2025年5月25日 21:46 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2023年第24卷第1期 >75-85. DOI:10.13430/j.cnki.jpgr.20220504002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
水稻积累及耐受镉和砷的分子机制与育种实践
DOI:
10.13430/j.cnki.jpgr.20220504002
CSTR:
作者:
  • 冀中英 1

    冀中英

    湖南大学生物学院隆平分院,长沙 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李曜魁 2

    李曜魁

    湖南杂交水稻研究中心杂交水稻全国重点实验室,长沙 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 孟前程 1

    孟前程

    湖南大学生物学院隆平分院,长沙 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李兴容 1

    李兴容

    湖南大学生物学院隆平分院,长沙 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵炳然 1,2

    赵炳然

    湖南大学生物学院隆平分院,长沙 410125;湖南杂交水稻研究中心杂交水稻全国重点实验室,长沙 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 唐丽 1,2

    唐丽

    湖南大学生物学院隆平分院,长沙 410125;湖南杂交水稻研究中心杂交水稻全国重点实验室,长沙 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.湖南大学生物学院隆平分院,长沙 410125;2.湖南杂交水稻研究中心杂交水稻全国重点实验室,长沙 410125

作者简介:

研究方向为水稻重金属积累与耐受,E-mail: jzy1179780375@163.com

通讯作者:

唐丽,研究方向为水稻重金属积累与耐受机理,E-mail: tangli@hhrrc.ac.cn

中图分类号:

基金项目:

湖南省农业科技创新资金项目(2022CX19);湖南省自然科学基金 (2022JJ30034);湖南省重点研发计划 (2020NK2043)


Molecular Mechanisms and Breeding Practices of Accumulation and Tolerance to Cadmium and Arsenic in Rice
Author:
  • JI Zhong-ying 1

    JI Zhong-ying

    Longping Branch, College of Biology, Hunan University, Changsha 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Yao-kui 2

    LI Yao-kui

    State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MENG Qian-cheng 1

    MENG Qian-cheng

    Longping Branch, College of Biology, Hunan University, Changsha 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Xing-rong 1

    LI Xing-rong

    Longping Branch, College of Biology, Hunan University, Changsha 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Bing-ran 1,2

    ZHAO Bing-ran

    Longping Branch, College of Biology, Hunan University, Changsha 410125;State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TANG Li 1,2

    TANG Li

    Longping Branch, College of Biology, Hunan University, Changsha 410125;State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Longping Branch, College of Biology, Hunan University, Changsha 410125;2.State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125

Fund Project:

Foundation projects: Agricultural Science and Technology Innovation Fund of Hunan Province (2022CX19);Natural Science Foundation of Hunan Province(2022JJ30034); Research and Development Projects in Key Areas of Hunan Province (2020NK2043)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [77]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近些年来,我国农田镉、砷污染日益严重,导致稻米镉、砷超标事件时有发生。稻米是全球约一半人口的主粮,也是人体从食物中摄入镉和砷的主要来源,土壤中的镉和砷被水稻吸收后,通过食物链的富集作用在人体内积累,进而危害人体健康。因此,减少镉、砷在稻米中的积累成为保障我国粮食质量安全和促进水稻产业发展亟待解决的重要问题。研究水稻对镉和砷的累积机制,在此基础上培育镉、砷低积累水稻品种,是解决稻米镉和砷超标最经济的方法,对实现污染农田的稻米安全生产具有重要意义。本研究主要综述了农田镉和砷的存在形态及生物有效性,阐述了水稻吸收、转运镉和砷的分子机制,以及镉、砷耐受机制,概述了镉、砷低积累水稻育种进展,并对未来的发展方向进行了展望,旨在为减少水稻籽粒镉、砷含量的研究提供一些参考。

    关键词:水稻;镉;砷;低积累;育种
    Abstract:

    In recent years, cadmium and arsenic contamination in China's farmland has became increasingly serious, resulting in the occurrence of excessive cadmium and arsenic in grains. Rice is the main food for about half of the world's population. Cadmium and arsenic in the soil will accumulate in the human body through the enrichment of the food chain after being absorbed by rice, thereby harming human health. Therefore, reducing the accumulation of cadmium and arsenic in rice has became an urgent and important issue to ensure grain quality security and promote the development of rice industry. To study the accumulation mechanism of cadmium and arsenic in rice and to cultivate rice varieties with low accumulation of cadmium and arsenic is the most economical way to solve the excessive cadmium and arsenic in grains, which is of great significance to realize the safe production of rice in contaminated farmland. In this review, we summarize the morphology and bioavailability of cadmium and arsenic in farmland, the molecular mechanism of cadmium and arsenic uptake and transport in rice, and the main mechanism of rice tolerance to cadmium and arsenic. We also review the progress in breeding of rice cultivars with low cadmium and arsenic level in grains, and prospected the future development direction. The purpose of this paper is providing some references for reducing cadmium and arsenic content in rice grains.

    Key words:rice;cadmium;arsenic;low accumulation;breeding
    参考文献
    [1] 中华人民共和国生态环境部. 全国土壤污染状况调查公报. 中国环保产业, 2014(5): 10-11Ministry of Ecology and Environment of the People's Republic of China. The report on the national general survey of soil contamination. China Environmental Protection Industry, 2014(5): 10-11
    [2] Mu T, Wu T, Zhou T, Li Z, Ouyang Y, Jiang J, Zhu D, Hou J, Wang Z, Luo Y, Christie P, Wu L. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. The Science of the Total Environment, 2019, 677: 373-381
    [3] Wang P, Chen H, Kopittke P M, Zhao F J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 2019, 249: 1038-1048
    [4] GB 2762—2017 《食品安全国家标准 食品中污染物限量》. 中国食品卫生杂志, 2018, 30(3): 329-340GB 2762—2017 “National Food Safety Standard Limits of Contaminants in Food”. Chinese Journal of Food Hygiene, 2018, 30 (3): 329-340
    [5] Zhu Y G, Sun G X, Lei M, Teng M, Liu Y X, Chen N C, Wang L H, Carey A M, Deacon C, Raab A, Meharg A A, Williams P N. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environmental Science & Technology, 2008, 42 (13): 5008-5013
    [6] Liao X Y, Chen T B, Xie H, Liu Y R. Soil as contamination and its risk assessment in areas near the industrial districts of Chenzhou city, Southern China. Environment International, 2005, 31 (6): 791-798
    [7] Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Qayyum M F, Hafeez F, Ok Y S. Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management: A critical review. Environmental Science and Pollution Research International, 2016, 23 (18): 17859-17879
    [8] Li G, Sun G X, Williams P N, Nunes L, Zhu Y G. Inorganic arsenic in Chinese food and its cancer risk. Environment International, 2011, 37 (7): 1219-1225
    [9] Meharg A A, Norton G, Deacon C, Williams P, Adomako E E, Price A, Zhu Y, Li G, Zhao F J, McGrath S, Villada A, Sommella A, De Silva P M, Brammer H, Dasgupta T, Islam M R. Variation in rice cadmium related to human exposure. Environmental Science & Technology, 2013, 47 (11): 5613-5618
    [10] Agency for Toxic Substances and Disease Registry.Delailed data table for the 2019 priority list of hazardous substances, the subject of toxicological profiles. (2020-1-17)[2022-05-04]. https://www.atsdr.cdc.gov/spl/#2019spl
    [11] Nawrot T S, Staessen J A, Roels H A, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J. Cadmium exposure in the population: From health risks to strategies of prevention. Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 2010, 23 (5): 769-782
    [12] Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano J H, Ahsan H. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicology and Applied Pharmacology, 2009, 239 (2): 184-192
    [13] Fulda B, Voegelin A, Kretzschmar R. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environmental Science & Technology, 2013, 47 (22): 12775-12783
    [14] Xu X, Chen C, Wang P, Kretzschmar R, Zhao F J. Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environmental Pollution, 2017, 231 (Pt 1): 37-47
    [15] Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 2011, 83 (7): 925-932
    [16] Li R Y, Stroud J L, Ma J F, McGrath S P, Zhao F J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environmental Science & Technology, 2009, 43 (10): 3778-3783
    [17] Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology, 2009, 43 (24): 9361-9367
    [18] Wang J, Wang P M, Gu Y, Kopittke P M, Zhao F J, Wang P. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems. Environmental Science & Technology, 2019, 53 (5): 2500-2508
    [19] Zhu H, Chen C, Xu C, Zhu Q, Huang D. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 2016, 219: 99-106
    [20] 陈静, 王学军, 朱立军. pH对砷在贵州红壤中的吸附的影响. 土壤, 2004, 36 (2): 211-214Chen J, Wang X J, Zhu L J. Effect of pH on adsorption and transformation of arsenic in red soil in guizhou. Soils, 2004, 36 (2): 211-214
    [21] 史高玲, 周东美, 余向阳, 娄来清, 童非, 樊广萍, 刘丽珠, 高岩. 水稻和小麦累积镉和砷的机制与阻控对策. 江苏农业学报, 2021, 37 (5): 1333-1343Shi G L, Zhou D M, Yu X Y, Lou L Q, Tong F, Fan G P, Liu L Z, Gao Y. Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies. Jiangsu Journal of Agricultural Sciences, 2021, 37 (5): 1333-1343
    [22] Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao F J. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice, 2017, 10 (1): 9
    [23] Sasaki A, Yamaji N, Yokosho K, Ma J F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 2012, 24 (5): 2155-2167
    [24] Chang J D, Huang S, Konishi N, Wang P, Chen J, Huang X Y, Ma J F, Zhao F J. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. Journal of Experimental Botany, 2020, 71 (18): 5705-5715
    [25] Chang J D, Huang S, Yamaji N, Zhang W, Ma J F, Zhao F J. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant, Cell & Environment, 2020, 43 (10): 2476-2491
    [26] Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice(Plant Nutrition). Soil Science & Plant Nutrition, 2006, 52 (4): 464-469
    [27] Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa N K. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. The Plant Journal, 2006, 45 (3): 335-346
    [28] Yan H, Xu W, Xie J, Gao Y, Wu L, Sun L, Feng L, Chen X, Zhang T, Dai C, Li T, Lin X, Zhang Z, Wang X, Li F, Zhu X, Li J, Li Z, Chen C, Ma M, Zhang H, He Z. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature Communications, 2019, 10 (1): 2562
    [29] Tan L, Qu M, Zhu Y, Peng C, Wang J, Gao D, Chen C. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiology, 2020, 183 (3): 1235-1249
    [30] Ma J F, Yamaji N, Mitani N, Xu X Y, Su Y H, McGrath S P, Zhao F J. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (29): 9931-9935
    [31] Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature, 2006, 440 (7084): 688-691
    [32] Ma J F, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. An efflux transporter of silicon in rice. Nature, 2007, 448 (7150): 209-212
    [33] Chen Y, Sun S K, Tang Z, Liu G, Moore K L, Maathuis F J M, Miller A J, McGrath S P, Zhao F J. The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. Journal of Experimental Botany, 2017, 68 (11): 3007-3016
    [34] Li R Y, Ago Y, Liu W J, Mitani N, Feldmann J, McGrath S P, Ma J F, Zhao F J. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiology, 2009, 150 (4): 2071-2080
    [35] Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Science & Plant Nutrition, 2013, 59 (4): 580-590
    [36] Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma L Q. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environmental Science & Technology, 2017, 51 (21): 12131-12138
    [37] Wang P, Zhang W, Mao C, Xu G, Zhao F J. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. Journal of Experimental Botany, 2016, 67 (21): 6051-6059
    [38] Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (38): 16500-16505
    [39] Yang G, Fu S, Huang J, Li L, Long Y, Wei Q, Wang Z, Chen Z, Xia J. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Plant Science, 2021, 307: 110894
    [40] Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Feng Ma J. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 2013, 162 (2): 927-939
    [41] Tan L, Zhu Y, Fan T, Peng C, Wang J, Sun L, Chen C. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochemical and Biophysical Research Communications, 2019, 512 (1): 112-118
    [42] Tang L, Dong J, Tan L, Ji Z, Li Y, Sun Y, Chen C, Lv Q, Mao B, Hu Y, Zhao B. Overexpression of OsLCT2, a low-affinity cation transporter gene, reduces cadmium accumulation in shoots and grains of rice. Rice, 2021, 14 (1): 89
    [43] Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 2018, 9 (1): 645
    [44] Luo J S, Xiao Y, Yao J, Wu Z, Yang Y, Ismail A M, Zhang Z. Overexpression of a defensin-like gene CAL2 enhances cadmium accumulation in plants. Frontiers in Plant Science, 2020, 11: 217
    [45] Tang Z, Chen Y, Miller A J, Zhao F J. The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice. Plant & Cell Physiology, 2019, 60 (7): 1525-1535
    [46] Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (52): 20959-20964
    [47] Hao X, Zeng M, Wang J, Zeng Z, Dai J, Xie Z, Yang Y, Tian L, Chen L, Li D. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Frontiers in Plant Science, 2018, 9: 476
    [48] Chen Y, Moore K L, Miller A J, McGrath S P, Ma J F, Zhao F J. The role of nodes in arsenic storage and distribution in rice. Journal of Experimental Botany, 2015, 66 (13): 3717-3724
    [49] Song W Y, Yamaki T, Yamaji N, Ko D, Jung K H, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma J F. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (44): 15699-15704
    [50] Tang Z, Chen Y, Chen F, Ji Y, Zhao F J. OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant & Cell Physiology , 2017, 58 (5): 904-913
    [51] Fu S, Lu Y, Zhang X, Yang G, Chao D, Wang Z, Shi M, Chen J, Chao D Y, Li R, Ma J F, Xia J. The ABC transporter ABCG36 is required for cadmium tolerance in rice. Journal of Experimental Botany, 2019, 70 (20): 5909-5918
    [52] Zhao F J, Ago Y, Mitani N, Li R Y, Su Y H, Yamaji N, McGrath S P, Ma J F. The role of the rice aquaporin Lsi1 in arsenite efflux from roots. The New Phytologist, 2010, 186 (2): 392-399
    [53] Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt D E, Chao D Y, Zhao F J. OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiology, 2016, 172 (3): 1708-1719
    [54] Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao F J, Wu Z. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. The New Phytologist, 2017, 215 (3): 1090-1101
    [55] Pal R, Rai J P. Phytochelatins: Peptides involved in heavy metal detoxification. Applied Biochemistry and Biotechnology, 2010, 160 (3): 945-963
    [56] Uraguchi S, Tanaka N, Hofmann C, Abiko K, Ohkama-Ohtsu N, Weber M, Kamiya T, Sone Y, Nakamura R, Takanezawa Y, Kiyono M, Fujiwara T, Clemens S. Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains. Plant & Cell Physiology, 2017, 58 (10): 1730-1742
    [57] Hayashi S, Kuramata M, Abe T, Takagi H, Ozawa K, Ishikawa S. Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. The Plant Journal, 2017, 91 (5): 840-848
    [58] Chen J, Huang X Y, Salt D E, Zhao F J. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain. New Phytologist, 2020, 226 (3): 838-850
    [59] Sun S K, Xu X, Tang Z, Tang Z, Huang X Y, Wirtz M, Hell R, Zhao F J. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nature Communications, 2021, 12 (1): 1392
    [60] Lu C, Zhang L, Tang Z, Huang X Y, Ma J F, Zhao F J. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environment International, 2019, 126: 619-626
    [61] Lv Q, Li W, Sun Z, Ouyang N, Jing X, He Q, Wu J, Zheng J, Zheng J, Tang S, Zhu R, Tian Y, Duan M, Tan Y, Yu D, Sheng X, Sun X, Jia G, Gao H, Zeng Q, Li Y, Tang L, Xu Q, Zhao B, Huang Z, Lu H, Li N, Zhao J, Zhu L, Li D, Yuan L, Yuan D. Resequencing of 1,143 Indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11 (1): 4778
    [62] 王天抗, 李懿星, 宋书锋, 傅岳峰, 余应弘, 柏连阳, 李莉. 水稻籽粒镉低积累资源挖掘及其新材料创制. 杂交水稻, 2021, 36 (1): 68-74Wang T K, Li Y X, Song S F, Fu Y F, Yu Y H, Bai L Y, Li L. Excavation of rice resources with low cadmium accumulation in grains and development of new materials. Hybrid Rice, 2021, 36 (1): 68-74
    [63] Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (47): 19166-19171
    [64] Cao Z Z, Lin X Y, Yang Y J, Guan M Y, Xu P, Chen M X. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. BMC Plant Biology, 2019, 19 (1): 250
    [65] 韶也, 彭彦, 毛毕刚, 余丽霞, 唐丽, 李曜魁, 胡远艺, 张丹, 袁智成, 罗武中, 彭选明, 李文建, 周利斌, 柏连阳, 赵炳然. M1TDS技术及镉低积累杂交水稻亲本创制与组合选育. 杂交水稻, 2022, 37 (1): 1-11Shao Y, Peng Y, Mao B G, Yu L X, Tang L, Li Y K, Hu Y Y, Zhang D, Yuan Z C, Luo W Z, Peng X M, Li W J, Zhou L B, Bai L Y, Zhao B R. M1TDS technology and creation of low-cadmium accumulation parents for hybrid rice breeding.Hybrid Rice, 2022, 37 (1): 1-11
    [66] Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, 2017, 7 (1): 14438
    [67] Wang T, Li Y, Fu Y, Xie H, Song S, Qiu M, Wen J, Chen M, Chen G, Tian Y, Li C, Yuan D, Wang J, Li L. Mutation at different sites of metal transporter gene OsNramp5 affects Cd accumulation and related agronomic traitsin rice (Oryza sativa L.). Frontiers in Plant Science, 2019, 10: 1081
    [68] Yang C H, Zhan G Y, Huang C F. Reduction in cadmium accumulation in Japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. Journal of Integrative Agriculture, 2019, 18 (3): 688-697
    [69] 龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻. 中国水稻科学, 2019, 33 (5): 407-420Long Q Z, Huang Y L, Tang X Y, Wang H M, Lu M, Yuan L F, Wan J L. Creation of low-cd-accumulating Indica rice by disruption of OSNRAMP5 gene via CRISPR/Cas9. Chinese Journal of Rice Science, 2019, 33 (5): 407-420
    [70] 董家瑜, 吴天昊, 孙远涛, 何含杰, 李曜魁, 彭彦, 冀中英, 孟前程, 赵炳然, 唐丽. 不同锰浓度环境下OsNRAMP5突变对水稻耐热性和主要经济性状的影响. 杂交水稻, 2021, 36 (2): 79-88Dong J Y, Wu T H, Sun Y T, He H J, Li Y K, Peng Y, Ji Z Y, Meng Q C, Zhao B R, Tang L. Effects of OsNRAMP5 mutation on heat tolerance and main economic traits of rice under the conditions of different manganese concentration. Hybrid Rice, 2021, 36 (2): 79-88
    [71] Liu C L, Gao Z Y, Shang L G, Yang C H, Ruan B P, Zeng D L, Guo L B, Zhao F J, Huang C F, Qian Q. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. Journal of Integrative Plant Biology, 2020, 62 (3): 314-329
    [72] Wang K, Yan T Z, Xu S L, Yan X, Zhou Q F, Zhao X H, Li Y F, Wu Z X, Qin P, Fu C J, Fu J, Zhou Y B, Yang Y Z. Validating a segment on chromosome 7 of Japonica for establishing low-cadmium accumulating indica rice variety. Scientific Reports, 2021, 11 (1): 6053
    [73] Sun S K, Chen Y, Che J, Konishi N, Tang Z, Miller A J, Ma J F, Zhao F J. Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. The New Phytologist, 2018, 219 (2): 641-653
    [74] Deng F, Yamaji N, Ma J F, Lee S K, Jeon J S, Martinoia E, Lee Y, Song W Y. Engineering rice with lower grain arsenic. Plant Biotechnology Journal, 2018, 16 (10): 1691-1699
    [75] Huang B Y, Zhao F J, Wang P. The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy. Environmental Pollution, 2022, 293: 118497
    [76] Jiang Y, Zhou H, Gu J F, Zeng P, Liao B H, Xie Y H, Ji X H. Combined amendment improves soil health and brown rice quality in paddy soils moderately and highly Co-contaminated with Cd and As. Environmental Pollution, 2022, 295: 118590
    [77] Ishikawa S, Makino T, Ito M, Harada K, Nakada H, Nishida I, Nishimura M, Tokunaga T, Shirao K, Yoshizawa C, Matsuyama M, Abe T, Arao T. Low-cadmium rice (Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Science & Plant Nutrition, 2016,62(4):327-339
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冀中英,李曜魁,孟前程,等.水稻积累及耐受镉和砷的分子机制与育种实践[J].植物遗传资源学报,2023,24(1):75-85.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:446
  • 下载次数: 1436
  • HTML阅读次数: 248
  • 引用次数: 0
历史
  • 收稿日期:2022-05-04
  • 最后修改日期:2022-06-06
  • 录用日期:
  • 在线发布日期: 2023-01-12
  • 出版日期: 2023-01-12
文章二维码
您是第5866691位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!