2025年6月12日 16:17 星期四
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2022年第23卷第5期 >1241-1248. DOI:10.13430/j.cnki.jpgr.20220317001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
胡萝卜根色及其色素组分的遗传和育种研究进展
DOI:
10.13430/j.cnki.jpgr.20220317001
CSTR:
作者:
  • 刘 星 1

    刘 星

    中国农业科学院蔬菜花卉研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 黄建新 1

    黄建新

    中国农业科学院蔬菜花卉研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 欧承刚 1

    欧承刚

    中国农业科学院蔬菜花卉研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵志伟 1

    赵志伟

    中国农业科学院蔬菜花卉研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李成江 2

    李成江

    宿州市农业科学院
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 庄飞云 1

    庄飞云

    中国农业科学院蔬菜花卉研究所
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.中国农业科学院蔬菜花卉研究所;2.宿州市农业科学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年项目(32102379);现代农业产业技术体系建设专项资金项目(CARS-23);中国农业科学院科技创新工程项目(CAAS-ASTIP);中央级公益性科研院所基本科研业务费专项(任务编号IVF-BRF2022001)


Current Advances on Inheritance and Breeding of Carrot Root Color and Its Pigment Components
Author:
  • LIU Xing 1

    LIU Xing

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Jian-xin 1

    HUANG Jian-xin

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • OU Cheng-gang 1

    OU Cheng-gang

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Zhi-wei 1

    ZHAO Zhi-wei

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Cheng-jiang 2

    LI Cheng-jiang

    Suzhou Academy of Agricultural Sciences, Anhui Suzhou
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHUANG Fei-yun 1

    ZHUANG Fei-yun

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science;2.Suzhou Academy of Agricultural Sciences, Anhui Suzhou

Fund Project:

National Natural Science Foundation of China (32102379),China Agriculture Research System (CARS-23), Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP),Central Public-interest Scientific Institution Basal Research Fund (No.IVF-BRF2022001)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [93]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    胡萝卜作为世界十大蔬菜作物之一,是人类重要的维生素A源。我国是胡萝卜主要生产国,拥有丰富的地方胡萝卜种质资源,包含橘色、红色、黄色和紫色等不同类型。多样根色的胡萝卜种质不仅是研究类胡萝卜素、花青素等合成与代谢调控的有利材料,也是胡萝卜起源和驯化研究的重要资源。本文梳理了不同根色胡萝卜的驯化历史和主要色素组分,综述了调控胡萝卜肉质根中类胡萝卜素、花青素积累的遗传位点、基因及其功能研究进展,介绍了不同根色品种的用途和选育方法,并对胡萝卜根色性状今后的研究内容和方向作了展望,以期为胡萝卜根色的调控机理研究和不同根色品种的选育提供依据。

    关键词:胡萝卜;根色;类胡萝卜素;花青素;遗传调控
    Abstract:

    Carrot (Daucus carota L.), which is one of the top-ten ranking vegetable crops in the world, is an important source of vitamin A in human diets. China is a major producer of carrot and has rich carrot landraces with colors (i.e. orange, red, yellow and purple). The carrot germplasm resources with diverse root colors enabled deciphering the regulation mechanisms of the synthesis and metabolism of carotenoids and anthocyanins, and the origin and domestication of carrot. This article outlined the domestication history and major pigment components of carrot with different root colors, reviewed the research progress of genetic loci and functional genes modulating the accumulation of carotenoids and anthocyanins in carrot roots, introduced the uses and breeding methods of varieties with different root colors, as well as provided prospects in future research of carrot root color traits, thus serving as a basis for understanding the regulation mechanisms of carrot root color and breeding with colorful varieties.

    Key words:carrot;root color;carotenoids;anthocyanin;genetic regulation
    参考文献
    Arscott S A, Tanumihardjo S A. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comprehensive Reviews in Food Science and Food Safety, 2010, 9: 223-239
    Culver C A, Wrolstad R E. Color quality of fresh and processed foods. Washington DC: Oxford University Press, 2008: 151-165
    Banga O. The development of the original European carrot material. Euphytica, 1957, 6 (1): 64-76
    Soufflet-Freslon V, Jourdan M, Clotault J, Huet S, Briard M, Peltier D, Geoffriau E, Wu S B. Functional gene polymorphism to reveal species history: the case of the CRTISO gene in cultivated carrots. PLoS One, 2013, 8 (8): e70801
    Baranski R, Maksylewicz-Kaul A, Nothnagel T, Cavagnaro P F, Simon P W, Grzebelus D. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genetic resources and crop evolution, 2011, 59 (2): 163-170
    Iorizzo M, Senalik D A, Ellison S L, Grzebelus D, Cavagnaro P F, Allender C, Brunet J, Spooner D M, Van Deynze A, Simon P W. Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). American Journal of Botany, 2013, 100 (5): 930-938
    Que F, Hou X L, Wang G L, Xu Z S, Tan G F, Li T, Wang Y H, Khadr A, Xiong A S. Advances in research on the carrot, an important root vegetable in the Apiaceae family. Horticulture Research, 2019, 6 (1): 69
    Simmonds N W. Evolution of crop plants. New York: Longman, 1979: 128-136
    Heywood V H. Relationships and evolution in the Daucus carota complex. Israel Journal of Botany, 1983, 32 (2): 51-65
    方智远.中国蔬菜育种学.北京: 中国农业出版社, 2017: 739-764
    Fang Z Y. Vegetable breeding in China. Beijing: China Agricultural Press, 2017: 739-764
    张夙芬. 瓣化型雄性不育胡萝卜的开发与利用. 农牧产品开发, 1998, (6): 2
    Zhang S F. Development and utilization of petalized male sterile carrot. Development of agriculture and animal husbandry
    Products, 1998, (6): 2
    Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 2004, 43 (3): 228-265
    Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science, 2012, 335 (6074): 1348-1351
    Wei R R, Wamer W G, Lambert L A, Kornhauser A. β-carotene uptake and effects on intracellular levels of retinol in vitro. Nutrition and Cancer, 1998, 30 (1): 53-58
    Nisar N, Li L, Lu S, Khin N C, Pogson B J. Carotenoid metabolism in plants. Molecular Plant, 2015, 8 (1): 68-82
    Yamagishi M, Kishimoto S, Nakayama M. Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breeding, 2010, 129 (1): 100-107
    Zhu H S, Chen M C, Wen Q F, Li Y P, Elsevier B V. Isolation and characterization of the carotenoid biosynthetic genes LCYB, LCYE and CHXB from strawberry and their relation to carotenoid accumulation. Scientia Horticulturae, 2015, 182: 134-144
    Ma J, Xu Z, Tan G, Wang F, Xiong A. Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars. Acta Biochimica et Biophysica Sinica, 2017, 49 (9): 817-826
    Yahyaa M, Bar E, Dubey N K, Meir A, Davidovich-Rikanati R, Hirschberg J, Aly R, Tholl D, Simon P W, Tadmor Y, Lewinsohn E, Ibdah M. Formation of norisoprenoid flavor compounds in carrot (Daucus carota L.) roots: characterization of a cyclic-specific carotenoid cleavage dioxygenase 1 gene. Journal of Agricultural and Food Chemistry, 2013, 61 (50): 12244-12252
    Xu Z S, Feng K, Xiong A S. CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Molecular Biotechnology, 2019, 61 (3): 191-199
    Egea I, Barsan C, Bian W, Purgatto E, Latché A, Chervin C, Bouzayen M, Pech J C. Chromoplast differentiation: current status and perspectives. Plant and Cell Physiology, 2010, 51 (10): 1601-1611
    Schweiggert R M, Carle R. Carotenoid deposition in plant and animal foods and its impact on bioavailability. Critical Reviews in Food Science and Nutrition, 2017, 57 (9): 1807-1830
    Fuentes P, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C. Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Molecular Biology, 2012, 79 (1-2): 47-59
    Zhang B, Liu C, Wang Y, Yao X, Wang F, Wu J, King G J, Liu K. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. New Phytologist, 2015, 206 (4): 1513-1526
    Herrmann K M, Weaver L M. The Shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 473-503
    Harborne J B, Williams C A. Advances in favonoid research since 1992. Phytochemistry, 2000, 55 (6): 481-504
    Koes R E. The favonoid biosynthetic pathway in plants: function and evolution. BioEssays, 1994, 16, 123-132
    Shirley B W. Flavonoid biosynthesis: ‘New’ functions for an ‘old’ pathway. Trends in Plant Science, 1996, 1 (11): 377-382
    Burbulis I E, Iacobucci M, Shirley B W. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell, 1996, 8 (6): 1013-1025
    Lila M A. Anthocyanins and human health: an inSvitro investigative approach. Journal of Biomedicine and Biotechnology, 2004, 2004 (5): 306-313
    Potera C. The artificial food dye blues. Environmental Health Perspectives, 2010, 118 (10): A428
    Akhtar S, Rauf A, Imran M, Qamar M, Riaz M, Mubarak M S. Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends in Food Science Technology, 2017, 66: 36-47
    Giusti M M, Wrolstad R E. Acylated anthocyanins from edible sources and their applicationsin food systems. Biochemical Engineering Journal, 2003, 14 (3): 217-225
    Charron C S, Kurilich A C, Clevidence B A, Simon P W, Harrison D J, Britz S J, Baer D J, Novotny J A. Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. Journal of Agricultural and Food Chemistry, 2009, 57 (4): 1226-1230
    Mazza G, Miniati E. Anthocyanins in Fruits, Vegetables, and Grains. Florida: CRC Press, 1993: 362
    Montilla E C, Arzaba M R, Hillebrand S, Winterhalter P. Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. Journal of Agricultural and Food Chemistry, 2011, 59 (7): 3385-3390
    Barba-Espín G, Glied S, Crocoll C, Dzhanfezova T, Joernsgaard B, Okkels F, Lütken H, Müller R. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.). BMC Plant Biology, 2017, 17 (1): 70
    Kammerer D, Carle R, Schieber A. Detection of peonidin and pelargonidin glycosides in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17 (21): 2407-2412
    Kammerer D, Carle R, Schieber A. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. European Food Research and Technology, 2004, 219: 479-486
    Xu Z S, Feng K, Que F, Wang F, Xiong A S. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Scientific Reports, 2017, 7: 45324
    Cavagnaro P F, Iorizzo M, Yildiz M, Senalik D, Parsons J, Ellison S, Simon P W. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genomics, 2014, 15 (1): 1118
    Buckner B, Kelson T L, Robertson D S. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. The Plant Cell, 1990, 2 (9): 867-876
    Fray R G, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molecular Biology, 1993, 22 (4): 589-602
    Buckner B, Miguel P S, Janick-Buckner D, Bennetzen J L. The y1 gene of maize codes for phytoene synthase. Genetics, 1996, 143 (1): 479-488
    Lefebvre V, Kuntz M, Camara B, Palloix A. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Molecular Biology, 1998, 36 (5): 785-789
    Ronen G, Cohen M, Zamir D, Hirschberg J. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant Journal, 1999, 17 (4): 341-351
    Huh J H, Kang B C, Nahm S H, Kim S, Ha K S, Lee M H, Kim B D. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theoretical and Applied Genetics, 2001, 102 (4): 524-530
    Laferriere L, Gabelman W H. Inheritance of color, total carotenoids, alpha carotene, and beta-carotene in carrots (Daucus carota L.) Proceeding of the American Society for Horticultural Science, 1968, 93: 408-418
    Kust A F. Inheritance and differential formation of color and associated pigments in xylem and phloem of carrot (Daucus carota L.). PhD Thesis, University of Wisconsin, 1970: 42
    Umiel N, Gabelman W H. Inheritance of root color and carotenoid synthesis in carrot, Daucus carota L.: orange vs. red. Journal of the American Society for Horticultural Science, 1972, 97: 453-460.
    Buishand J G , Gabelman W H. Investigations on the inheritance of color and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.). Euphytica, 1979, 28 (3): 611-632
    Buishand J G , Gabelman W H . Studies on the inheritance of root color and carotenoid content in red × yellow and red × white crosses of carrot (Daucus carota L.). Euphytica, 1980, 29 (2): 241-260
    Santos C A, Simon P W. QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Molecular Genetics and Genomics, 2002, 268 (1): 122-129
    Santos C A F, Simon P W. Heritabilities and minimum gene number estimates of carrot carotenoids. Euphytica, 2006, 151: 79-86
    Simon P W. Inheritance and expression of purple and yellow storage root color in carrot. Journal of Heredity, 1996, 87: 63-66
    Just B J, Santos C A, Fonseca M E, Boiteux L S, Oloizia B B, Simon P W. Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theoretical and Applied Genetics, 2007, 114 (4): 693-704
    Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, Van Deynze A, Simon P. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics, 2016, 48 (6): 657-666
    Ellison S, Senalik D, Bostan H, Iorizzo M, Simon P. Fine mapping, transcriptome analysis, and marker development forSY2, the gene that conditions β-carotene accumulation in carrot (Daucus carotaSL.). G3 (Bethesda), 2017, 7 (8): 2665-2675
    Ben Chaim A, Paran I, Grube R, Jahn M, van Wijk R, Peleman J. QTL mapping of fruit related traits in pepper (Capsicum annuum). Theoretical and Applied Genetics, 2001, 102: 1016-1028
    Li L, Paolillo D J, Parthasarathy M V, Dimuzio E M, Garvin D F. A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant Journal, 2001, 26 (1): 59-67
    Liu Y S, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnology Journal, 2003, 1 (3): 195-207
    Li L, Lu S, Van Eck J, O’Halloran D, Zhou X, Lopez A B, Cosman K, Conlin B, Paolillo D, Garvin D F, Vrebalov J, Kochian L V, Kupper H, Earle E, Cao J. The cauliXower or gene encodes acysteine-rich zinc Wnger domain-containing protein that induces high-level of b-carotene accumulation. Plant Cell, 2006, 18: 3594-3605
    Ichikawa T, Nakazawa M, Kawashima M, Iizumi H, Kuroda H, Kondou Y, Tsuhara Y, Suzuki K, Ishikawa A, Seki M, Fujita M, Motohashi R, Nagata N, Takagi T, Shinozaki K, Matsui M. The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant Journal, 2006, 48 (6): 974-985
    Ellison S L, Luby C H, Corak K E, Coe K M, Senalik D, Iorizzo M, Goldman I L, Simon P W, Dawson J C. Carotenoid presence is associated with theSOrSgene in domesticated carrot. Genetics, 2018, 210 (4): 1497-1508
    Lu S, Van Eck J, Zhou X, Lopez A B, O'Halloran D M, Cosman K M, Conlin B J, Paolillo D J, Garvin D F, Vrebalov J, Kochian L V, Küpper H, Earle E D, Cao J, Li L. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell, 2006, 18 (12): 3594-3605
    Yuan H, Zhang J, Nageswaran D, Li L. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2015, 2: 15036
    Zhou X, Welsch R, Yang Y, álvarez D, Riediger M, Yuan H, Fish T, Liu J, Thannhauser TW, Li L. Arabidopsis OR proteins are the major posttranscriptional reg- ulators of phytoene synthase in controlling carotenoid biosynthesis. Proceedings of the National Academy of Sciences USA, 112 (11): 3558-3563
    Park S, Kim H S, Jung Y J, Kim S H, Ji C Y, Wang Z, Jeong J C, Lee H S, Lee S Y, Kwak S S. Orange protein has a role in phytoene synthase stabilization in sweetpotato. Scientific Reports, 2016, 6: 33563
    Coe K M, Ellison S, Senalik D, Dawson J, Simon P. The influence of the Or and Carotene Hydroxylase genes on carotenoid accumulation in orange carrots [Daucus carota (L.)]. Theoretical and Applied Genetics, 2021, 134 (10): 3351-3362
    Arango J, Jourdan M, Geoffriau E, Beyer P, Welsch R. Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots. The Plant Cell, 2014, 26 (5): 2223-2233
    Baldermann S, Kato M, Kurosawa M, Kurobayashi Y, Fujita A, Fleischmann P, Watanabe N. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. Journal of Experimental Botany, 2010, 61 (11): 2967-2977
    Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant Journal, 2001, 27 (4): 325-333
    Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo M J, de Maagd R A, Ruyter-Spira C, Bouwmeester H J, López-Ráez J A. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. NewSPhytologist, 2012, 196 (2): 535-547
    Li T, Deng Y J, Liu JX, Duan A Q, Liu H, Xiong A S. DcCCD4 catalyzes the degradation of α-carotene and β-carotene to affect carotenoid accumulation and taproot color in carrot. Plant Journal, 2021, 108 (4): 1116-1130
    Oleszkiewicz T, Klimek-Chodacka M, Kruczek M, Godel-J?drychowska K, Sala K, Milewska-Hendel A, Zubko M, Kurczyńska E, Qi Y, Baranski R. Inhibition of carotenoid biosynthesis by CRISPR/Cas9 triggers cell wall remodelling in carrot. International Journal of Molecular Sciences, 2021, 22 (12): 6516
    Jaakola L, M??tt? K, Pirttil? A M, T?rr?nen R, K?renlampi S, Hohtola A. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. PlantSPhysiology, 2002, 130 (2): 729-739
    Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. TrendsSinSPlantSScience, 2005, 10 (5): 236-242
    Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. PlantSPhysiology, 2001, 126 (2): 485-493
    Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant Journal, 2007, 49 (3): 414-427
    Tian J, Peng Z, Zhang J, Song T, Wan H, Zhang M, Yao Y. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple. Plant Biotechnology Journal, 2015, 13 (7): 948-961
    Jian W, Cao H, Yuan S, Liu Y, Lu J, Lu W, Li N, Wang J, Zou J, Tang N, Xu C, Cheng Y, Gao Y, Xi W, Bouzayen M, Li Z. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Horticulture Research, 2019, 6: 22
    Xu Z S, Yang Q Q, Feng K, Yu X, Xiong A S. DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnol Journal, 2020, 18 (7): 1585-1597
    Vivek B S, Simon P W. Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theoretical and Applied Genetics, 1999, 99 (1-2): 58-64
    Yildiz M, Willis D K, Cavagnaro P F, Iorizzo M, Abak K, Simon P W. Expression and mapping of anthocyanin biosynthesis genes in carrot. Theoretical and Applied Genetics, 2013, 126 (7): 1689-1702
    Bannoud F, Ellison S, Paolinelli M, Horejsi T, Senalik D, Fanzone M, Iorizzo M, Simon P W, Cavagnaro P F. Dissecting the genetic control of root and leaf tissue-specific anthocyanin pigmentation in carrot (Daucus carota L.). Theoretical and Applied Genetics, 2019, 132 (9): 2485-2507
    Xu Z S, Huang Y, Wang F, Song X, Wang G L, Xiong A S. Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biology, 2014, 14: 262
    Iorizzo M, Cavagnaro P F, Bostan H, Zhao Y, Zhang J, Simon P W. A cluster ofSMYBStranscription factors regulates anthocyanin biosynthesis in carrot (Daucus carotaSL.) root and petiole. Frontiers in Plant Science, 2019, 9: 1927
    Bannoud F, Carvajal S, Ellison S, Senalik D, Gomez Talquenca S, Iorizzo M, Simon P W, Cavagnaro P F. Genetic and transcription profile analysis of tissue-specific anthocyanin pigmentation in carrot root phloem. Genes (Basel), 2021, 12 (10): 1464
    Kodama M, Brinch-Pedersen H, Sharma S, Holme I B, Joernsgaard B, Dzhanfezova T, Amby D B, Vieira F G, Liu S, Gilbert M T P. Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus carota L.) using RNA-Seq. BMC Genomics, 2018, 19 (1): 811
    Iorizzo M, Curaba J, Pottorff M, Ferruzzi M G, Simon P, Cavagnaro P F. Carrot anthocyanins genetics and genomics: status and perspectives to improve its application for the food colorant industry. Genes, 2020 , 11 (8): 906
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘 星,黄建新,欧承刚,等.胡萝卜根色及其色素组分的遗传和育种研究进展[J].植物遗传资源学报,2022,23(5):1241-1248.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:685
  • 下载次数: 2802
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-17
  • 最后修改日期:2022-04-11
  • 录用日期:2022-04-24
  • 在线发布日期: 2022-09-09
  • 出版日期:
文章二维码
您是第5918533位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!