2025年6月11日 21:43 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2023年第24卷第1期 >11-21. DOI:10.13430/j.cnki.jpgr.20230104001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
种质资源学与基因组学相结合-破解基因发掘与育种利用的难题
DOI:
10.13430/j.cnki.jpgr.20230104001
CSTR:
作者:
  • 张学勇

    张学勇

    中国农业科学院作物科学研究所,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郝晨阳

    郝晨阳

    中国农业科学院作物科学研究所,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 焦成智

    焦成智

    中国农业科学院作物科学研究所,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李甜

    李甜

    中国农业科学院作物科学研究所,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 毛龙

    毛龙

    中国农业科学院作物科学研究所,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘旭

    刘旭

    中国农业科学院作物科学研究所,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

中国农业科学院作物科学研究所,北京 100081

作者简介:

研究方向为小麦种质资源与基因组学,E-mail:zhangxueyong@caas.cn

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2016YFD0100302);中国农科院基本科研业务费(Y2017PTC9)


Integration of Germplasmics and Genomics: Bridging up Crop Gene Discovery and Breeding
Author:
  • ZHANG Xue-yong

    ZHANG Xue-yong

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HAO Chen-yang

    HAO Chen-yang

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIAO Cheng-zhi

    JIAO Cheng-zhi

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Tian

    LI Tian

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MAO Long

    MAO Long

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Xu

    LIU Xu

    Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081

Fund Project:

Foundation projects: The Key Research and Development Program of China (2016YFD0100302); The Central Public-interest Scientific Institution Basal Research Fund (Y2017PTC9)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    2010年前后,随着各大作物模式品种基因组测序的完成,拟南芥、水稻、玉米等的重测序研究,突破了分子标记数量的限制,带动作物科学研究全面进入基因组时代,大量代表性品种、种质资源完成了重测序工作,数以百万甚至千万计的SNP标记,全基因组关联分析(GWAS,genome-wide association study)广泛应用于遗传资源研究,使近10年成为种质资源研究的黄金期,通过GWAS解析一些复杂重要农艺性状的遗传基础,成为Cell、Nature和Science及其子刊这一时期的主要内容,推动种质资源学迈入一个崭新时代。20世纪,遗传育种学的发展和完善推动了种质资源学科的萌芽和初步形成,而21世纪基因组学的发展和广泛应用,逐步形成了种质资源学推动育种学发展的新局面, 一些长期困扰育种家的问题,通过GWAS分析得到了重要启示或答案(如番茄的驯化、育种史,品质与产量矛盾问题,小麦骨干亲本等)。而泛基因组研究的迅速发展,突破了单一参考基因组的局限性,使我们认识到品种间基因组结构变异的普遍性,为深度解析重大品种、骨干亲本的形成及突破性资源的创制提供了更加宽广的视野。巢式关联作图群体(NAM,nested association mapping)、多亲本互交群体(MAGIC,multi-parent advanced generation inter-cross)及以此为基础衍生的构建多亲本遗传群体的思路和实践,使研究群体的遗传背景水平达到同期育种要求,不仅加快了基因的精细定位,并为组装育种提供了平台,推动着种质资源学、基因组学和育种学的融合与互动,开启了以基因组信息为支撑的基因资源和分子设计育种新时代,也预示着大学科融合与调整时代的到来。

    关键词:种质资源学;基因组学;基因发掘;作物育种
    Abstract:

    Since 1990s, scientists have mapped many quantitative trait loci through bi-parental populations such as NILs, DH, and IBD in plants through co-segregation between traits and markers. A set of important genes have been isolated by fine mapping, which are relating to biotic and abiotic stress resistance, environment adaptation, quality, and yield. These bring a lot of new biological knowledge. However, most of these genes were selected successfully in domestication and breeding.By 2010, with the establishment of reference genome sequences for most crops, genome re-sequencing has broken the limitation of the number of molecular markers, driving crop genetic research fully entering the genome era. Millions of SNP markers have made genome-wide association study (GWAS) widely used in genetic resources research, making it the most important part of germplasm resources research in the past 10 years. In this golden period, dissecting genetic basis of important agronomic traits through GWAS has become the main content of Cell, Nature and Science and their sub-publishers.In the last century, the establishment and development of crop breeding science promoted establishment of germplasm resource discipline. The development and wide application of genomics in this century has gradually formed a new situation in which research of germplasm resources promotes the development of breeding. Many problems that plague breeders have received important enlightenment or answers through GWAS analysis (such as tomato domestication, breeding history, contradiction between quality and yield, founder genotype, etc.). Further, the pan-genome research breaks through the limitations of a single reference genome, makes researchers realize the universality of genomic structural variations within a species, and provides a broader perspective for analyzing the formation of landmark cultivars, founder genotypes and the creation new super-cultivars. NAM, MAGIC, and the ideas and practice of constructing new multi-parents genetic mapping populations based on these can make the background level of the mapping population basically reaching the level of the breeding population at the same time, speeding up the fine mapping of agronomically important genes and pre-breeding. This has driven integration and interaction of germplasmics, genomics and breeding. Furthermore, in assistance of speed breeding and gene editing technology, the integration and interaction will surely promote the three disciplines to enter a new time.

    Key words:germplasmics;genomics;gene discovery;crop breeding
    参考文献
    [1] 卢新雄,辛霞,尹广鹍,张金梅,陈晓玲,王述民,方沩,何娟娟. 中国作物种质资源安全保存理论与实践. 植物遗传资源学报, 2019, 20 (1): 1-10Lu X X, Xin X, Yin G K, Zhang J M, Chen X L, Wang S M, Fang W, He J J. Theory and practice of the safe conservation of crop germplasm resources in China. Journal of Plant Genetic Resources, 2019, 20 (1): 1-10
    [2] 董玉琛. 作物种质资源学科的发展和展望. 中国工程科学, 2001, 3 (1):1 -5Dong Y C. The development and prospect of crop germplasm science. Engineering Science, 2001, 3 (1): 1-5
    [3] Tanksley S D, McCouch S R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066
    [4] Mascher M, Schreiber M, Scholz U, Graner A, Reif J C, Stein N. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nature Genetics, 2019, 51: 1076-1081
    [5] Frankel O H, Brown A H D. Plant genetic resources today: A critical appraisal//Holden J H W, Williams J T. Crop genetic resources: Conservation & evalution. London: George Allen & Urwin Ltd, 1984 : 249-257
    [6] 李自超,张洪亮,曹永生,裘宗恩,魏兴华,汤圣祥,余萍,王象坤. 中国地方稻种资源初级核心种质取样策略研究. 作物学报, 2003, 29 (1): 20-24Li Z C, Zhang H L, Cao Y S, Qiu Z E, Wei X H, Tang S X, Yu P, Wang X K. Studies on the sampling strategy for primary core collection of Chinese ingenious rice. Acta Agronomica Sinica, 2003, 29 (1): 20-24
    [7] 郝晨阳,董玉琛,王兰芬,游光霞,张洪娜,盖红梅,贾继增,张学勇. 我国普通小麦核心种质的构建及遗传多样性分析. 科学通报, 2008, 59 (8): 908-915Hao C Y, Dong Y C, Wang L F, You G X, Zhang H N, Ge H M, Jia J Z, Zhang X Y. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chinese Science Bulletin, 2008, 59 (8): 908-915
    [8] 邱丽娟,李英慧,关荣霞,刘章雄,王丽侠,常汝镇. 大豆核心种质和微核心种质的构建、验证与研究进展. 作物学报, 2009, 35 (4): 571-579Qiu L J, Li Y H, Guan R X, Liu Z X, Wang L X, Chang R Z. Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agronomica Sinica, 2009, 35 (4): 571-579
    [9] 贾继增,高丽锋,赵光耀,周文斌,张卫健. 作物基因组学与作物科学革命. 中国农业科学, 2015, 48 (17): 3316-3332Jia J Z, Gao L F, Zhao G Y, Zhou W B, Zhang W J. Crop genomics and crop science revolutions. Scientia Agricultura Sinica, 2015, 48 (17): 3316-3332
    [10] Varshney R K, Bohra A, Yu J M, Graner A, Zhang Q F, Sorrells M E. Design future crops: Genomics-assisted breeding comes of age. Trends in Plant Science, 2021, 26: 632-648
    [11] Balfourier F, Bouchet S, Robert S, De Oliveira R, Rimbert H, Kitt J, Choulet F, International Wheat Genome Sequencing Consortium, Consortium BreedWheat, Paux E. Worldwide phylogeography and history of wheat genetic diversity. Science Advances, 2019, 5: eaav0536
    [12] Li A L, Hao C Y, Wang Z Y, Geng S F, Jia M L, Wang F, Han X, Kong X C, Yin L J, Tao S, Deng Z Y, Liao R Y, Sun G L, Wang K, Ye X G, Jiao C Z, Lu H F, Zhou Y, Liu D C, Fu X D, Zhang X Y, Mao L. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 2022, 15: 504-519
    [13] McMullen M D, Kresovich S, Villeda H S, Bradbury P, Li H H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir G, Romero S, Rosas M O, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of the maize nested association mapping population. Science, 2009, 325: 737-740
    [14] Nice L M, Steffenson B J, Brown-Guedira G L, Akhunov E D, Liu C, Kono T J, Morrell P L, Blake T K, Horsley R D, Smith K P, Muehlbauer G J. Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild × cultivated barley. Genetics, 2016, 203: 1453-1467
    [15] Huang B E, George A W, Forrest K L, Kilian A, Hayden M J, Morell M K, Cavanagh C R. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnology Journal, 2012, 10: 826-839
    [16] Gardner K A, Wittern L M, Mackay I J. A highly recombined, high-density, eight-founder wheat MAGIC map reveals extensive segregation distortion and genomic locations of introgression segments. Plant Biotechnology Journal, 2016, 14: 1406-1417
    [17] Liu H J, Wang X Q, Xiao Y J, Luo J Y, Qiao F, Yang W Y, Zhang R Y, Meng Y J, Sun J M, Yan S J, Peng Y, Niu L Y, Jian L M, Song W, Yan J L, Li C H, Zhao Y X, Liu Y, Warburton M L, Zhao J R, Yan J B. CUBIC: An atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020, 21 (1): 20
    [18] Scott M F, Ladejobi O, Amer S, Bentley A R, Biernaskie J, Boden S A, Clark M, Dell'Acqua M, Dixon L E, Filippi C V, Fradgley N, Gardner K A, Mackay I J, O'Sullivan D, Percival-Alwyn L, Roorkiwal M, Singh R K, Thudi M, Varshney R K, Venturini L, Whan A, Cockram J, Mott R. Multi-parent populations in crops: A toolbox integrating genomics and genetic mapping with breeding. Heredity, 2020, 125: 396-416
    [19] Zuo J R, Li J Y. Molecular dissection of complex agronomic traits of rice: A team effort by Chinese scientists in recent years. National Science Review, 2014, 1: 253-276
    [20] Mao H D, Jian C, Cheng X X, Chen B, Mei F M, Li F F, Zhang Y F, Li S M, Du L Y, Li T, Hao C Y, Wang X J, Zhang X Y, Kang Z S. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnology Journal, 2022, 20: 846-861
    [21] Lin T, Zhu G T, Zhang J H, Xu X Y, Yu Q H, Zheng Z, Zhang Z H, Lun Y Y, Li S, Wang X X, Huang Z J, Li J M, Zhang C Z, Wang T T, Zhang Y Y, Wang A X, Zhang Y C, Lin K, Li C Y, Xiong G S, Xue Y B, Mazzucato A, Causse M, Fei Z J, Giovannoni J J, Chetelat R T, Zamir D, St?dler T, Li J F, Ye Z B, Du Y C, Huang S W. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46: 1220-1226
    [22] Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485: 635-641
    [23] Liu Y Q, Wang H R, Jiang Z M, Wang W, Xu R N, Wang Q H, Zhang Z H, Li A F, Liang Y, Ou S J, Liu X J, Cao S Y, Tong H N, Wang Y H, Zhou F, Liao H, Hu B, Chu C C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590: 600-605
    [24] Jiao C Z, Hao C Y, Li T, Bohra A, Wang L F, Hou J, Liu H X, Liu H, Zhao J, Wang Y M, Liu Y C, Wang Z W, Jing X, Wang X E, Varshney R K, Fu J J, Zhang X Y. Fast integration and accumulation of breeding beneficial alleles through AB-NAMIC strategy in wheat. Plant Communications, 2023, on line
    [25] Tettelin H, Masignani V, Cieslewicz M J, Donati C, Medini D, Ward N L, Angiuoli S V, Crabtree J, Jones A L, Durkin A S, DeBoy R T, Davidsen T M, Mora M, Scarselli M, Margarit y Ros I, Peterson J D, Hauser C R, Sundaram J P, Nelson W C, Madupu R, Brinkac L M, Dodson R J, Rosovitz M J, Sullivan S A, Daugherty S C, Haft D H, Selengut J, Gwinn M L, Zhou L W, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O'Connor K J B, Smith S, Utterback T R, White O, Rubens C E, Grandi G, Madoff L C, Kasper D L, Telford J L, Wessels M R, Rappuoli R, Fraser C M. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proceedings of the National Academy of Sciences, 2005, 102: 13950-13955
    [26] Bayer P E, Golicz A A, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. Nature Plants, 2020, 6: 914-920
    [27] Sherman R M, Salzberg S L. Pan-genomics in the human genome era. Nature Reviews Genetics, 2020, 21: 243-254
    [28] Hirsch C N, Foerster J M, Johnson J M, Sekhon R S, Muttoni G, Vaillancourt B, Pe?agaricano F, Lindquist E, Pedraza M A, Barry K, de Leon N, Kaeppler S M, Buell C R. Insights into the maize pan-genome and pan-transcriptome. Plant Cell, 2014, 26: 121-135
    [29] Qin P, Lu H W, Du H L, Wang H, Chen W L, Chen Z, He Q, Ou S J, Zhang H Y, Li X Z, Li X X, Li Y, Liao Y, Gao Q, Tu B, Yuan H, Ma B T, Wang Y P, Qian Y W, Fan S J, Li W T, Wang J, He M, Yin J J, Li T, Jiang N, Chen X W, Liang C Z, Li S G. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell, 2021, 184: 1-17
    [30] Montenegro J D, Golicz A A, Bayer P E, Hurgobin B, Lee H, Chan C K, Visendi P, Lai K, Dole?el J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. The Plant Journal, 2017, 90: 1007-1013
    [31] Walkowiak S, Gao L L, Monat C, Haberer G, Kassa M T, Brinton J, Ramirez-Gonzalez R H, Kolodziej M C, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri J N, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, Venturini L, Bevan M, Clavijo B, Koo D H, Ens J, Wiebe K, N'Diaye A, Fritz A K, Gutwin C, Fiebig A, Fosker C, Fu B X, Accinelli G G, Gardner K A, Fradgley N, Gutierrez-Gonzalez J, Halstead-Nussloch G H, Hatakeyama M, Koh C S, Deek J, Costamagna A C, Fobert P, Heavens D, Kanamori H, Kawaura K, Kobayashi F, Krasileva K, Kuo T, McKenzie N, Murata K, Nabeka Y, Paape T, Padmarasu S, Percival-Alwyn L, Kagale S, Scholz U, Sese J, Juliana P, Singh R, Shimizu-Inatsugi R, Swarbreck D, Cockram J, Budak H, Tameshige T, Tanaka T, Tsuji H, Wright J, Wu J Z, Steuernage B, Small I, Cloutier S, Keeble-Gagnère G, Muehlbauer G, Tibbets J, Nasuda S, Melonek J, Hucl P J, Sharpe A G, Clark M, Legg E, Bharti A, Langridge P, Hall A, Uauy C, Mascher M, Krattinger S G, Handa H, Shimizu K K, Distelfeld A, Chalmers K, Keller B, Mayer K F X, Poland J, Stein N, McCartney C A, Spannag M, Wicker T, Pozniak C J. Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588: 277-283
    [32] Liu Y C, Du H L, Li P C, Shen Y T, Peng H, Liu S L, Zhou G A, Zhang H K, Liu Z, Shi M, Huang X H, Li Y, Zhang M, Wang Z, Zhu B G, Han B, Liang C Z, Tian Z X. Pan-Genome of wild and cultivated soybeans. Cell, 2020, 182: 162-176
    [33] Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X Q, Angessa T T, Zhou G F, Tan C, Hill C, Wang P H, Schreiber M, Boston L B, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D D, Zhang J, Wang C C, Grimwood J, Schmutz J, Guo G G, Zhang G P, Mochida K, Hirayama T, Sato K, Chalmers K J, Langridge P, Waugh R, Pozniak C J, Scholz U, Mayer K F X, Spannag M, Li C D, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588: 284-289
    [34] Hübner S, Bercovich N, Todesco M, Mandel J R, Odenheimer J, Ziegler E, Lee J S, Baute G J, Owens G L, Grassa C J, Ebert D P, Ostevik K L, Moyers B T, Yakimowski S, Masalia R R, Gao L, ?ali? I, Bowers J E, Kane N C, Swanevelder D Z H, Kubach T, Mu?os S, Langlade N B, Burke J M, Rieseberg L H. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants, 2019, 5: 54-62
    [35] Li Y H, Zhou G, Ma J, Jiang W, Jin L G, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang S S, Zuo Q, Shi X H, Li Y F, Zhang W K, Hu Y, Kong G, Hong H L, Tan B, Song J, Liu Z X, Wang Y, Ruan H, Yeung C K, Liu J, Wang H, Zhang L J, Guan R X, Wang K J, Li W B, Chen S Y, Chang R Z, Jiang Z, Jackson S A, Li R, Qiu L J. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014, 32: 1045-1052
    [36] Lei L, Goltsman E, Goodstein D, Wu G A, Rokhsar D S, Vogel J P. Plant pan-genomics comes of age. Annual Review of Plant Biology, 2021, 72: 411-435
    [37] Golicz A A, Bayer P E, Bhalla P L, Batley J, Edwards D. Pangenomics comes of age: From bacteria to plant and animal applications. Trends in Genetics, 2020, 36 (2): 132-145
    [38] Yu H, Lin T, Meng X B, Du H L, Zhang J K, Liu G F, Chen M J, Jing Y H, Kou L Q, Li X X, Gao Q, Liang Y, Liu X D, Fan Z L, Liang Y T, Cheng Z K, Chen M S, Tian Z X, Wang Y H, Chu C C, Zuo J R, Wan J M, Qian Q, Han B, Zuccolo A, Wing R A, Gao C X, Liang C Z, Li J Y. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184 (5): 1156-1170
    [39] Luo J M, Li S Y, Xu J J, Yan L, Ma Y Z, Xia L Q. Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiplex gene editing. Molecular Plant, 2021, 14: 847-850
    [40] 张学勇,马琳,郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43 (2): 157-170Zhang X Y, Ma L, Zheng J. Characteristics of genes selected by domestication and intensive breeding in crop plants. Acta Agronomica Sinica, 2017, 43 (2): 157-170
    [41] Hao C Y, Jiao C Z, Hou J, Li T, Liu H X, Wang Y Q, Zheng J, Liu H, Bi Z H, Xu F F, Zhao J, Ma L, Wang Y M, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H F, Zhang X Y. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant, 2020, 13: 1733-1751
    [42] Brinton J, Ramirez-Gonzalez R H, Simmonds J, Wingen L, Orford S, Griffiths S; 10 Wheat Genome Project, Haberer G, Spannagl M, Walkowiak S, Pozniak C, Uauy C. A haplotype-led approach to increase the precision of wheat breeding. Communications Biology, 2020, 3: 712
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张学勇,郝晨阳,焦成智,等.种质资源学与基因组学相结合-破解基因发掘与育种利用的难题[J].植物遗传资源学报,2023,24(1):11-21.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-04
  • 最后修改日期:2023-01-05
  • 录用日期:
  • 在线发布日期: 2023-01-12
  • 出版日期: 2023-01-12
文章二维码
您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!