2025年5月28日 7:18 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2022年第23卷第4期 >1076-1084. DOI:10.13430/j.cnki.jpgr.20220211001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
谷子条纹叶突变体t122表型分析及基因初定位
DOI:
10.13430/j.cnki.jpgr.20220211001
CSTR:
作者:
  • 张 硕 1

    张 硕

    湖北省农业科学院粮食作物研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 智 慧 2

    智 慧

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张 伟 2

    张 伟

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 唐婵娟 2

    唐婵娟

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 罗明昭 2

    罗明昭

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 汤 沙 2

    汤 沙

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 贾冠清 2

    贾冠清

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 贾彦超 2

    贾彦超

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘 刚 1

    刘 刚

    湖北省农业科学院粮食作物研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 黄志谋 3

    黄志谋

    咸宁市农业科学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 蔡海亚 1

    蔡海亚

    湖北省农业科学院粮食作物研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 焦春海 1

    焦春海

    湖北省农业科学院粮食作物研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刁现民 2

    刁现民

    中国农业科学院作物科学研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.湖北省农业科学院粮食作物研究所;2.中国农业科学院作物科学研究所;3.咸宁市农业科学院

作者简介:

通讯作者:

中图分类号:

基金项目:

湖北省农科院青年科学基金(2020NKYJJ02);湖北省重点研发计划项目(2021BBA225);湖北省农业科技创新中心重大科技研发项目(2020-620-000-002-01)


Phenotype Analysis and Low-resolution Mapping of a Stripe-Leaf Mutant t122 in Foxtail Millet (Setaria italica L.)
Author:
  • ZHANG Shuo 1

    ZHANG Shuo

    Food Crops Institute, Hubei Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHI Hui 2

    ZHI Hui

    Institute of Crop Science, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Wei 2

    ZHANG Wei

    Institute of Crop Science, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TANG Chan-juan 2

    TANG Chan-juan

    Institute of Crop Science, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LUO Ming-zhao 2

    LUO Ming-zhao

    Institute of Crop Science, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TANG Sha 2

    TANG Sha

    Institute of Crop Science, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIA Guan-qing 2

    JIA Guan-qing

    Institute of Crop Science, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIA Yan-chao 2

    JIA Yan-chao

    Institute of Crop Science, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Gang 1

    LIU Gang

    Food Crops Institute, Hubei Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Zhi-mou 3

    HUANG Zhi-mou

    Xianning Academy of Agricultural Sciences
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CAI Hai-ya 1

    CAI Hai-ya

    Food Crops Institute, Hubei Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIAO Chun-hai 1

    JIAO Chun-hai

    Food Crops Institute, Hubei Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DIAO Xian-min 2

    DIAO Xian-min

    Institute of Crop Science, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Food Crops Institute, Hubei Academy of Agricultural Science;2.Institute of Crop Science, Chinese Academy of Agricultural Science;3.Xianning Academy of Agricultural Sciences

Fund Project:

Youth Science Foundation of Hubei Academy of Agricultural Sciences (2020NKYJJ02); Key Research and Development Project of Hubei Province (2021BBA225); Hubei Agricultural Science and Technology Innovation Center, Major Science and Technology Research and Development Project (2020-620-000-002-01)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    叶片颜色通常与叶绿体数量、结构、光合能力等相关,以C4模式植物谷子的叶色突变体为材料,克隆突变基因并研究其功能,对于解析C4植物叶绿体发生发育及光合作用调控机制具有重要作用。本研究从谷子品种豫谷1号EMS突变体库中分离鉴定到一个条纹叶突变体t122。该突变体生长发育迟缓,且叶片呈现不规则白色条纹。农艺性状测定结果显示,t122的株高、叶长、叶宽、主穗粗、主穗重、结实率等性状均显著降低,而单株穗数相比野生型显著增加,同时光合性能受到影响。叶片解剖结构观察发现t122维管束间距离、维管束间细胞层数、叶片横截细胞面积均无明显改变,而叶片细胞长度显著增加。叶绿体超微结构观察表明t122一部分叶片细胞叶绿体缺失,而另一部分叶片细胞含有发育正常的叶绿体。遗传分析结果显示,t122突变表型由一对隐性核基因控制。利用MutMap法,将候选基因初步定位于3号染色体24.0 Mb~30.0 Mb区间内,研究的结果为谷子条纹叶基因的克隆及功能研究奠定了基础。

    关键词:谷子;条纹叶;叶片细胞;叶绿体;基因初定位
    Abstract:

    Leaf color is usually determined by the number, structure, and photosynthetic characters of the chloroplast. Isolation of the functional genes in leaf discoloration mutants of the C4 model plant foxtail millet and deciphering their functions is a way to disclose the regulation mechanism of C4 plant chloroplast biogenesis, development and photosynthesis. In this study, a stripe-leaf mutant t122 was identified from the EMS-induced mutant library of the foxtail millet variety Yugu1. The mutant t122 was observed with developmental retardation, and irregular white stripes on leaves. In contrast to the wild type, the significant decrease on the plant height, leaf length, leaf width, main panicle diameter, main panicle weight, and seed setting rate was observed in t122 mutant, whereas an increase on the panicle number per plant was detected. The photosynthetic capacity of t122 was impaired. By the leaf anatomy analysis, no significant difference in the distance between leaf veins, the number of cell layers between vascular bundles, and the cross-sectional cell area of leaves was observed in t122; however, an increased on the leaf cell length was detected. The ultrastructural observation of chloroplasts showed that, in t122 the chloroplasts showing functional structure were only detected in subsets of leaf cells. The segregation analysis suggested that the stripe-leaf trait of t122 was controlled by a single recessive nuclei-encoding gene. Using the method of MutMap, the candidate gene was mapped to the region of 24.0 Mb - 30.0 Mb on chromosome 3. Collectively, these results laid a good foundation for future cloning and functional characterization of the stripe-leaf gene in foxtail millet.

    Key words:Setaria italica; stripe-leaf; leaf cell; chloroplast; gene low-resolution mapping
    参考文献
    [1]Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. The Plant Journal, 2009, 57(1):120-131.
    [2]Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. The Plant Journal, 2007, 52:197-209.
    [3]Kong W, Yu X, Chen H, Liu L, Xiao Y, Wang Y, Wang C, Lin Y, Yu Y, Wang C, Jiang L, Zhai H, Zhao Z, Wan J. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. Plant Molecular Biology, 2016, 92(1-2):177-191.
    [4]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. The Plant Journal, 2013, 74(1):122-133.
    [5]Liu H, Li Q, Yang F, Zhu F, Sun Y, Tao Y, Lo C. Differential regulation of protochlorophyllide oxidoreductase abundances by VIRESCENT 5A (OsV5A) and VIRESCENT 5B (OsV5B) in rice seedlings. Plant Cell Physiology, 2016, 57(11):2392-2402.
    [6]Matsushima R, Maekawa M, Kusano M, Kondo H, Fujita N, Kawagoe Y, Sakamoto W. Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. Plant Physiology, 2014, 164(2):623-636.
    [7]Liu Z, Wang Z, Gu H, You J, Hu M, Zhang Y, Zhu Z, Wang Y, Liu S, Chen L, Liu X, Tian Y, Zhou S, Jiang L, Liu L, Wan J. Identification and phenotypic characterization of ZEBRA LEAF16 encoding a beta-hydroxyacyl-ACP dehydratase in rice. Frontiers in Plant Science, 2018, 9:782.
    [8]Zhang H, Liu L, Cai M, Zhu S, Zhao J, Zheng T, Xu X, Zeng Z, Niu J, Jiang L, Chen S, Wan J. A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice. Plant Molecular Biological Report, 2015, 33:1975-1987.
    [9]Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiology, 2013, 162(4):1867-1880.
    [10]He Y, Shi Y, Zhang X, Xu X, Wang H, Li L, Zhang Z, Shang H, Wang Z, Wu J L. The OsABCI7 transporter interacts with OsHCF222 to stabilize the thylakoid membrane in rice. Plant Physiology, 2020, 184(1):283-299.
    [11]Liu W, Fu Y, Hu G, Si H, Zhu L, Wu C, Sun Z. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226(3):785-795.
    [12]Kamau P K, Sano S, Takami T, Matsushima R, Maekawa M, Sakamoto W. A mutation in GIANT CHLOROPLAST encoding a PARC6 homolog affects spikelet fertility in rice. Plant Cell Physiology, 2015, 56(5):977-991.
    [13]Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, Zhong P, Xiao F, Sun C, Xu Z, Deng X, Wang P. Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. Plant Science, 2015, 238:127-134.
    [14]He L, Li M, Qiu Z, Chen D, Zhang G, Wang X, Chen G, Hu J, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Guo L, Qian Q, Zeng D, Zhu L. Primary leaf‐type ferredoxin 1 participates in photosynthetic electron transport and carbon assimilation in rice. The Plant Journal, 2020, 104(1):44-58.
    [15]Zhang F, Zhang P, Zhang Y, Wang S, Qu L, Liu X, Luo J. Identification of a peroxisomal-targeted aldolase involved in chlorophyll biosynthesis and sugar metabolism in rice. Plant Science, 2016, 250:205-215.
    [16]Ye W, Hu S, Wu L, Ge C, Cui Y, Chen P, Wang X, Xu J, Ren D, Dong G, Qian Q, Guo L. White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). Molecular Breeding, 2016, 36:57.
    [17]Niu M, Wang Y, Wang C, Lyu J, Wang Y, Dong H, Long W, Wang D, Kong W, Wang L, Guo X, Sun L, Hu T, Zhai H, Wang H, Wan J. ALR encoding dCMP deaminase is critical for DNA damage repair, cell cycle progression and plant development in rice. Journal of Experimental Botany, 2017, 68(21-22):5773-5786.
    [18]Liu L L, You J, Zhu Z, Chen K Y, Hu M M, Gu H, Liu Z W, Wang Z Y, Wang Y H, Liu S J, Chen L M, Liu X, Tian Y L, Zhou S R, Jiang L, Wan J M. WHITE STRIPE LEAF8, encoding a deoxyribonucleoside kinase, is involved in chloroplast development in rice. Plant Cell Report, 2020, 39(1):19-33.
    [19]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Iba K, Paek N C. Rice Virescent3 and Stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiology, 2009, 150(1):388-401.
    [20]Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. Frontiers in Plant Science, 2017, 8:1116.
    [21]Zhou K, Ren Y, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y, Zhao S, Ma W, Zhang H, Wang L, Wang C, Wu F, Zhang X, Guo X, Cheng Z, Wang J, Lei C, Jiang L, Li Z, Wan J. Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. Planta, 2017, 245(1):45-60.
    [22]Tan J, Tan Z, Wu F, Sheng P, Heng Y, Wang X, Ren Y, Wang J, Guo X, Zhang X, Cheng Z, Jiang L, Liu X, Wang H, Wan J. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Molecular Plant, 2014, 7(8):1329-1349.
    [23]Zhang Z, Cui X, Wang Y, Wu J, Gu X, Lu T. The RNA editing factor WSP1 is essential for chloroplast development in rice. Molecular Plant, 2017, 10(1):86-98.
    [24]Ge C, Wang L, Ye W, Wu L, Cui Y, Chen P, Pan J, Zhang D, Hu J, Zeng D, Dong G, Qian Q, Guo L, Xue D. Single-point mutation of an histidine-aspartic domain-containing gene involving in chloroplast ribosome biogenesis leads to white fine stripe leaf in rice. Scientific Report, 2017, 7(1):3298.
    [25]Sun Y, Tian Y, Cheng S, Wang Y, Hao Y, Zhu J, Zhu X, Zhang Y, Yu M, Lei J, Bao X, Wu H, Wang Y, Wan J. WSL6 encoding an Era-type GTP-binding protein is essential for chloroplast development in rice. Plant Molecular Biology, 2019, 100(6):635-645.
    [26]Wang Y, Wang C, Zheng M, Lyu J, Xu Y, Li X, Niu M, Long W, Wang D, Wang H, Terzaghi W, Wang Y, Wan J. WHITE PANICLE1, a val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development. Plant Physiology, 2016, 170(4):2110-2123.
    [27]Fan Z, Kong M, Ma L, Duan S, Gao N, Xuqing C, Yongsheng T. Transcriptome analysis of a novel maize bsd C4 mutant using RNA-seq. Plant Signaling Behavior, 2020, 15(8):1777374.
    [28]Weissmann S, Ma F, Furuyama K, Gierse J, Berg H, Shao Y, Taniguchi M, Allen D K, Brutnell T P. Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants. Plant Cell, 2016, 28(2):466-484.
    [29]Luo M, Zhang S, Tang C, Jia G, Tang S, Zhi H, Diao X. Screening of mutants related to the C4 photosynthetic Kranz structure in foxtail millet. Frontiers in Plant Science, 2018, 9:1650.
    [30]贾冠清, 刁现民. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29(3):292-301.Jia G Q, Diao X M. Current status and perspectives of researches on foxtail millet (Setaria italica (L.) P. Beauv.): A potential model of plant functional genomics studies. Chinese Bulletin of Life Sciences, 2017, 29(3):292-301.
    [31]Li W, Tang S, Zhang S, Shan J, Tang C, Chen Q, Jia G, Han Y, Zhi H, Diao X. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet [Setaria italica (L.) P. Beauv]. Physiologia Plantarum, 2016, 157(1):24-37.
    [32]Tang C, Tang S, Zhang S, Luo M, Jia G, Zhi H, Diao X. SiSTL1, encoding a large subunit of ribonucleotide reductase, is crucial for plant growth, chloroplast biogenesis, and cell cycle progression in Setaria italica. Journal of Experimental Botany, 2019, 70(4):1167-1182.
    [33]Zhang S, Tang S, Tang C, Luo M, Jia G, Zhi H, Diao X. SiSTL2 is required for cell cycle, leaf organ development, chloroplast biogenesis, and has effects on C4 photosynthesis in Setaria italica (L.) P. Beauv. Frontiers in Plant Science, 2018, 9:1103.
    [34]王秋兰, 王智兰, 韩芳, 杜晓芬, 连世超, 韩康妮, 周雪, 李慧娟, 张林义, 王军, 郭二虎. 谷子条纹叶突变体wsl2的鉴定及候选基因分析. 华北农学报, 2020, 35(1):214-221.Wang Q L, Wang Z L, Hna F, Du X F, Lian S C, Han K N, Zhou X, Li H J, Zhang L Y, Wang J, Guo E H. Identified and candidate gene analysis of a white stripe leaf mutant wsl2 in foxtail millet. ACTA Agriculture Boreali-Sinica, 2020, 35(1):214-221.
    [35]Zhang S, Zhi H, Li W, Shan J, Tang C, Jia G, Tang S, Diao X. SiYGL2 is involved in the regulation of leaf senescence and photosystem II efficiency in Setaria italica (L.) P. Beauv. Frontiers in Plant Science, 2018, 9:1308.
    [36]Xu Y, Yang J, Wang Y, Wang J, Yu Y, Long Y, Wang Y, Zhang H, Ren Y, Chen J, Wang Y, Zhang X, Guo X, Wu F, Zhu S, Lin Q, Jiang L, Wu C, Wang H, Wan J. OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. PLoS Genetics, 2017, 13(7):e1006906.
    [37]Xiang X, Zhang P, Yu P, Zhang Y, Yang Z, Sun L, Wu W, Khan R M, Abbas A, Cheng S, Cao L. LSSR1 facilitates seed setting rate by promoting fertilization in rice. Rice, 2019, 12:31.
    [38]Ren M, Huang M, Qiu H, Chun Y, Li L, Kumar A, Fang J, Zhao J, He H, Li X. Genome-wide association study of the genetic basis of effective tiller number in rice. Rice, 2021, 14(1):56.
    [39]张硕, 智慧, 唐婵娟, 罗明昭, 汤沙, 贾冠清, 贾彦超, 刁现民. 谷子条纹叶突变体A36-S的细胞学特性分析及基因定位. 中国农业科学, 2021, 54(14):2952-2964.Zhang S, Zhi H, Tang C J, Luo M Z, Tang S, Jia G Q, Jia Y C, Diao X M. Cytological characters analysis and low-resolution mapping of stripe-leaf mutant A36-S in foxtail millet. Scientia Agricultura Sinica, 2021, 54(14):2952-2964
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张 硕,智 慧,张 伟,等.谷子条纹叶突变体t122表型分析及基因初定位[J].植物遗传资源学报,2022,23(4):1076-1084.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:426
  • 下载次数: 17348
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-02-11
  • 最后修改日期:2022-02-24
  • 录用日期:2022-03-09
  • 在线发布日期: 2022-07-08
  • 出版日期:
文章二维码
您是第5872922位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!