2025年6月13日 21:20 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2023年第24卷第1期 >226-236. DOI:10.13430/j.cnki.jpgr.20220717002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
油茶SOD基因克隆及不同授粉处理下的表达分析
DOI:
10.13430/j.cnki.jpgr.20220717002
CSTR:
作者:
  • 王艺颖

    王艺颖

    中南林业科技大学林学院/经济林培育与保护教育部重点实验室,长沙 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 袁军

    袁军

    中南林业科技大学林学院/经济林培育与保护教育部重点实验室,长沙 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 谭晓风

    谭晓风

    中南林业科技大学林学院/经济林培育与保护教育部重点实验室,长沙 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 卢梦琪

    卢梦琪

    中南林业科技大学林学院/经济林培育与保护教育部重点实验室,长沙 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 周奥

    周奥

    中南林业科技大学林学院/经济林培育与保护教育部重点实验室,长沙 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 周俊琴

    周俊琴

    中南林业科技大学林学院/经济林培育与保护教育部重点实验室,长沙 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

中南林业科技大学林学院/经济林培育与保护教育部重点实验室,长沙 410004

作者简介:

研究方向为经济林栽培育种,E-mail: wangyiying99@qq.com

通讯作者:

周俊琴,研究方向为经济林栽培育种,E-mail: zhoujunqin@csuft.edu.cn

中图分类号:

基金项目:

国家自然科学基金(31730016);湖南省教育厅科学研究项目青年项目(21B0274);湖南省企业科技创新创业团队支持计划(湘人才发[2022]9号)


Cloning and Expression Analysis of SOD Genes under Different Pollination Treatments in Camellia oleifera Abel
Author:
  • WANG Yi-ying

    WANG Yi-ying

    College of Forestry, Central South University of Forestry and Technology / Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Changsha 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YUAN Jun

    YUAN Jun

    College of Forestry, Central South University of Forestry and Technology / Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Changsha 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TAN Xiao-feng

    TAN Xiao-feng

    College of Forestry, Central South University of Forestry and Technology / Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Changsha 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Meng-qi

    LU Meng-qi

    College of Forestry, Central South University of Forestry and Technology / Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Changsha 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Ao

    ZHOU Ao

    College of Forestry, Central South University of Forestry and Technology / Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Changsha 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Jun-qin

    ZHOU Jun-qin

    College of Forestry, Central South University of Forestry and Technology / Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Changsha 410004
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

College of Forestry, Central South University of Forestry and Technology / Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Changsha 410004

Fund Project:

Foundation projects: National Natural Science Foundation of China (31730016);Hunan Provincial Department of Education Scientific Research Project Youth Project(21B0274);Hunan Provincial Enterprise Science and Technology Innovation and Entrepreneurship Team Support Program (Xiang ren cai fa [2022]No.9)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了探究超氧化物歧化酶(SOD)基因家族在油茶自交不亲和反应中的作用,通过RT-PCR法克隆出油茶SOD基因家族成员,分别命名为CoCSD、CoFSD和CoMSD。其CDS序列长度分别为660、813和693 bp,编码219、270和230个氨基酸。CoCSD、CoFSD和CoMSD蛋白分子质量分别为22.49、31.18和25.51 kDa,结构分析发现3个蛋白均为亲水性蛋白,无跨膜结构域和信号肽,属于非分泌蛋白,且均包含21个磷酸化位点。CoCSD和CoMSD两者属于稳定蛋白,而CoFSD属于不稳定蛋白。CoCSD二级结构主要是无规则卷曲和延伸链,而CoFSD和CoMSD的二级结构主要由α螺旋和无规则卷曲构成。3个蛋白因结合不同的金属离子,系统进化树构建时被划分到3个大支,但均与茶树相应蛋白聚类在同一小枝上,且序列上具有高度的同源性。自交授粉雌蕊中的SOD酶活性整体高于异交授粉,但CoCSD、CoFSD和CoMSD在授粉前表达量最高,自交和异交授粉处理均对其表达量有抑制作用。该研究结果为后续深入探究油茶SOD基因的生物学功能提供依据,也为揭示油茶自交不亲和作用机制提供参考。

    关键词:油茶;自交不亲和;超氧化物歧化酶;生物信息学分析;表达模式
    Abstract:

    In order to investigate the role of superoxide dismutase (SOD) gene family members in the self-incompatibility response of Camellia oleifera Abel, three family members CoCSD, CoFSD and CoMSD were isolated by RT-PCR. The CDS sequences of CoCSD, CoFSD and CoMSD were 660, 813 and 693 bp in length, encoding for 219, 270 and 230 amino acids, with a molecular weight of 22.49, 31.18 and 25.51 kDa, respectively. Structural analysis revealed that three proteins were hydrophilic without transmembrane domain and signal peptide (non-secretory proteins), and all contained 21 phosphorylation sites. Both CoCSD and CoMSD are stable, while CoFSD is an unstable protein. The secondary structure of CoCSD is mainly composed of irregularly coiled and extended chains, while the secondary structure of CoFSD and CoMSD is mainly composed of α-helices and irregular coils. The three proteins were assigned to three categories in the phylogenetic tree, whereas all were clustered on the same branchlet with the corresponding proteins of tea tree and had high sequence homology. The SOD enzyme activity in self-pollinated pistils was overall higher than that in cross-pollinated pistils, but the expression of CoCSD, CoFSD and CoMSD was highest before pollination and was inhibited by both self and cross-pollination treatments. The results of this study provide a basis for the subsequent in-depth investigation of the biological functions of C. oleifera Abel SOD genes, and also provide a reference for revealing the mechanism of self-incompatibility in C. oleifera Abel.

    Key words:Camellia oleifera Abel;self-incompatibility;superoxide dismutase;bioinformatics analysis;expression pattern
    参考文献
    [1] 庄瑞林. 中国油茶.2版. 北京: 中国林业出版社, 2008:3Zhuang R L. China camellia. 2nd edn. Beijing: China Forestry Publishing House, 2008: 3
    [2] 高超,袁德义,杨亚,王碧芳,刘冬明,邹锋,谭晓风.油茶自交不亲和性的解剖特征.林业科学, 2015, 51 (2):60-68Gao C, Yuan D Y, Yang Y, Wang B F, Lui D M, Zhou F, Tan X F. Anatomical characteristics of self-incompatibility in Camellia oleifera. Scientia Silvae Sinicae, 2015, 51 (2):60-68
    [3] 廖婷. 油茶自交不亲和性初步研究. 长沙: 中南林业科技大学, 2013Liao T. Study on self-incompatibility of Camellia oleifera . Changsha: Central South University of Forestry Science and Technology , 2013
    [4] 刘素玲,赵国建,吴欣,张百行,高岭巍,丁美玲,陈威.植物自交不亲和机制研究进展.中国农业科技导报, 2016, 18 (4):31-37Liu S L, Zhao G J, Wu X, Zhang B X, Gao L W, Ding M L, Chen W. Research progress on plant self-incompatibility mechanism. Journal of Agricultural Science and Technology, 2016, 18 (4):31-37
    [5] 胡彬,蒋建雄,易自力. 植物配子体自交不亲和机制研究进展. 中国农学通报, 2012, 28 (18): 168-173Hu B,Jiang J X,Yi Z L. Advances in studies on the mechanism of plant gametophyte self-incompatibility. Chinese Agricultural Science Bulletin, 2012, 28 (18): 168-173
    [6] Wang C L, Xu G H, Jiang X T, Chen G, Wu J, Wu H Q, Zhang S L. S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. The Plant Journal, 2009, 57 (2):220-229
    [7] Chen J Q, Wang P, DeGraaf B H J, Zhang H, Jiao H J, Tang C, Zhang S L, Wu J Y. Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton. The Plant Cell, 2018, 30 (5):1023-1039
    [8] Wang C L, Zhang S L. A cascade signal pathway occurs in self-incompatibility of Pyrus pyrifolia. Plant Signaling & Behavior, 2011, 6 (3):420-421
    [9] Del Duca S, Aloisi I, Parrotta L, Cai G. Cytoskeleton, transglutaminase and gametophytic self-incompatibility in the Malinae (Rosaceae). International Journal of Molecular Sciences, 2019, 20(1): 209
    [10] Sewelam N, Kazan K, Schenk P M. Global plant stress signaling: Reactive oxygen species at the cross-road. Frontiers in Plant Science, 2016, 7:187
    [11] Gupta S, Dong Y N, Dijkwel P P, Mueller-Roeber B, Gechev T S. Genome-wide analysis of ros antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation. International Journal of Molecular Sciences, 2019, 20 (12):3101
    [12] Xu X, Yu Z, Kong J, Yi M J, Huan C, Jiang L. Molecular cloning and expression analysis of Cu/Zn SOD gene from Gynura bicolor DC. Journal of Chemistry, 2017, https://doi.org/10.1155/2017/5987096
    [13] 董亮,何永志,王远亮,董志扬.超氧化物歧化酶(SOD)的应用研究进展.中国农业科技导报, 2013, 15 (5):53-58Dong L, He Y Z, Wang Y L, Dong Z Y. Research progress in the application of superoxide dismutase (SOD). Journal of Agricultural Science and Technology, 2013, 15 (5):53-58
    [14] 马伟荣,童军茂,单春会.超氧化物歧化酶(SOD)的特征及在植物抗逆性方面的研究进展. 食品工业, 2013, 34 (9):154-158Ma W R, Tong J M, Shan C H. Characteristics of superoxide dismutase (SOD) and its research progress in plant stress resistance. The Food Industry, 2013, 34 (9):154-158
    [15] Abreu I A, Cabelli D E. Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochimica et Biophysics Acta-Proteins and Proteomics, 2010, 1804 (2):263-274
    [16] Zelko I N, Mariani T J, Folz R J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1). Mn-SOD (SOD2)and EC-SOD (SOD3) gene structures, evolution, and expression.Free Radical Biology and Medicine, 2002, 33 (3):337-349
    [17] 冯新.香蕉SOD基因家族的全基因组鉴定及功能分析. 福州: 福建农林大学, 2016Feng X. Genome-wide identification and functional analysis of SOD gene family in Banana . Fuzhou: Fujian Agriculture and Forestry University, 2016
    [18] Allen R D, Webb R P, Schake S A. Use of transgenic plants to study antioxidant defenses. Free Radical Biology and Medicine, 1997, 23 (3):473-479
    [19] 郭栋,张艳阳,杜媚,周宝元,高卓晗,赵明,袁卉馥.油菜超氧化物歧化酶基因家族生物信息学分析.分子植物育种, 2020, 18 (2):367-373Guo D, Zhang Y Y, Du M, Zhou B Y, Gao Z H, Zhao M, Yuan H F. Bioinformatics analysis of superoxide dismutase gene family in Brassica napus. Molecular Plant Breeding, 2020, 18 (2):367-373
    [20] Rizhsky L, Liang H, Mittler R. The water-water cycle is essential for chloroplast protection in the absence of stress. Journal of Biological Chemistry, 2003, 278 (40):38921-38925
    [21] 王保成,孙万仓,范惠玲,孟亚雄,马静芳,叶剑,刘雅丽,邵登魁,燕妮,朱惠霞,武军艳,曾军,张亚宏.芸芥自交亲和系与自交不亲和系SOD、POD和CAT酶活性.中国油料作物学报, 2006 (2):162-165, 171Wang B C ,Sun W C ,Fan H L, Meng Y X, Ma J F, Ye J, Liu Y L, Shao D K, Yan N, Zhu H X, Wu J Y, Zeng J, Zhang Y H. Physiological and biochemical characteristics of self-compatible and self-incompatible lines in Brassica oleracea. Chinese Journal of Oil Crop Sciences, 2006 (2):162-165, 171
    [22] 张雪梅,李保国,赵志磊,郭素萍,齐国辉.苹果自花授粉花粉管生长和花柱保护酶活性与内源激素含量的关系.林业科学,2009, 45 (11):20-25Zhang X M, Li B G, Zhao Z L, Guo S P, Qi G H. Relationship between compatibility of self-pollination and changes in protecting enzyme and hormone in different apple cultivars. Scientia Silvae Sinicae, 2009, 45 (11):20-25
    [23] 齐国辉. 鸭梨自交不亲和与亲和变异的生理生化特性及分子机理研究. 保定: 河北农业大学, 2005Qi G H. Physiological and biochemical characteristics, molecular mechanism of Self incompatibility Yali Pear and its self-compatible mutations . Baoding: Agricultural University of Hebei, 2005
    [24] 吴能表,徐光德,唐于婷,朱利泉,王小佳.自交不亲和甘蓝的花粉萌发与花柱内保护酶活性变化.西南师范大学学报:自然科学版, 2004 (5):848-851Wu N B, Xu G D, Tang Y T, Zhu L Q, Wang X J. Pollen germination and change of protective enzyme activity in style of self-incompatible Brassica oleracea L. Journal of Southwest China Normal University:Natural Science Edition, 2004 (5):848-851
    [25] 谭晓风,袁德义,袁军,邹锋,谢鹏,苏勇,杨定桃,彭建桃.大果油茶良种‘华硕’.林业科学, 2011, 47 (12):184, 209Tan X F, Yuan D Y, Yuan J, Zhou F, Xie Y, Su yong, Yang D T, Peng J T. An elite variety: Camellia oleifera ‘Huashuo’. Scientia Silvae Sinicae, 2011, 47 (12):184, 209
    [26] 谭晓风,袁德义,邹锋,袁军,谢鹏,苏勇,王渊,杨定桃,彭建桃.油茶良种‘华鑫’.林业科学, 2012,48 (3):170-171Tan X F, Yuan D Y, Zou F, Yuan J, Xie Y, Su yong, Wang Y, Yang D T, Peng J T. An elite variety of oiltea: Camellia oleifera ‘Huaxin’. Scientia Silvae Sinicae, 2012,48 (3):170-171
    [27] 周俊琴,卢梦琪,余姝姝,刘懿瑶,杨进,谭晓风.油茶ETR基因鉴定及其在不同授粉处理下的表达分析.植物生理学报, 2020, 56 (4):721-733Zhou J Q, Lu M Q, Yu S S, Liu Y Y, Yang J, Tan X F. Identification and expression analysis of ETR genes under different pollination treatments in Camellia oleifera. Plant Physiology Journal, 2020, 56 (4):721-733
    [28] Zhou J Q, Lu M Q, Yu S S, Yang J, Tan X F. In-depth understanding of Camellia oleifera self-incompatibility by comparative transcriptome, proteome and metabolome. International Journal of Molecular Sciences, 2020, 21(5):1600
    [29] Zeng Y, Tan X, Zhang L, Long H., Wang B, Li Z, Yuan Z. A fructose-1, 6-biphosphate aldolase gene from Camellia oleifera: Molecular characterization and impact on salt stress tolerance. Molecular Breeding, 2015, 35 (1):1-12
    [30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25 (4):402-408
    [31] McCubbin A G, Kao T H. Molecular recognition and response in pollen and pistil interactions. Annual Review of Cell and Developmental Biology, 2000, 16 (1):333-364
    [32] McInnis S M, Desikan R, Hancock J T, Hiscock S J. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: Potential signalling crosstalk?New Phytologist, 2006, 172 (2):221-228
    [33] Zhang L L, Huang J B, Su S Q, Wei X C, Yang L, Zhao H H, Yu J Q, Wang J, Hui J Y, Hao S Y, Song S S, Cao Y Y, Wang M S, Zhang X W, Zhao Y Y, Wang Z Y, Zeng W Q, Wu M H, Yuan Y X, Zhang S X, Cheung A Y, Duan Q H. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Current Biology, 2021, 31 (14):3004-3016
    [34] Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 2002, 53 (372):1331-1341
    [35] Sharma B, Bhatla S C. Accumulation and scavenging of reactive oxygen species and nitric oxide correlate with stigma maturation and pollen-stigma interaction in sunflower. Acta Physiologiae Plantarum, 2013, 35 (9):2777-2787
    [36] Miller A F. Superoxide dismutases: Ancient enzymes and new insights. FEBS Letters, 2012, 586 (5):585-595
    [37] Zhang J, Chen T, Wang J, Chen Q, Luo Y, Zhang Y, Wang X R. Genetic diversity and population structure in cherry (Cerasus pseudocerasus (Lindl). G. Don) along Longmenshan Fault Zones in China with newly developed SSR markers. Scientia Horticulturae, 2016, 212:11-19
    [38] 王鹏,段文静,王玉昆,白建芳,苑国良,苑少华,权威,张立平,赵昌平.小麦光温敏雄性不育系BS366铜锌超氧化物歧化酶基因的克隆及表达分析. 植物遗传资源学报, 2017,18 (5):939-951Wang P, Duan W J, Wang Y K, Bai J F, Yuan G L, Yuan S H, Quan wei, Zhang L P, Zhao C P. Cloning and expression analysis of a cupro-zinc superoxide dismutase gene from wheat photo-thermosensitive genic male sterile line BS366. Journal of Plant Genetic Resources, 2017,18 (5):939-951
    [39] 殷恒霞,李霞,米琴,王文颖,张文胜,徐进.镉、锌、铜胁迫对向日葵早期幼苗生长的影响.植物遗传资源学报, 2009,10 (2):290-294, 299Yin H X, Li X, Mi Q, Wang W Y, Zhang W S, Xu J. Effects of Cadmium, Zinc and Copper -induced stresses on the early seedling growth of sunflower (Helianthus annuus L. ). Journal of Plant Genetic Resources, 2009,10 (2):290-294, 299
    [40] 李涛,高俊杰,于贤昌.高浓度Mn2+、Cu2+或Zn2+营养液对冷胁迫黄瓜幼苗叶片SOD活性的影响.西北农业学报, 2009,18 (3):192-195Li T, Gao J J, Yu X C. Effects of high concentrations of Cu2+, Zn2+and Mn2+in nutrient solution on SOD activity in cucumber seedling leaves under chilling stress.Acta Agriculturae Boreali-occidentalis Sinica, 2009,18 (3):192-195
    [41] Nasrallah J B. Recognition and rejection of self in plant self-incompatibility: Comparisons to animal histocompatibility. Trends in Immunology, 2005, 26 (8): 412-418
    [42] 高超. 油茶后期自交不亲和性的细胞学研究. 长沙: 中南林业科技大学, 2017Gao C. Cytological study on late self-incompatibility of Camellia oleifera . Changsha: Central South University of Forestry Science and Technology, 2017
    [43] 王梦馨,吴国火,崔林,韩宝瑜.茶树花Cu/Zn-SOD酶活性及其基因表达分析. 热带作物学报,2020,41 (6):1167-1173Wang M X, Wu G H, Cui L, Han B Y. Enzyme activity characteristics and expression of Cu/Zn-SOD gene in tea flowers.Chinese Journal of Tropical Crops,2020, 41 (6):1167-1173
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王艺颖,袁军,谭晓风,等.油茶SOD基因克隆及不同授粉处理下的表达分析[J].植物遗传资源学报,2023,24(1):226-236.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:382
  • 下载次数: 972
  • HTML阅读次数: 1759
  • 引用次数: 0
历史
  • 收稿日期:2022-07-17
  • 最后修改日期:2022-08-16
  • 录用日期:
  • 在线发布日期: 2023-01-12
  • 出版日期: 2023-01-12
文章二维码
您是第5922891位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!