2025年5月24日 0:14 星期六
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2023年第24卷第6期 >1755-1765. DOI:10.13430/j.cnki.jpgr.20230304001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
簇毛麦2V染色体特异分子标记开发
DOI:
10.13430/j.cnki.jpgr.20230304001
CSTR:
作者:
  • 曹亚萍 1

    曹亚萍

    山西农业大学小麦研究所,临汾 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘鑫 2

    刘鑫

    南京农业大学农学院,南京 210095
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 武银玉 1

    武银玉

    山西农业大学小麦研究所,临汾 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘博 1

    刘博

    山西农业大学小麦研究所,临汾 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 原茶英 3

    原茶英

    山西省阳城县农业农村局,阳城 048100
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 范绍强 1

    范绍强

    山西农业大学小麦研究所,临汾 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 连晋 1

    连晋

    山西农业大学小麦研究所,临汾 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.山西农业大学小麦研究所,临汾 041000;2.南京农业大学农学院,南京 210095;3.山西省阳城县农业农村局,阳城 048100

作者简介:

研究方向为小麦种质创新与遗传育种,E-mail:cyping180@163.com

通讯作者:

中图分类号:

基金项目:

临汾市重点研发计划(2204);山西省重点研发计划(202102140601001);国家自然基金支持和培育项目(YGJPY2003)


Development of Specific Molecular Markers of 2V Chromosome in Haynaldia Villosa
Author:
  • CAO Yaping 1

    CAO Yaping

    Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Xin 2

    LIU Xin

    College of Agriculture, Nanjing Agricultural University, Nanjing 210095
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Yinyu 1

    WU Yinyu

    Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Bo 1

    LIU Bo

    Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Yuan Chaying 3

    Yuan Chaying

    Agricultural and Rural Bureau of Yangcheng County, Shanxi Province, Yangcheng 048000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FAN Shaoqiang 1

    FAN Shaoqiang

    Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIAN Jin 1

    LIAN Jin

    Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000;2.College of Agriculture, Nanjing Agricultural University, Nanjing 210095;3.Agricultural and Rural Bureau of Yangcheng County, Shanxi Province, Yangcheng 048000

Fund Project:

Foundation projects: Key Research and Development Program of Linfen City(2204);Key Research and Development Program of Shanxi Province(202102140601001);Support and Cultivate Projects for National Natural Science Foundation of China(YGJPY2003)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    簇毛麦是小麦遗传改良的重要基因资源之一,其2V染色体上携有抗白粉病、护颖颖脊刚毛、光周期响应、长穗多粒等许多普通小麦所不具备的优良基因,但缺乏足够的分子标记,不能准确鉴定导入小麦的2V染色质。为了开发2V染色体上特异分子标记,本研究设计了2套引物,一套是基于普通小麦第2群染色体不同区段表达序列标签设计的序列标记位点引物30对,另一套是基于小麦2D、黑麦2R测序结果同源比对的差异设计的内含子定位引物296对,分别筛选出2个和33个2V染色体特异分子标记,占总引物数6.7%和11.1%,说明基于新一代高通量测序技术设计内含子定位引物是一种开发染色体特异性标记的高效方法。研究结果进一步发现,大多数位于小麦2D染色体上的基因可以分别对应2V染色体相同区段上的基因,但也有例外,说明簇毛麦2V染色体与普通小麦2D染色体之间存在复杂的共线性关系。本研究共开发出35个标记,并对其可靠性进行了验证,其中lfz8187-1100定位于2VS FL0.68-1.00,lfz8387-280、lfz8462-760和lfz8470-200定位于2VS FL0.00-0.26,其余31个标记定位于2VL。这些分子标记为鉴定2V染色体结构变异提供了有效工具,也为鉴定导入普通小麦的2V染色体携带的有益基因提供了技术支撑。

    关键词:小麦;簇毛麦;2V染色体;分子标记
    Abstract:

    Haynaldia villosa is an important genetic resource for wheat genetic improvement. The 2V chromosome in H. villosa , which hosts many important genes, such as powdery mildew resistance, glume ridge bristles, photoperiod response, longer spikes and more grains, are valuable in common wheat improvement. However, the lack of molecular markers to the 2V chromatin impairs the introgression into wheat. In order to develop specific molecular markers on chromosome 2V, we designed two sets of primers, including: (1) 30 pairs of sequence-tagged site primers based on the expressed sequence tag sequences of different segments of the 2nd chromosome of common wheat, and (2) 296 pairs of intron targeting primers designed based on the homologous comparison between wheat 2D and rye 2R. Two and 33 specific molecular markers on chromosome 2V were validated and successfully developed, accounted for 6.7% and 11.1% of the total primers tested, respectively. This result suggests that marker development based on next generation sequencing technology is an efficient method. Most of the genes on the 2D chromosome of wheat were collinear to those of the 2V chromosome, while few exceptions were also observed, indicating a complex collinearity on the 2V chromosome of H. villosa to the 2D chromosome of common wheat. A total of 35 markers were finally qualified, including lfz8187-1100 that was located at 2VS FL0.68-1.00, and lfz8387-280, lfz8462-760 and lfz8470-200 that were located at 2VS FL0.00-0.26, as well as 31 markers that were located on the long arm of 2V chromosome. Collectively, these markers provided an effective tool for identifying structural variation of H. villosa 2V chromosome, as well as the beneficial genes introgressed into common wheat.

    Key words:wheat;Haynaldia villosa;2V chromosome;molecular markers
    参考文献
    [1] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theoretical and Applied Genetics, 1995, 91(6): 1125-1128
    [2] Xie W, Ben-David R, Zeng B, Dinoor A, Xie C, Sun Q, Roder M S, Fahoum A, Fahima T. Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Molecular Breeding, 2012, 29: 399-412
    [3] Zhang R Q, Sun B X, Chen J, Cao A Z, Xing L P, Feng Y G, Lan C X, Chen P D. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theoretical and Applied Genetics, 2016, 129: 1975-1984
    [4] Liu C, Ye X G, Wang M J, Li S J, Lin Z S. Genetic behavior of Triticum aestivum-Dasypyrum villosum translocation chromosomes T6V#4S?6DL and T6V#2S?6AL carrying powdery mildew resistance. Journal of Integrative Agriculture, 2017, 16 (10): 2136-2144
    [5] Qi L L, Pumphrey M O, Friebe B, Zhang P, Qian C, Bowden R L, Rouse M N, Jin Y, Gill B S. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics, 2011, 123: 159-167
    [6] Zhang Q P, Li Q, Wang X E, Wang H Y, Lang S P, Wang Y, Wang S L, Chen P D, Liu D J. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS/4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005, 145: 317-320
    [7] Zhao R, Wang H, Xiao J, Bie T, Cheng S, Jia Q, Yuan C, Zhang R, Cao A, Chen P, Wang X. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa. Theoretical and Applied Genetics, 2013, 126(12): 2921-2930
    [8] Zhang R Q, Feng Y G, Li H F, Yuan H X, Dai J L, Cao A Z, Xing L P, Li H L. Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome 6VL of Dasypyrum villosum to bread wheat. Molecular Breeding, 2016, 36: 122
    [9] Murray T D, de la Pea R C, Yildirim A, Jones S S. A new source of resistance to Pseudocercosporella herpotricoides, cause of eyespot disease of wheat, located on chromosome 4V of Dasypyrum villosum. Plant Breeding, 1994, 113(4): 281-286
    [10] Zhang R Q, Cao Y P, Wang X E, Feng Y G, Chen P D. Development and characterization of a Triticum aestivum-D. villosum T5VS?5DL translocation line with soft grain texture. Journal of Cereal Science, 2010, 51:220-225
    [11] Zhang R Q, Zhang M Y, Wang X E, Chen P D. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theoretical and Applied Genetics, 2014, 127: 523-533
    [12] Zhao W C, Qi L L, Gao X, Zhang G S, Dong J, Chen Q J, Friebe B, Gill B S. Development and characterization of two new Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines T1DS?1V#3L and T1DL?1V#3S and their effect on grain quality. Euphytica, 2010, 175: 343-350
    [13] Vaccino P, Banfi R, Corbellini M, de Pace C. Improving the wheat genetic diversity for end-use grain quality by chromatin introgression from the wheat wild relative. Crop Science, 2010, 50(2): 397-412
    [14] Wen M, Feng Y, Chen J, Bie T, Fang Y, Li D, Wen X, Chen A, Cai J, Zhang R. Characterization of a Triticum aestivum-Dasypyrum villosum T1VS?6BL translocation line and its effect on wheat quality. Brazilian Journal of Botany, 2017, 40(2): 371-377
    [15] Gr?dzielewska A. The genus Dasypyrum-part 2. Dasypyrum villosum-a wild species used in wheat improvement. Euphytica, 2006, 152: 441-454
    [16] Zhang R, Fan Y, Kong L, Wang Z, Wu J, Xing L, Cao A, Feng Y. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theoretical and Applied Genetics, 2018, 131(12): 2613-2620
    [17] Chen Q Z, Cao A Z, Qi Z J, Zhang W, Chen P D. Structural changes of 2V chromosome of Haynaldia villosa induced by gametocidal chromosome 3C of Aegilops triuncialis. Agricultural Sciences in China, 2008, 7(7): 804-811
    [18] Zhang R, Hou F, Feng Y, Zhang W, Zhang M, Chen P. Characterization of a Triticum aestivum-Dasypyrum villosum T2VS·2DL translocation line expressing a longer spike and more kernels traits. Theoretical and Applied Genetics, 2015, 128(12): 2415-2425
    [19] Cao Y P, Cao A Z, Wang X E, Chen P D. Screening and application of EST-based PCR markers specific to individual chromosomes of Haynaldia villosa. Acta Agronomica Sinica, 2009, 35: 1-10
    [20] Liu C, Qi L, Liu W, Zhao W, Wilson J, Friebe B, Gill B S. Development of a set of compensating Triticum aestivum-Dasypyrum villosum robertsonian translocation lines. Genome, 2011, 54: 836-844
    [21] Zhang X, Wei X, Xiao J, Yuan C, Wu Y, Cao A, Xing L, Chen P, Zhang S, Wang X, Wang H. Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology. Molecular Breeding, 2017, 37: 115
    [22] Rabanus-Wallace M T, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer K F X, Guo L, Poland J, Pozniak C J, Walkowiak S, Melonek J, Praz C R, Schreiber M, Budak H, Heuberger M, Steuernagel B, Wulff B, B?rner A, Byrns B, ?í?ková J, Fowler D B, Fritz A, Himmelbach A, Kaithakottil G, Keilwagen J, Keller B, Konkin D, Larsen J, Li Q, My?ków B, Padmarasu S, Rawat N, Sesiz U, Biyiklioglu-Kaya S, Sharpe A, ?imková H, Small I, Swarbreck D, Toegelová H, Tsvetkova N, Voylokov A V, Vrána J, Bauer E, Bolibok-Bragoszewska H, Dole?el J, Hall A, Jia J, Korzun V, Laroche A, Ma X F, Ordon F, ?zkan H, Rakoczy-Trojanowska M, Scholz U, Schulman A H, Siekmann D, Stoja?owski S, Tiwari V K, Spannagl M, Stein N. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53(4): 564-573
    [23] Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat(Triticum aestivum). Genome, 1991, 34: 830-839
    [24] 闫庆祥, 黄东益, 李开绵, 叶剑秋. 利用改良CTAB法提取木薯基因组DNA. 中国农学通报, 2010, 26(4): 30-32Yan Q X, Huang D Y, Li K J, Ye J Q. Genomic DNA extraction in cassava by modified CTAB method. Chinese Agricultural Science Bulletin, 2010, 26(4): 30-32
    [25] Zhang P, Li W L, Friebe B, Gill B S. Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome, 2004, 47(5): 979-987
    [26] Tixier M H, Sourdille P, R?der M S, Leroy P, Bernard M. Detection of wheat microsatellite using no-radioactive silvermitrate staining method. Journal of Genetics and Breeding, 1997, 51: 175-177
    [27] Gale M D, Devos K M. Comparative genetics in the grasses. Proceedings of the National Academy of Sciences, 1998, 95:1971-1974
    [28] Qi L, Friebe B, Zhang P, Gill B S. Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Research, 2007, 15: 3-19
    [29] Zhao R H, Wang H Y, Jia Q, Xiao J, Yuan C X, Zhang Y J, Hu Q S, Wang X E. Development of EST-PCR markers for the chromosome 4V of Haynaldia villosa and their application in identification of 4V chromosome structural aberrants. Journal of Integrative Agriculture, 2014, 13: 282-289
    [30] Kimura M. Rare variant alleles in the light of the neutral theory. Molecular Biology and Evolution, 1983, 1(1): 84-93
    [31] Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen J P, Hyvonen J. Advances in plant gene-targeted and functional markers: A review. Plant Methods, 2013, 9(1): 6
    [32] 曹亚萍, 武银玉, 刘博, 范绍强. 小麦异源易位系诱致方法及应用研究进展. 植物遗传资源学报, 2022, 23(4): 943-953Cao Y P, Wu Y Y, Liu B, Fan S Q. Progress on induction and application of wheat alien chromosome translocation lines. Journal of Plant Genetic Resources, 2022, 23(4): 943-953
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹亚萍,刘鑫,武银玉,等.簇毛麦2V染色体特异分子标记开发[J].植物遗传资源学报,2023,24(6):1755-1765.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:186
  • 下载次数: 880
  • HTML阅读次数: 165
  • 引用次数: 0
历史
  • 收稿日期:2023-03-04
  • 最后修改日期:2023-06-01
  • 录用日期:
  • 在线发布日期: 2023-10-31
  • 出版日期: 2023-10-31
文章二维码
您是第5861781位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!