,赵慧,张倩倩,宫娜,刘朦朦,张萌娜,侯玉竹,刘成,李林志,周芳婷,吴永振,孙晗,赵春华,崔法.小麦穗粒数主效QTL-qKnps-4A遗传效应解析.分子植物育种,2019,17(11):3632-3640.
    Cui J P, Zhao H, Zhang Q Q, Gong N, Liu M M, Zhang M N, Hou YZ, Liu C, Li L Z, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic effects analysis of major QTL-qKnps-4A for kernel per spike in common wheat. Molecular Plant Breeding, 2019, 17(11):3632-3640.
    [26]张倩倩,闫学梅,刘锡建,张萌娜,刘朦朦,周芳婷,吴永振,孙晗,赵春华,崔法.小麦穗粒数主效QTL-qKnps-2A遗传效应解析.分子植物育种,2020,18(15):5003-5009.
    Zhang Q Q, Yan XM, Liu X J, Zhang M N, Liu M M, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic analysis of qKnps-2A: a major stable QTL for kernel number per spike in common wheat. Molecular Plant Breeding, 2020,18(15):5003-5009.
    [27] Stacey J, Isaac P G . Isolation of DNA from plants. Methods in Molecular Biology, 1994, 28:9.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马天航,蔡益彪,熊永星,等.小麦不育小穗数 QTL-qSsnps-5D 遗传及育种选择效应解析[J].植物遗传资源学报,2022,23(3):811-822.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:448
  • 下载次数: 1138
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-12-03
  • 最后修改日期:2021-12-13
  • 录用日期:2021-12-21
  • 在线发布日期: 2022-05-10
  • 出版日期:
文章二维码
您是第5874325位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!