2025年5月9日 5:31 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2022年第23卷第4期 >1037-1045. DOI:10.13430/j.cnki.jpgr.20211209001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
标记辅助创制富集花青素高油酸的花生种质
DOI:
10.13430/j.cnki.jpgr.20211209001
CSTR:
作者:
  • 李佳伟 1

    李佳伟

    河北农业大学农学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 马钰聪 1

    马钰聪

    河北农业大学农学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李 丽 2

    李 丽

    河北工程大学园林与生态工程学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 杨鑫雷 1

    杨鑫雷

    河北农业大学农学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 崔顺立 1

    崔顺立

    河北农业大学农学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘立峰 1

    刘立峰

    河北农业大学农学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王 涛 3

    王 涛

    河北易园生态农业科技有限公司
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 穆国俊 1

    穆国俊

    河北农业大学农学院
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.河北农业大学农学院;2.河北工程大学园林与生态工程学院;3.河北易园生态农业科技有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省高等学校科学技术研究项目(ZD2019051);河北省重点研发计划项目现代种业科技专项(19226363D);2021 年度河北省保定市农业科技园区建设项目(2111N004)


Marker-Assisted Generation of High-oleic Germplasm Accessions Enriched with Anthocyanins in Peanut (Arachis hypogaea L.)
Author:
  • LI Jia-wei 1

    LI Jia-wei

    College of Agronomy, Hebei Agricultural University
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MA Yu-cong 1

    MA Yu-cong

    College of Agronomy, Hebei Agricultural University
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Li 2

    LI Li

    School of Landscape and Ecological Engineering,Hebei University of Engineering
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Xin-lei 1

    YANG Xin-lei

    College of Agronomy, Hebei Agricultural University
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CUI Shun-li 1

    CUI Shun-li

    College of Agronomy, Hebei Agricultural University
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Li-feng 1

    LIU Li-feng

    College of Agronomy, Hebei Agricultural University
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Tao 3

    WANG Tao

    Hebei Yiyuan Ecological Agriculture Technology Co, Ltd
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MU Guo-jun 1

    MU Guo-jun

    College of Agronomy, Hebei Agricultural University
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Agronomy, Hebei Agricultural University;2.School of Landscape and Ecological Engineering,Hebei University of Engineering;3.Hebei Yiyuan Ecological Agriculture Technology Co, Ltd

Fund Project:

Key Project of Science and Technology Research in Colleges and Universities of the Department of Education in Hebei Province (ZD2019051),Key Project of Science and Technology Research of Modern Seed Industry of the Department of S&T in Hebei Province (19226363D),Project of Agricultural Science and Technology Park Construction in Baoding City, Hebei Province (2111N004)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    花生(Arachis hypogaea L.)油酸和花青素含量是花生品质育种的重要目标。本研究以高油酸粉色种皮“G110”(G,♀)和普通油酸紫色种皮“紫珍珠”(Z,♂)组配杂交组合。亲本子仁在开花后30天(30 DAF,G1/Z1)和45 DAF(45 DAF,G2/Z2)的转录组分析结果表明,氧化-还原过程(GO:0055114)和脂肪酸合成过程(GO:0006633)为主要的GO富集代谢通路。差异基因表达结果表明,ahFAD2B(arahy. 5913QL)在G110中显著上调表达,ahFAD2A(arahy. 42CZAS)差异水平不显著。AlleleXa/b和AlleleYa/b分型结果表明,G110基因型为aabb、紫珍珠基因型为AABB。利用Kompetitive Allele-Specific PCR(KASP)荧光标记A004807和A004808,在F2筛选出aabb高油酸单株66株。经继代繁育后,在F7得到紫色种皮高油酸种质材料3个,分别为18-B-40、18-B-49和18-B-54,其油酸含量为分别为79.46%、78.77%和78.09%,分别是紫珍珠的1.77倍(p=3.61×10-9)、0.99倍(p=1.21×10-9)和0.99倍(p=1.45×10-9);油亚比(O/L)分别为14.69、11.89和10.88,分别是紫珍珠的11.58倍(p=4.01×10-15)、9.37倍(p=7.92×10-15)和8.58倍(p=4.51×10-15);花青素含量分别为30.20 OD/g、28.77 OD/g和29.13 OD/g,分别是G110的23.91倍(p=1.17×10-7)、22.77倍(p=4.00×10-10)和23.06倍(p=1.63×10-10)。本研究获得的富集花青素高油酸花生种质材料对丰富我国高油酸花生种质资源具有重要的现实意义,同时对花生油酸代谢机制的深入研究提供参考。

    关键词:花生;油酸;花青素;KASP;转录组分析
    Abstract:

    The content of oleic acid and anthocyanin is an important target for quality breeding in peanut (Arachis hypogaea L.). In this study, a high-oleic acid peanut line with pink testa "G110" (G, ♀) was crossed with a landrace line with purple testa "Purple Pearl" (Z, ♂). Kernels of both parent lines on 30 days after flowering (30 DAF, G1/Z1) and 45 DAF (G2/Z2) were sampled for the transcriptomic analysis. The differentially expressed genes (DEGs) enrichments in oxidation-reduction process (GO:0055114) and fatty acid biosynthetic process (GO:0006633) were observed. The gene ahFAD2B (arahy.5913QL) was up-regulated in G110, while another gene ahFAD2A (arahy. 42CZAS) was not significant difference (p > 0.05). AlleleXa/b and AlleleYa/b genotyping results showed that “G110” was aabb and "Purple Pearl" was AABB. By taking use of kompetitive allele-specific PCR (KASP) markers A004807 and 4004808, 66 high-oleic acid plants of genotype aabb in F2 populations were obtained, followed by self-pollination to F7. Of them three superior accessions namely 18-B-40, 18-B-49 and 18-B-54, with purple testa and high-oleic acid were identified, in which the oleic acid content was 79.52%, 78.84%, and 78.02%, 1.77 folds (p=3.61×10-9), 0.99 folds (p=1.21×10-9) and 0.99 folds (p=1.45×10-9) higher than that of "Purple Pearl", respectively. The oleic to linoleic ratio (O/L) was 14.69, 11.91, and 10.90, which increased by 11.58 folds (p=4.01×10-15), 9.37 folds (p=7.92×10-15) and 8.58 folds (p=4.51×10-15) compared with that of "Purple Pearl". The anthocyanin content was 30.87 OD/g, 29.16 OD/g, and 14.51OD/g, which increased by 23.91 folds (p=1.17×10-7), 22.77 folds (p=4.00×10-10) and 23.06 folds (p=1.63×10-10) compared with that of "G110". Collectively, this study obtained peanut germplasm accessions showing simultaneous enrichments of anthocyanin and high oleic, which might have implications for enriching high oleic peanut germplasms in China and future uncovering the mechanism of peanut oleic acid metabolism.

    Key words:peanut; oleic acid; anthocyanin; KASP; transcriptomic analysis
    参考文献
    [1] Jinyong H, Minghui X, Yan L, Fang C, Huihui G, Caipeng Y, Yanjie Z. Comparative transcriptome analysis of the skin-specific accumulation of anthocyanins in black peanut (Arachis hypogaea L.). Journal of agricultural and food chemistry, 2019 67 (4):1312-1324.
    [2] 李佳伟,马钰聪,杨鑫雷,王梅,崔顺立,侯名语,刘立峰,胡梦蝶,蒋晓霞,穆国俊. 花生种皮色素合成相关通路的转录组-代谢组学联合分析. 植物遗传资源学报.2021:1-15.
    Jiawei L, Yucong M, Xinlei Y, Mei W, Shunli C, Mingyu H, Lifeng L, Mengdie H, Xiaoxia J, Guojun M. Transcriptomics-Metabolomics Combined Analysis Highlight the Mechanism of Testa Pigment Formation in Peanut (Arachis hypogaea L.). Journal of Plant Genetic Resources. 2021:1-15
    [3] 陈静. 高油酸花生遗传育种研究进展. 植物遗传资源学报, 2011, 12 (2):190-196.
    Jing C. Advances in Genetics and Breeding of High Oleic Acid Peanut. Journal of Plant Genetic Resources. 2011, 12 (2):190-196.
    [4] Toborek M, Lee Y W; Garrido R, Kaiser S, Hennig B. Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells. The American journal of clinical nutrition, 2002, 75 (1):119-125.
    [5] 李峰,纵瑞收,韩永华,纵蓓,蒋继宏,李宗芸,李华,纵榜强,李洪祥等. 我国超高油酸花生品种研究进展与利用探究. 2014年中国作物学会学术年会. 2014. 中国江苏南京.
    Feng L, Ruishou Z, Yonghua H, Bei Z, Jihong J, Zongyun L, Hua L, Bangqiang Z, Hongxiang L. Research Progress and Utilization of Ultra-high Oleic Peanut Varieties in China. China Ademic Journal Ectronic Publishing House. 2014. Nanjing: Jiangsu, China.
    [6] Tsunemi U, Lucie P, Tatsuo E, Chinami M, Tomohiro Y, Mitsuyoshi M, Hidetoshi S, Jan P. Effect of the unsaturation degree on browning reactions of peanut oil and other edible oils with proteins under storage and frying conditions. International Congress Series, 2002, 1245:445-446.
    [7] 许燕,张绍龙. 我国高油酸花生育种研究进展. 广东农业科学, 2011, 38 (1):43-45.
    Yan X, Shaolong Z. Research Progress of High-oleic Flower Growth Species in China. Guangdong Agricultural Sciences. 2011, 38 (1):43-45.
    [8] Jung S., Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut [ Arachis hypogaea L.]. II. Molecular basis and genetics of the trait. MGG - Molecular and General Genetics, 2000, 263 263 (5):806-811.
    [9] López Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz, A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. TAG Theoretical and Applied Genetics, 2000, 101 (7):1131-1138.
    [10] Hao L, Jianzhong G, Qing L Haifen L, Yanbin H, Xiaoping C, Li R, Li D, Xuanqiang L. Transcriptomic Analysis Reveals the High-Oleic Acid Feedback Regulating the Homologous Gene Expression of Stearoyl-ACP Desaturase 2 ( SAD2 ) in Peanuts. International journal of molecular sciences, 2019, 20 (12):3091.
    [11] Wang C T, Yu S L, Zhang S W, Wang X Z, Tang Y Y, Zhang J C, Chen D X. Novel protocol to identify true hybrids in normal oleate x high oleate crosses in peanut. Electronic Journal of Biotechnology, 2010, 13 (5):18-19.
    [12] Noelle A B, Kelly D C C, Ming L W, Roy N P. Development of a real-time PCR genotyping assay to identify high oleic acid peanuts ( Arachis hypogaea L.). Molecular Breeding, 2010, 25 (3):541-548.
    [13] Zhenbang C, Ming L W, Noelle A B, Roy N P. A Simple Allele-Specific PCR Assay for Detecting FAD2 Alleles in Both A and B Genomes of the Cultivated Peanut for High-Oleate Trait Selection. Plant Molecular Biology Reporter, 2010, 28 (3):542-548.
    [14] Shuzhen Z, Aiqin L, Changsheng L, Han X, Chuanzhi Z, Ye Z, Lei H, Xingjun W. Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electronic Journal of Biotechnology, 2017, 25:9-12.
    [15] Huang W, Khaldun A B, Chen J, Zhang C, Lv H, Yuan L, Wang Y. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional chinese medicinal plant, Epimedium sagittatum. Frontiers in Plant Science, 2016, 21 (7):1089
    [16] 李丽. 高油酸花生种质创制及ahFAD2A基因型效应分析.河北农业大学. 2015.
    Li L. Creation of Peanut Germplasm with High Oleic Acid and Genotype Effect Analysis of ahFAD2A. Hebei Agricultural University. 2015.
    [17] Kingston R E, Chomczynski P, Sacchi N. Guanidine methods for total RNA preparation. Current Issues In Molecular Biology, 2001, Chapter 4:4.2.1-4.2.9.
    [18] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 2015, 12 (4):357-360.
    [19] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15 (12):550.
    [20] Patel M, Jung S, Moore K, et al. High-oleic peanut mutants result from a MITE insertion into the FAD2 gene. Theoretical and Applied Genetics, 2004, 108 (8):1492-1502.
    [21] 李柯. 花生高油酸性状遗传特征与表达调控网络研究.河南农业大学. 2020.
    Ke L. Study on the Genetic Characteristics and Expression Regulatory Network of High Oil and Acidity in Peanut.Henan Agricultural University.
    [22] 李兰,彭振英,陈高,王莹莹,张斌,毕玉平. 花生种子发育过程中脂肪酸积累规律的研究. 华北农学报, 2012, 27 (1):173-177.
    Li L, Peng Z Y, Chen G, Wang Y Y, Zhang B, Bi Y P. Study on the Accumulation of Fatty Acids in the Process of Peanut Seed Development. Acta Agriculturae Boreali-Sinica. 2012, 27 (1):173-177.
    [23] Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell, G, Moore K, Abbott A. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases[J]. Molecular and general genetics, 2000, 263 (5):796-805.
    [24] Liu H, Li H, Gu J, Deng L, Ren L, Hong Y, Lu Q, Chen X, Liang X. Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut ( Arachis hypogaea L.) Seed Development through Comparative Proteome Analysis. International journal of molecular sciences, 2018, 19 (4).
    [25] Pasupuleti J, Manish K P, Yaduru S, Murali T V, Manda S, Pawan K, Surendra S M, Patne N, Manish K V, Gyan P M, Radhakrishnan T, Manivannan N, Dobariya, K L, Vasanthi, R P, Rajeev K V Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes[J]. Plant Science, 2016, 242:203-213.
    [26] Mandal M N, Santha I M, Lodha M L, Mehta S L. Cloning of acyl-acyl carrier protein (ACP) thioesterase gene from Brassica juncea. Biochemical Society transactions, 2000, 28 (6):967-969.
    [27] Chen H, Chen X, Xu R, Liu W, Liu N, Huang L, Luo H, Huai D, Lan X, Zhang Y, Hu R, Chen J, Tang Z, Lin G, Jiang H. Fine-mapping and gene candidate analysis for AhRt1, a major dominant locus responsible for testa color in cultivated peanut. Theoretical and Applied Genetics. 2021.
    [28] Chu Y, Wu C L, Holbrook C C, Tillman B L, Person G, Ozias-Akins P. Marker-Assisted Selection to Pyramid Nematode Resistance and the High Oleic Trait in Peanut. The Plant Genome. 2011, 4 (2):110-117.
    [29] 徐永菊,叶霄,侯睿,李爽,张小军,岳福良,张相琼,刘行,李文均,张小红.高油酸花生四川引种试验.农学学报. 2021: 1-6.
    Yongju X, Xiao Y, Rui H, Shaung L, Xiaojun Z, Fuliang Y, Xiangqiong Z, Hang L, Wenjun L, Xiaohong Z. High-oleic Peanut Varieties in Sichuan: Introduction Trial. Journal of Agriculture. 2021: 1-6.
    [30] 刘芳,张哲,王积军.中国高油酸花生种植及应用技术研究进展.中国油料作物学报, 2020,42 (6): 956-959.
    Fang L, Zhe Z, Jijun W. Progress on production and technology development of high-oleic acid peanut in China. Chinese Journal of Oil Crop Sciences. 2020,42 (6): 956-959.
    [31] Yaduru S, Manish K V, Manish K P, Pasupuleti J, Murali T V, Surendra S M, Shyam N N, Baozhu G, Rajeev K V. Molecular Mapping of Oil Content and Fatty Acids Using Dense Genetic Maps in Groundnut (Arachis hypogaea L.). Frontiers in Plant Science, 2017,22 (8):1-14.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李佳伟,马钰聪,李 丽,等.标记辅助创制富集花青素高油酸的花生种质[J].植物遗传资源学报,2022,23(4):1037-1045.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:334
  • 下载次数: 6114
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-12-09
  • 最后修改日期:2022-03-23
  • 录用日期:2022-04-24
  • 在线发布日期: 2022-07-08
  • 出版日期:
文章二维码
您是第5824432位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!