2025年5月24日 21:16 星期六
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2023年第24卷第1期 >282-295. DOI:10.13430/j.cnki.jpgr.20220822002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
黄秋葵果实质地变化的生化和转录组联合分析
DOI:
10.13430/j.cnki.jpgr.20220822002
CSTR:
作者:
  • 张国芹

    张国芹

    苏州市农业科学院,江苏苏州 215106
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 牟建梅

    牟建梅

    苏州市农业科学院,江苏苏州 215106
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈虎根

    陈虎根

    苏州市农业科学院,江苏苏州 215106
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

苏州市农业科学院,江苏苏州 215106

作者简介:

研究方向为蔬菜种质创新及栽培技术研究,E-mail: guoqin1981@163.com

通讯作者:

牟建梅,研究方向为蔬菜种质创新及栽培技术研究,E-mail: thmjm@163.com

中图分类号:

基金项目:

作物生物学国家重点实验室开放课题(2021KF12)


Combined Biochemical and Transcriptomic Analysis of the Okra Fruit Texture Changes
Author:
  • ZHANG Guo-qin

    ZHANG Guo-qin

    Suzhou Academy of Agricultural Sciences, Jiangsu Suzhou 215106
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MOU Jian-mei

    MOU Jian-mei

    Suzhou Academy of Agricultural Sciences, Jiangsu Suzhou 215106
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Hu-gen

    CHEN Hu-gen

    Suzhou Academy of Agricultural Sciences, Jiangsu Suzhou 215106
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Suzhou Academy of Agricultural Sciences, Jiangsu Suzhou 215106

Fund Project:

Foundation project: Open Project of the State Key Laboratory of Crop Biology (2021KF12)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    黄秋葵果实发育过程质地易木质化变硬,严重影响商品价值。为探究黄秋葵果实质地变硬的机制,选择易老化变硬的Z06和不易老化的苏优葵3号两个品种在其果实3个发育时期进行生化指标的测定及转录组测序。结果发现,品种间或不同发育时期果实质地的差异主要是由于木质素积累导致的木质化,纤维素和原果胶同时也起到积极的作用。转录组学分析表明,相同品种在不同果实发育时期的差异表达基因(DEGs,differentially expressed genes)主要在苯丙烷生物合成和次级代谢产物的生物合成途径显著富集;而相同时期两品种间的差异表达基因除了与苯丙烷生物合成途径有关,光合作用和光合作用天线蛋白途径也起重要作用。在果实成熟质地变硬阶段,苯丙氨酸酶(PAL,phenylalanineammonialyase)基因是影响木质素积累的关键基因;蔗糖合成酶3(SUS3,sucrose synthase)基因对纤维素的积累贡献最大,而β-葡萄糖苷酶(BGLU,β?-D-glucosidase)基因的下调表达也是促进纤维积累的重要因素;半乳糖醛酸转移酶6(GAUT6,galacturonosyltransferase)基因和SUS6基因对原果胶的积累贡献较大,但大部分果胶酯酶(PME,pectinesterase)基因和聚半乳糖醛酸酶(PG,polygalacturonase)基因对原果胶的积累均呈负贡献。木质素合成相关基因PAL6、PAL5、PAL1及肉桂酰辅酶A还原酶2(CCR2,cinnamoyl-CoA reductase)基因、细胞色素P450亚酶84A1(CYP84A1,cytochrome P450)基因、CYP73A12,以及光合途径相关基因放氧增强蛋白2(PSBP2,oxygen-evolving-complex)基因和叶绿素a/b结合蛋白2(CAB1R,chlorophyll a/b binding protein)基因是影响品种质地差异的重要基因。

    关键词:黄秋葵;果实老化;转录组;木质素;关键基因
    Abstract:

    The okra fruit is easily lignified, whereas the fruit lignification would decrease the commercial value. In order to explore the aging mechanism of okra fruit, two cultivars, Z06 (easy to age), and Suyoukui 3 (not easy to age), were used for physiological indicators quantification and transcriptome sequencing at three developmental stages. The differences in fruit texture between cultivars or at different developmental stages was mainly caused by the accumulation of lignin, while cellulose and protopectin were also found with positive effects. The differentially expressed genes (DEGs) of the same cultivar at different fruit development stages were significantly enriched in the phenylpropane biosynthesis and secondary metabolite biosynthesis pathways. While the DEGs between the cultivars were found with enrichments in the phenylpropane biosynthesis pathway, the photosynthesis and photosynthesis antenna protein pathways. During the hardening stage of okra fruit, the gene PAL was found as key regulator that affected lignin accumulation. The SUS3 gene contributed predominantly to the accumulation of cellulose, and the down-regulated expression of the BGLU gene was also an important factor in promoting the accumulation of cellulose. Two genes GAUT6 and SUS6 largely contributed to the accumulation of protopectin, but most of the PME and PG genes had a negative contribution to the accumulation of protopectin. Lignin synthesis-related genes PAL6, PAL5, PAL1, CCR2, CYP84A1, CYP73A12, and photosynthetic pathway-related genes PSBP2 and CAB1R were important genes that affected the texture differences of two cultivars.

    Key words:okra;fruit aging;transcriptome;lignin;key genes
    参考文献
    [1] Singh P, Chauhan V, Tiwari B K, Chauhan S S, Simon S, Bilal S, Abidi A. An overview on okra (Abelmoschus esculentus) and it's importance as a nutritive vegetable in the world. International Journal of Pharmacy and Biological Sciences, 2014, 4:227-233
    [2] 黄伟男. 枇杷果实采后细胞木质素积累与细胞壁果胶动力学机制研究. 杭州: 浙江大学, 2021Huang W N. Mechanism study on the lignin accumulation in lignified cells and cell-wall dynamic of pectin in postharvest loquat fruit. Hangzhou: Zhejiang University, 2021
    [3] Goulao L F, Oliveira C M. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends in Food Science & Technology, 2008, 19:4-25
    [4] Ren Y Y, Huang D D, Liu S W, Zhao F Y, Yu K, Zhu S H. Sodium hydrosulfide delays the softening of fig fruit during cold storage. Scientia Horticulturae, 2022, 299: 111037
    [5] Wang D D, Yeats T H, Uluisik S, Rose J K C, Seymour G B. Fruit softening: Revisiting the role of pectin. Trends in Plant Science, 2018, 23:302-310
    [6] 刘剑锋, 程云清, 彭抒昂. 梨采后细胞壁成分及果胶酶活性与果肉质地的关系. 园艺学报, 2004, 31 (5):579-583Liu J F, Cheng Y Q, Peng S A. The relationship between changes of cell wall components, ectin-degradingenzyme activity and texture of postharvest pear fruit. Acta Horticulturae Sinica, 2004, 31 (5): 579-583
    [7] Yu W, Li S, Zheng B, Wang Y, Yu Y, Wang Y, Zheng X, Liu J, Zhang Z, Xue Z. Transcriptome analysis reveals the potential mechanism of polyethylene packing delaying lignification of Pleurotus eryngii. Food Chemistry, 2022, 5:100117
    [8] Liu W L, Zhang J, Jiao C, Yin X R, Fei Z J, Wu Q B, Chen K S. Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Horticulture Research, 2019, 6: 49
    [9] 刘恋, 唐志鹏, 李菲菲, 熊江, 吕壁纹, 马小川, 唐超兰, 李泽航, 周铁, 盛玲, 卢晓鹏. ‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’贮藏期品质、贮藏特性及果皮转录组分析. 中国农业科学, 2021, 54 (20):4421-4433Liu L, Tang Z P, Li F F, Xiong J, Lv B W, Ma X C, Tang C L, Li Z H, Zhou T, Sheng L, Lu X P. Fruit quality in storage, storability and peel transcriptome analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat. Scientia Agricultura Sinica,2021, 54 (20): 4421-4433
    [10] Ren J, Wang J R, Gao M Y, Qin L, Wang Y. Decreased cellulose-degrading enzyme activity causes pod hardening of okra (Abelmoschus esculentus L. Moench). Plant Physiology and Biochemistry, 2021, 162:624-633
    [11] Liu X, Li S, Feng X, Li L. Study on cell wall composition, fruit quality and tissue structure of hardened ‘Suli’Pears (Pyrus bretschneideri Rehd). Journal of Plant Growth Regulation, 2021, 40: 2007-2016
    [12] Wang Y, Zhang X F, Yang S L, Yuan Y B. Lignin involvement in programmed changes in peach-fruit texture indicated by metabolite and transcriptome analyses. Journal of Agricultural and Food Chemistry, 2018, 66:12627-12640
    [13] Defilippi B G, Ejsmentewicz T, Covarrubias M P, Gudenschwager O, Campos-Vargas R. Changes in cell wall pectins and their relation to postharvest mesocarp softening of “Hass” avocados (Persea americana Mill.). Plant Physiology and Biochemistry, 2018, 128:142-151
    [14] 王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006Wang X K. Plant physiological and biochemical experiment principle and technology. Beijing: Higher Education Press,2006
    [15] 熊素敏, 左秀凤, 朱永义. 稻壳中纤维素, 半纤维素和木质素的测定. 粮食与饲料工业, 2005(8): 40-41Xiong S M, Zuo X F, Zhu Y Y. Determination of cellulose, hemicellulose and lignin in rice hull. Cereal Feed Industry, 2005(8): 40-41
    [16] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导.北京: 中国轻工业出版社, 2007Cao J K, Jiang W B, Zhao Y M. Guidance for postharvest physiological and biochemical experiments of fruits and vegetables. Beijing: China Light Industry Press,2007
    [17] Li F W, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Sz?vényi P. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants,2020, 6(3): 259-272
    [18] Gao Y, Guo Y, Su Z Y, Yu Y, Zhu Z C, Gao P, Wang X Z. Transcriptome analysis of genes related to fruit texture in watermelon. Scientia Horticulturae, 2020, 262: 109075
    [19] 赵亚梅, 陈生煜, 游乐, 韩茹, 翟俊文, 任惠, 吴沙沙. 阳桃木质素生物合成相关基因的筛选与分析. 植物遗传资源学报, 2022, 23 (2):527-540Zhao Y M, Chen S Y, You L, Han R, Zhai J W, Ren H, Wu S S. Identification and analysis lignin biosynthesis genes of Averrhoa carambola. Journal of Plant Genetic Resources, 2022, 23 (2): 527-540
    [20] Chen B L, Yang H K, Ma Y N, Liu J R, Lv F J, Chen J, Meng Y L, Wang Y H, Zhou Z G. Effect of shading on yield, fiber quality and physiological characteristics of cotton subtending leaves on different fruiting positions. Photosynthetica, 2017, 55:240-250
    [21] Ifuku K, Yamamoto Y, Ono T, Ishihara S, Sato F. PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiology, 2005, 139:1175-1184
    [22] Wang Y, Zhang X F, Yang S L, Yuan Y B. Lignin involvement in programmed changes in peach-fruit texture indicated by metabolite and transcriptome analyses. Journal of Agricultural and Food Chemistry, 2018, 66:12627-12640
    [23] Cybulska J, Zdunek A, Psonka-Antonczyk K M, Stokke B T. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope. Carbohydrate Polymers, 2013, 92:128-137
    [24] Wang B, Li Z C, Han Z H, Xue S L, Bi Y, Prusky D. Effects of nitric oxide treatment on lignin biosynthesis and texture properties at wound sites of muskmelons. Food Chemistry, 2021, 362: 130193
    [25] Begovic L, Abicic I, Lalic A, Lepedus H, Cesar V, Leljak-Levanic D. Lignin synthesis and accumulation in barley cultivars differing in their resistance to lodging. Plant Physiology and Biochemistry, 2018, 133:142-148
    [26] Lu J N, Shi Y Z, Li W J, Chen S, Wang Y F, He X L, Yin X G. RcPAL, a key gene in lignin biosynthesis in Ricinus communis L. BMC Plant Biology, 2019, 19: 1-11
    [27] Park H L, Bhoo S H, Kwon M, Lee S W, Cho M H. Biochemical and expression analyses of the rice Cinnamoyl-CoA reductase gene family. Frontiers in Plant Science, 2017, 8: 2099
    [28] Chanoca A, de Vries L, Boerjan W. Lignin engineering in forest trees. Frontiers in Plant Science, 2019, 10: 912
    [29] De Meester B, Calderon B M, de Vries L, Pollier J, Goeminne G, Van Doorsselaere J, Chen M J, Ralph J, Vanholme R, Boerjan W. Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele. Nature Communications, 2020, 11: 1-13
    [30] Gui J S, Luo F, Zhong Y, Sun J Y, Umezawa T, Li L G. Phosphorylation of LTF1, an MYB transcription factor in populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Molecular Plant, 2019, 12:1325-1337
    [31] Ma D M, Xu C, Alejos-Gonzalez F, Wang H, Yang J F, Judd R, Xie D Y. Overexpression of artemisia annua cinnamyl alcohol dehydrogenase increases lignin and coumarin and reduces artemisinin and other sesquiterpenes. Frontiers in Plant Science, 2018, 9: 828
    [32] Marjamaa K, Kukkola E M, Fagerstedt K V. The role of xylem class III peroxidases in lignification. Journal of Experimental Botany, 2009, 60:367-376
    [33] 李永平, 陈敏氡, 刘建汀, 曾美娟, 朱海生, 温庆放. 黄秋葵纤维素合酶基因家族鉴定及表达分析. 园艺学报, 2022, 49 (1):73-85Li Y P, Chen M D, Liu J D, Zeng M J, Zhu H S, Wen Q F. Identification and expression analysis of CESA gene family in Hibiscus esculentus. Acta Horticulturae Sinica,2022, 49 (1): 73-85
    [34] Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant and Cell Physiology, 2010, 51:294-301
    [35] Coleman H D, Yan J, Mansfield S D. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:13118-13123
    [36] Nawaz M A, Lin X, Chan T F, Imtiaz M, Rehman H M, Ali M A, Baloch F S, Atif R M, Yang S H, Chung G. Characterization of cellulose synthase A (CESA) gene family in eudicots. Biochemical Genetics, 2019, 57:248-272
    [37] Xiao Y, Yi F, Ling J J, Wang Z, Zhao K, Lu N, Qu G Z, Kong L S, Ma W J, Wang J H. Transcriptomics and proteomics reveal the cellulose and pectin metabolic processes in the tension wood (Non-G-Layer) of Catalpa bungei. International Journal of Molecular Sciences, 2020, 21: 1686
    [38] Lopez-Sanchez P, Martinez-Sanz M, Bonilla M R, Sonni F, Gilbert E P, Gidley M J. Nanostructure and poroviscoelasticity in cell wall materials from onion, carrot and apple: Roles of pectin. Food Hydrocolloids, 2020, 98: 105253
    [39] Koziol A, Cybulska J, Pieczywek P M, Zdunek A. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase. Carbohydrate Polymers, 2017, 161:197-207
    [40] Biswal A K, Hao Z Y, Pattathil S, Yang X H, Winkeler K, Collins C, Mohanty S S, Richardson E A, Gelineo-Albersheim I, Hunt K, Ryno D, Sykes R W, Turner G B, Ziebell A, Gjersing E, Lukowitz W G, Davis M F, Decker S R, Hahn M G, Mohnen D. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnology for Biofuels, 2015, 8: 1-26
    [41] Gwanpua S G, Mellidou I, Boeckx J, Kyomugasho C, Bessemans N, Verlinden B E, Hertog M, Hendrickx M, Nicolai B M, Geeraerd A H. Expression analysis of candidate cell wall-related genes associated with changes in pectin biochemistry during postharvest apple softening. Postharvest Biology and Technology, 2016, 112:176-185
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张国芹,牟建梅,陈虎根.黄秋葵果实质地变化的生化和转录组联合分析[J].植物遗传资源学报,2023,24(1):282-295.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:267
  • 下载次数: 1029
  • HTML阅读次数: 339
  • 引用次数: 0
历史
  • 收稿日期:2022-08-22
  • 最后修改日期:2022-09-01
  • 录用日期:
  • 在线发布日期: 2023-01-12
  • 出版日期: 2023-01-12
文章二维码
您是第5864172位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!