2025年5月23日 17:15 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2023年第24卷第2期 >569-583. DOI:10.13430/j.cnki.jpgr.20220913001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
不同超长链脂肪酸延长酶基因FAE1芥酸合成功能的比较
DOI:
10.13430/j.cnki.jpgr.20220913001
CSTR:
作者:
  • 韩凤英 1

    韩凤英

    长江大学生命科学学院,湖北荆州 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王津 1

    王津

    长江大学生命科学学院,湖北荆州 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 胡馨月 1

    胡馨月

    长江大学生命科学学院,湖北荆州 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐劲松 2,3

    徐劲松

    长江大学农学院,湖北荆州 434025;长江大学湿地生态与农业利用教育部工程研究中心,湖北荆州 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 许本波 1,3

    许本波

    长江大学生命科学学院,湖北荆州 434025;长江大学湿地生态与农业利用教育部工程研究中心,湖北荆州 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张学昆 2,3

    张学昆

    长江大学农学院,湖北荆州 434025;长江大学湿地生态与农业利用教育部工程研究中心,湖北荆州 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵福永 1,3

    赵福永

    长江大学生命科学学院,湖北荆州 434025;长江大学湿地生态与农业利用教育部工程研究中心,湖北荆州 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.长江大学生命科学学院,湖北荆州 434025;2.长江大学农学院,湖北荆州 434025;3.长江大学湿地生态与农业利用教育部工程研究中心,湖北荆州 434025

作者简介:

研究方向为油菜脂肪酸遗传改良,E-mail : hanfengying176@163.com

通讯作者:

赵福永,研究方向为油菜分子生物学与遗传育种,E-mail :fyzhao@yangtzeu.edu.cn

中图分类号:

基金项目:

国家公益性行业(农业)科研专项(201303008);国家重点研发计划(2017YFD0101700)


Comparison of Erucic Acid Biosynthesis of the FAE1 Genes Encoding the Very-Long-Chain Fatty Acid Elongase from Different Plant Species
Author:
  • HAN Feng-ying 1

    HAN Feng-ying

    College of Life Science, Yangtze University, Hubei Jingzhou 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Jin 1

    WANG Jin

    College of Life Science, Yangtze University, Hubei Jingzhou 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HU Xin-yue 1

    HU Xin-yue

    College of Life Science, Yangtze University, Hubei Jingzhou 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Jin-song 2,3

    XU Jin-song

    College of Agriculture, Yangtze University, Hubei Jingzhou 434025;Engineering Research Center of Ecology and Agricultura1 Use of Wetland, Ministry of Education, Hubei Jingzhou 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Ben-bo 1,3

    XU Ben-bo

    College of Life Science, Yangtze University, Hubei Jingzhou 434025;Engineering Research Center of Ecology and Agricultura1 Use of Wetland, Ministry of Education, Hubei Jingzhou 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xue-kun 2,3

    ZHANG Xue-kun

    College of Agriculture, Yangtze University, Hubei Jingzhou 434025;Engineering Research Center of Ecology and Agricultura1 Use of Wetland, Ministry of Education, Hubei Jingzhou 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Fu-yong 1,3

    ZHAO Fu-yong

    College of Life Science, Yangtze University, Hubei Jingzhou 434025;Engineering Research Center of Ecology and Agricultura1 Use of Wetland, Ministry of Education, Hubei Jingzhou 434025
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Life Science, Yangtze University, Hubei Jingzhou 434025;2.College of Agriculture, Yangtze University, Hubei Jingzhou 434025;3.Engineering Research Center of Ecology and Agricultura1 Use of Wetland, Ministry of Education, Hubei Jingzhou 434025

Fund Project:

Foundation projects: The Special Fund for Agro-scientic Research in the Public Interest (201303008); The National Key Research and Development Program of China (2017YFD0101700)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    植物芥酸是在以FAE1(Fatty acid elongase 1)编码的β-酮脂酰-CoA合酶为关键限速酶的多酶复合体的催化下合成的,主要以TAG形式储存于种子中,是一种重要的油脂化工原料。不同植物来源的FAE1基因序列差异是导致其芥酸合成能力差异的根本原因。为分离和鉴定芥酸高合成能力的FAE1,本研究采用同源克隆法从油菜、海甘蓝、旱金莲和荷包蛋花等4种植物中克隆获得了12条正常编码的FAE1基因序列,并分别构建表达载体在酵母中进行诱导表达和芥酸含量比较分析。结果表明,源于不同植物的12条FAE1基因cDNA序列一致性介于52.1%~99.9%,氨基酸序列一致性介于49.9%~99.8%,FAE1基因具有明显的种属特性。酵母表达及GC-MS分析结果表明,源于绵油328、海甘蓝和荷包蛋花的8个FAE1基因具有超长链脂肪酸合成能力,其中CaFAE1-3合成芥酸能力最强(4.82%),其次为GjFAE1-1(4.53%),LdFAE1合成芥酸能力最弱(0.29%);CaFAE1-3对C20∶1转化率可达95.39%,在高芥酸育种领域具有极大的应用潜力。另外4个源自阳光80和旱金莲的FAE1基因均不具有芥酸合成功能,因为GyFAE1-2、TmFAE1-1和TmFAE1-2在保守的半胱氨酸或(和)组氨酸位点存在突变,而GyFAE1-1存在1个R395K突变,导致酶活丧失。本研究增进了对FAE1基因结构与功能之间关系的认识,为油菜和海甘蓝的高芥酸育种及芥酸性状基因工程改良提供了科学依据。

    关键词:FAE1;超长链脂肪酸;芥酸;生物合成;酵母表达
    Abstract:

    In plants, erucic acid is synthesized by the catalysis of a multienzyme complex, in which the β- Ketoacyl-CoA synthase encoded by FAE1 (fatty acid elongase 1) is a key rate limiting factor. Erucic acid is mainly stored in seeds in the form of TAG and is an important oleochemical feedstocks. The FAE1 genes in plants are variable on DNA sequence, thus resulting in differences on capability of erucic acid synthesis. To identify and isolate FAE1 genes with the highest capability on erucic acid synthesis, four plant species including Brassica napus, Crambe abyssinica, Tropaeolum majus and Limnanthes douglasii were used and twelve encoded FAE1 sequences were obtained from their genomes by homologous cloning method. Each FAE1 gene was sub-cloned into the yeast expression vector, followed by the analysis of erucic acid content in each recombinant yeast under induction culture conditions. The results showed that the twelve FAE1 genes shared 52.1-99.9% and 49.9-99.8% identity on cDNA and amino acid sequence, respectively, showing species-specific characteristics. By GC-MS analysis of all recombinant yeasts, eight FAE1 genes derived from Mianyou328, Crambe abyssinica and Limnanthes douglasii have been demonstrated with the capability to synthesize very-long-chain fatty acids. CaFAE1-3 had the strongest capability to synthesize erucic acid (4.82%), followed by GjFAE1-1 (4.53%), and LdFAE1 that was the weakest one (0.29%). In addition, 95.39% of the C20∶1 fatty acids were converted by CaFAE1-3, implying great application potential in high erucic acid breeding. The remaining four genes derived from Yangguang80 and Tropaeolum majus were not detected with the capability on erucic acid synthesis. This is possible because of GyFAE1-2, TmFAE1-1 and TmFAE1-2 that contain mutations in the conserved cysteine or (and) histidine sites, and GyFAE1-1 that contains a R395K mutation resulting in loss of enzyme activity. Collectively, this study represented better understanding of the relationship between the structure and function of FAE1 gene, which has implication in higher erucic acid breeding and genetic engineering improvement on erucic acid trait in rapeseed and Crambe abyssinica.

    Key words:fatty acid elongase 1;very-long-chain fatty acid;erucic acid;biosynthesis;yeast expression
    参考文献
    [1] Bach L, Faure J D. Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus Biologies, 2010, 333 (4): 361-370
    [2] Batsale M, Bahammou D, Fouillen L, Mongrand S, Joubès J, Domergue F. Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses. Cells, 2021, 10 (6): 1284
    [3] 孟继红. 芥酸合成基因表达的量化分析及芥酸种质资源的TRAP分子鉴定. 乌鲁木齐: 新疆农业大学, 2007Meng J H. Quantitive analysis gene expression of erucic acid synthesis and TRAP molecular identification of erucic acid germplasm. Urumqi: Xinjiang Agricultural University, 2007
    [4] 淮东欣. 调控超长链脂肪酸合成关键基因对植物种子中脂肪酸组成的影响. 武汉: 华中农业大学, 2015Huai D X. Effects of regulating the key genes in very long chain fatty acid biosynthesis pathway on fatty acid composition in plant seeds. Wuhan: Huazhong Agricultural University, 2015
    [5] 吴关庭, 郎春秀, 陈锦清. 芥酸的生产及其衍生产品开发. 中国油脂, 2007, 32 (6): 27-31Wu G T, Lang C X, Chen J Q. Production of erucic acid and development of its derivative product. China Oils and Fats, 2007, 32 (6): 27-31
    [6] James D W J, Lim E, Keller J, Plooy I, Ralston E, Dooner H K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon Activator. Plant Cell, 1995, 7: 309-319
    [7] Lassner M W, Lardizabal K, Metz J G. A jojoba β-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell, 1996, 8 (2): 281-292
    [8] Han J X, Lühs W, Sonntag K, Z?hringer U, Borchardt D S, Wolter F P, Heinz E, Frentzen M. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Molecular Biology, 2001, 46 (2): 229-239
    [9] Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D, Pradhan A K. Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theoretical and Applied Genetics, 2004, 108 (4): 743-749
    [10] Kanrar S, Venkateswari J, Dureja P, Kirti P B, Chopra V L. Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FATTY ACID ELONGATION 1 (BjFAE1) gene. Plant Cell Reports, 2006, 25 (2): 148-155
    [11] Das S, Roscoe T J, Delseny M, Srivastava P S, Lakshmikumaran M. Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Science, 2002, 162: 245-250
    [12] Katavic V, Mietkiewska E, Barton D L, Giblin E M, Reed D W, Taylor D C. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. European Journal of Biochemistry, 2002, 269 (22): 5625-5631
    [13] Mietkiewska E, Giblin E M, Wang S, Barton D L, Dirpaul J, Brost J M, Katavic V, Taylor D C. Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiology, 2004, 136 (1): 2665-2675
    [14] Mietkiewska E, Brost J M, Giblin E M, Barton D L, Taylor D C. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet. Plant Biotechnology Journal, 2007, 5 (5): 636-645
    [15] Cahoon E B, Marillia E F, Stecca K L, Hall S E, Taylor D C, Kinney A J. Production of fatty acid components of meadowfoam oil in somatic soybean embryos. Plant Physiology, 2000, 124 (1): 243-251
    [16] Guo Y, Mietkiewska E, Francis T, Katavic V, Brost J M, Giblin M, Barton D L, Taylor D C. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Molecular Biology, 2009, 69 (5): 565-575
    [17] Taylor D C, Francis T, Guo Y, Brost J M, Katavic V, Mietkiewska E, Michael Giblin E, Lozinsky S, Hoffman T. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnology Journal, 2009, 7: 925-938
    [18] 刘念, 范其新, 汤天泽, 蒙大庆, 罗华友, 李红. 种植密度和施氮量对特高芥酸绵油309产量和品质的影响及相关性分析. 湖北农业科学, 2014, 53 (23): 5673-5676Liu N, Fan Q X, Tang T Z, Meng D Q, Luo H Y, Li H. Effects of densities, nitrogen rates on yield, quality of rapeseed Mianyou 309 with high erucic acid and correlation analysis. Hubei Agricultural Sciences, 2014, 53 (23): 5673-5676
    [19] 刘念, 汤天泽, 范其新, 蒙大庆, 李芝凡, 陈军. 不同地点、播期和氮肥施用量对特高芥酸油菜经济和品质性状的影响. 甘肃农业大学学报, 2015, 50 (3): 68-72Liu N, Tang T Z, Fan Q X, Meng D Q, Li Z F, Chen J. Effects of site, sowing date and nitrogen application amount on economical characters, quality traits of high erucic acid rapeseed. Journal of Gansu Agricultural University, 2015, 50 (3): 68-72
    [20] Ghanevati M, Jaworski J G. Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS. Biochimica et Biophysica Acta, 2001, 1530 (1): 77-85
    [21] Katavic V, Barton D L, Giblin E M, Reed D W, Kumar A, Taylor D C. Gaining insight into the role of serine 282 in B. napus FAE1 condensing enzyme. FEBS Letters, 2004, 562 (1-3): 118-124
    [22] 肖玲, 卢长明. 油菜脂肪酸延长酶基因fae1片段的克隆与SNP分析. 中国农业科学, 2005, 38(5): 891-896Xiao L, Lu C M. Cloning of fae1 gene partial sequence and SNP analysis in Brassica species. Scientia Agricultura Sinica, 2005, 38(5): 891-896
    [23] Wang N, Shi L, Tian F, Ning H C, Wu X M, Long Y, Meng J L. Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC Plant Biology, 2010, 10: 137
    [24] 武玉花, 吴刚, 肖玲, 曹应龙, 卢长明. 十字花科植物中低芥酸野生种的发掘和FAE1基因功能的验证. 中国农业科学, 2009, 42 (11): 3819-3827Wu Y H, Wu G, Xiao L, Cao Y L, Lu C M. Discovery of low erucic acid wild species and functional characterization of FAE1 genes in crucifer species. Scientia Agricultura Sinica, 2009, 42 (11): 3819-3827
    [25] Blacklock B J, Jaworski J G. Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases. European Journal of Biochemistry, 2002, 269 (19): 4789-4798
    [26] Sun X Q, Pang H, Li M M, Peng B, Guo H S, Yan Q Q, Hang Y Y. Evolutionary pattern of the FAE1 gene in brassicaceae and its correlation with the erucic acid trait. PLoS ONE, 2013, 8 (12): e83535
    [27] Roscoe T J, Lessire R, Puyaubert J, Renard M, Delseny M. Mutations in the fatty acid elongation 1 gene are associated with a loss of beta-ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Letters, 2001, 492 (1-2): 107-111
    [28] Blacklock B J, Jaworski J G. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochemical and Biophysical Research Communications, 2006, 346 (2): 583-590
    [29] Stenback K E, Flyckt K S, Hoang T, Campbell A A, Nikolau B J. Modifying the yeast very long chain fatty acid biosynthetic machinery by the expression of plant 3-ketoacyl CoA synthase isozymes. Scientific Reports, 2022, 12 (1): 13235
    [30] Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier J A, Dunn T M. Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. The Journal of Biological Chemistry, 2006, 281 (14): 9018-9029
    [31] Taylor D C, Francis T, Lozinsky S, Hoffman T, Giblin M, Marillia E F. Cloning and characterization of a constitutive lysophosphatidic acid acyltransferase 2 (LPAT2) gene from Tropaeolum majus L. The Open Plant Science Journal, 2010, 4: 7-17
    [32] Wang Y P, Sonntag K, Rudloff E. Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theoretical and Applied Genetics, 2003, 106 (7): 1147-1155
    [33] 徐爱遐, 黄镇, 马朝芝, 肖恩时, 张修森, 涂金星, 傅廷栋. 芥菜型油菜FAE1基因序列特征及其与芥酸含量关系的初步分析. 作物学报, 2010, 36 (5): 794-800Xu A X, Huang Z, Ma C Z, Xiao E S, Zhang X S, Tu J X, Fu T D. FAE1 sequence characteristics and its relationship with erucic acid content in Brassica juncea. Acta Agronomica Sinica, 2010, 36 (5): 794-800
    [34] Wang P D, Xiong X J, Zhang X B, Wu G, Liu F. A review of erucic acid production in Brassicaceae oilseeds: Progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Frontiers in Plant Science, 2022, 13: 899076
    [35] Cheng J H, Salentijn E M J, Huang B Q, Krens F A, Dechesne A C, Visser R G F, van Loo E N. Isolation and characterization of the omega-6 fatty acid desaturase (FAD2) gene family in the allohexaploid oil seed crop Crambe abyssinica Hochst. Molecular Breeding, 2013, 32: 517-531
    [36] Siebel J, Pauls K P. Inheritance patterns of erucic acid content in populations of Brassica napus microspore-derived spontaneous diploids. Theoretical and Applied Genetics, 1989, 77: 489-494
    [37] 吴江生. 甘蓝型油菜芥酸含量的遗传研究. 湖北农业科学, 1989 (7): 16-17, 32Wu J S. Genetic study on erucic acid content in Brassica napus. Hubei Agricultural Sciences, 1989 (7): 16-17, 32
    [38] 戚存扣, 盖钧镒, 章元明. 甘蓝型油菜芥酸含量的主基因+多基因遗传. 遗传学报, 2001, 28 (2): 182-187Qi C K, Gai J Y, Zhang Y M. Major gene plus poly-gene inheritance of erucic acid content in Brassica napus L.. Acta Genetica Sinica, 2001, 28 (2): 182-187
    [39] Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D. The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theoretical and Applied Genetics, 1998, 96: 852-858
    [40] Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe T J. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theoretical and Applied Genetics, 1998, 96 (2): 177-186
    [41] Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics, 2006, 114 (1): 67-80
    [42] Wang N, Wang Y, Tian F, King G J, Zhang C, Long Y, Shi L, Meng J L. A functional genomics resource for Brassica napus: Development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. The New Phytologist, 2008, 180 (4): 751-765
    [43] Li X Y, van Loo E N, Gruber J, Fan J, Guan R, Frentzen M, Stymne S, Zhu L H. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Plant Biotechnology Journal, 2012, 10 (7): 862-870
    [44] Wu G, Wu Y H, Xiao L, Li X D, Lu C M. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theoretical and Applied Genetics, 2008, 116 (4): 491-499
    [45] Yan G X, Li D, Cai M X, Gao G Z, Chen B Y, Xu K, Li J, Li F, Wang N, Qiao J W, Li H, Zhang T Y, Wu X M. Characterization of FAE1 in the zero erucic acid germplasm of Brassica rapa L.. Breeding Science, 2015, 65 (3): 257-264
    [46] 傅寿仲, 张洁夫, 戚存扣, 浦惠明, 高建芹, 陈新军. 工业专用型高芥酸油菜新品种选育. 作物学报, 2004, 30 (5): 409-412Fu S Z, Zhang J F, Qi C K, Pu H M, Gao J Q, Chen X J. Breeding of high erucic acid rapeseed (B. napus) for industrial use. Acta Agronomic Sinica, 2004, 30 (5): 409-412
    [47] Saini N, Singh N, Kumar A, Vihan N, Yadav S, Vasudev S, Yadava D K. Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection. Breeding Science, 2016, 66 (5): 831-837
    [48] Wu Y, Xiao L, Wu G, Lu C. Cloning of fatty acid elongase1 gene and molecular identification of A and C genome in Brassica species. Science in China Series C: Life Sciences 2007, 50 (3): 343-349
    [49] Jourdren C, Barret P, Horvais R, Foisset N, Delourme R, Renard M. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Molecular Breeding, 1996, 2: 61-71
    [50] Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R. The VLCFA elongase gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling. Plant Molecular Biology, 2008, 67 (5): 547-566
    [51] Denic V, Weissman J S. A molecular caliper mechanism for determining very long-chain fatty acid length. Cell, 2007, 130 (4): 663-677
    [52] Cao Z Y, Tian F, Wang N, Jiang C C, Lin B, Xia W, Shi J Q, Long Y, Zhang C Y, Meng J L. Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. Journal of Genetics and Genomics, 2010, 37 (4): 231-240
    [53] Liu Y H, Du Z L, Lin S L, Li H M, Lu S P, Guo L, Tang S. CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus. Frontiers in Plant Science, 2022, 13: 848723
    [54] Puyaubert J, Garbay B, Costaglioli P, Dieryck W, Roscoe T J, Renard M, Cassagne C, Lessire R. Acyl-CoA elongase expression during seed development in Brassica napus. Biochimica et Biophysica Acta, 2001, 1533 (2): 141-152
    [55] Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Molecular Biology, 2001, 46 (6): 717-725
    [56] Lee H G, Park B Y, Kim H U, Seo P J. MYB96 stimulates C18 fatty acid elongation in Arabidopsis seeds. Plant Biotechnology Report, 2015, 9: 161-166
    [57] Sasongko N D, M?llers C. Toward increasing erucic acid content in oilseed rape (Brassica napus L.) through the combination with genes for high oleic acid. Journal of the American Oil Chemists Society, 2005,82 (6): 445-449
    [58] Roslinsky V, Falk K C, Gaebelein R, Mason A S, Eynck C. Development of B. carinata with super-high erucic acid content through interspecific hybridization. Theoretical and Applied Genetics, 2021, 134 (10): 3167-3181
    [59] Heath D W, Earle E D. Synthesis of high erucic acid rapeseed (Brassica napus L.) somatic hybrids with improved agronomic characters. Theoretical and Applied Genetics, 1995, 91: 1129-1136
    [60] 王志伟, 张自阳, 林丽婷, 张金文, 刘明久, 乔岩. Artificial miRNA调控甘蓝型油菜芥酸的研究. 核农学报, 2019, 33 (1): 24-30Wang Z W, Zhang Z Y, Lin L T, Zhang J W, Liu M J, Qiao Y. Study of artificial miRNA regulate erucic acid in Brassica napus. Journal of Nuclear Agricultural Sciences, 2019, 33 (1): 24-30
    [61] Jadhav A, Katavic V, Marillia E F, Michael Giblin E, Barton D L, Kumar A, Sonntag C, Babic V, Keller W A, Taylor D C. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metabolic Engineering, 2005, 7 (3): 215-220
    [62] Nath U K, Wilmer J A, Wallington E J, Becker H C, M?llers C. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2009, 118 (4): 765-773
    [63] Lassner M W, Levering C K, Davies H M, Knutzon D S. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiology, 1995, 109: 1389-1394
    [64] 陈柳, 毛善婧, 陆莉, 储成才, SONNTAG Karin, 王幼平. 导入LPAAT和KCS基因对油菜种子芥酸含量的影响. 作物学报, 2006, 32 (8): 1174-1178Chen L, Mao S J, Lu L, Chu C C, Karin S, Wang Y P. Influence of introducing LPAAT and KCS genes into rape on erucic acid content of seed. Acta Agronomica Sinica, 2006, 32 (8): 1174-1178
    [65] 石江华, 郎春秀, 王伏林, 吴学龙, 陈锦清, 吴关庭. 工业用高油高芥酸转基因油菜株系的获得. 分子植物育种, 2016, 4 (3): 586-592Shi J H, Lang C X, Wang F L, Wu X L, Chen J Q, Wu G T. Development of high oil and high erucic acid transgenic rapeseed lines for industrial use. Molecular Plant Breeding, 2016, 4 (3): 586-592
    [66] Lu S P, Aziz M, Sturtevant D, Chapman K D, Guo L. Heterogeneous distribution of erucic acid in Brassica napus seeds. Frontiers in Plant Science, 2020, 10: 1744
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩凤英,王津,胡馨月,等.不同超长链脂肪酸延长酶基因FAE1芥酸合成功能的比较[J].植物遗传资源学报,2023,24(2):569-583.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:361
  • 下载次数: 1400
  • HTML阅读次数: 112
  • 引用次数: 0
历史
  • 收稿日期:2022-09-13
  • 最后修改日期:2022-10-21
  • 录用日期:
  • 在线发布日期: 2023-03-14
  • 出版日期: 2023-03-14
文章二维码
您是第5861095位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!