2025年5月25日 23:47 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第7期 >1199-1210. DOI:10.13430/j.cnki.jpgr.20231031006 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
两个柠檬品种叶片离区响应乙烯利处理的转录组分析
DOI:
10.13430/j.cnki.jpgr.20231031006
CSTR:
作者:
  • 董美超 1

    董美超

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 尹拓 2

    尹拓

    西南林业大学林学院,昆明 650224
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 周东果 1

    周东果

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张汉尧 2

    张汉尧

    西南林业大学林学院,昆明 650224
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 杨帆 1

    杨帆

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王绍华 1

    王绍华

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 龙春瑞 1

    龙春瑞

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 付小猛 1

    付小猛

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘红明 1

    刘红明

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭莉娜 1

    郭莉娜

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李丹萍 1

    李丹萍

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 高俊燕 1

    高俊燕

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.云南省农业科学院热带亚热带经济作物研究所,保山 678000;2.西南林业大学林学院,昆明 650224

作者简介:

研究方向为果树遗传育种,E-mail:rjsdmc@yaas.org.cn

通讯作者:

高俊燕,研究方向为柑橘遗传育种,E-mail:rjsgjy@yaas.org.cn

中图分类号:

基金项目:

国家自然科学基金(31960574);英才兴边计划(2022RC001);创新引导与科技型企业培育计划(202304BI090025)


Transcriptome Analysis of Leaf Abscission Zones Post Ethephon Treatment in Two Lemon Varieties
Author:
  • DONG Meichao 1

    DONG Meichao

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YIN Tuo 2

    YIN Tuo

    College of Forestry, Southwest Forestry University, Kunming 650224
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Dongguo 1

    ZHOU Dongguo

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Hanyao 2

    ZHANG Hanyao

    College of Forestry, Southwest Forestry University, Kunming 650224
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Fan 1

    YANG Fan

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Shaohua 1

    WANG Shaohua

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LONG Chunrui 1

    LONG Chunrui

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FU Xiaomeng 1

    FU Xiaomeng

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Hongming 1

    LIU Hongming

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Lina 1

    GUO Lina

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Danping 1

    LI Danping

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Junyan 1

    GAO Junyan

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000;2.College of Forestry, Southwest Forestry University, Kunming 650224

Fund Project:

Foundation projects: National Natural Science Foundation of China(31960574);Talent Revitalization Program(2022RC001); Innovation Leadership and Technology-based Business Incubation Program(202304BI090025)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    艾伦尤力克是尤力克柠檬的一个芽变品种,结果性状优良,但冬季落叶严重,影响翌年产量,且其落叶的响应机制目前尚不清楚。为探究柠檬叶片脱落的分子调控机制,以2个冬季落叶程度不同的柠檬品种艾伦尤力克和云柠1号为材料,分别于落叶前期(E24)、落叶中期(E48)和落叶后期(E72)采集叶柄离区,通过转录组测序比较2个品种间的差异表达基因。分析表明,落叶前期、落叶中期和落叶后期分别获得1400个、2466个和935个差异表达基因,其中落叶中期的差异基因数量最多。GO分析表明血红素结合、四吡咯结合、氧化还原酶活性、铁离子结合、转录调节活性以及对氧化应激的反应、细胞葡聚糖代谢过程、葡聚糖代谢过程、细胞外围、细胞壁等相关基因在这3个时期品种间均表现出显著差异。KEGG分析表明,落叶中期富集的差异基因数及相关代谢途径最多,主要集中在植物激素信号转导、苯丙烷生物合成、植物病原体相互作用和MAPK信号通路-植物等途径,通过对以上4个途径的差异表达显著的基因进行分析,最后筛选得到木葡聚糖内转葡糖基酶/水解酶蛋白、吲哚乙酸诱导蛋白、吲哚-3-乙酸-氨基合成酶、过氧化物酶、β-葡萄糖苷酶、发病相关基因转录激活因子AP2和发病机制相关蛋白等13个基因,这些基因可能与柠檬叶片脱落的调控有关。qRT-PCR验证这些基因的表达与转录组数据相一致。以上结论丰富了柠檬叶片脱落相关研究,为柠檬落叶候选基因筛选、落叶途径解析提供可靠数据。

    关键词:柠檬;落叶;转录组;差异表达基因
    Abstract:

    'Allen Eureka' is a progeny variety of the variety ‘Eureka lemon’ due to bud mutation. This variety showed excellent performance at fruiting traits, while it was susceptible to winter defoliation, eventually resulting in severe leaf shedding and decreasing the yield production in the coming year. The mechanism of leaf shedding remains unknown. Two lemon cultivars (‘Allen Eureka’ and ‘Yunning No. 1’) with degrees of winter defoliation were used to investigate the molecular regulatory mechanisms of leaf abscission. The petiole abscission zones were collected at three stages, namely, the pre-defoliation stage (E24), mid-defoliation stage (E48), and post-defoliation stage (E72), and subjected for transcriptome sequencing. The differentially expressed genes (DEGs) between two lemon varieties were identified, revealing a total of 14002466, and 935 DEGs in pre-defoliation stage, mid-defoliation stage, and post-defoliation stage, respectively. The largest number of DEGs was found in mid-defoliation stage. GO enrichment analysis revealed that these DEGs were mainly enriched in the processes of heme binding, tetrapyrrole binding, oxidoreductase activity, iron ion binding, transcription regulator activity and response to oxidative stress, cellular glucan metabolic process, glucan metabolic process, cell periphery, cell wall in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in mid-defoliation stage and involved in plant hormone signal transduction, phenylpropanoid biosynthesis, plant-pathogen interaction, and MAPK signaling pathway. By analyzing the genes with significant differential expression of the four pathways, 13 genes including xyloglucan endotransglucosylase/hydrolase protein, indoleacetic acid-induced protein, indole-3-acetic acid-amido synthetase, peroxidase, β-glucosidase, pathogenesis-related genes transcriptional activator AP2 and pathogenesis-related protein were selected.They might be associated with the regulation of lemon leaf abscission. qRT-PCR verified that the expression of these genes was consistent with the transcriptomic data. This study raised new insights in deciphering the lemon leaf abscission, as well as provided reliable data to identify lemon defoliation candidate genes and uncover the analysis of leaf shedding pathways.

    Key words:lemon;defoliation;transcriptome;differentially expressed genes
    参考文献
    [1] Barrett H C, Rhodes A M. A numerical taxonomic study of affinity relationships in cultivated citrus and its close relatives. Jystematic Botany, 1976,1: 105-136
    [2] Gulsen O, Roose M L. Lemons: Diversity and relationships with selected citrus genotypes as measured with nuclear genome markers. Journal of the American Society for Horticulturalence, 2001, 126(3): 309-317
    [3] Sarton G. Introduction to the history of science. Vol.I.From Homer to Omar Khayyam. Jouranl of Chemical Education, 1972, 4(12): 1562
    [4] Hesperides Tolkowsky S.. A History of the culture and use of Citrus fruits. London: John Bale, Sons and Curnow, 1938:371
    [5] Florkiewicz A B, Kuko A, Kapusta M, Burchardt S, Wilmowicz E. Drought disrupts auxin localization in abscission zone and modifies cell wall structure leading to flower separation in yellow lupine. International Journal of Molecular Sciences, 2020, 21: 6848
    [6] Darius T, Eduardo PM. 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra mandarin (Citrus reshni Hort.ex Tan.) seedlings rehydrated after water stress. Plant Physiology, 1992, 100: 131-137
    [7] Gomez-Cadenas A, Tadeo F R, Talon M, Primo-Millo E. Leaf abscission induced by ethylene in water-stressed intact seedlings of cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiology, 1996, 112(1): 401-408
    [8] 王丽鸳.基于EST数据库和转录组测序的茶树DNA分子标记开发与应用研究.北京:中国农业科学院,2011Wang L Y. Mining and application of molecular markers from EST database and transcriptome sequencing in tea plant(Camellia sinensis). Beijing: Chinese Academy of Agricultural Sciences, 2011
    [9] Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionarytool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63
    [10] Corbacho J, Romojaro F, Pech J C, Latché A, Gomez-Jimenez M C. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS ONE, 2013, 8(3): e58363
    [11] Gao Y, Liu C, Li X, Xu H, Liang Y, Ma N, Fei Z, Gao J, Jiang C Z, Ma C. Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose. Frontiers in Plant Science, 2016, 7: 1375
    [12] Agustí J, Merelo P, Cercós M, Tadeo F R, Talón M. Ethylene-induced differential gene expression during abscission of citrus leaves. Journal of Experimental Botany, 2008, 59(10): 2717-2733
    [13] Agustí J, Merelo P, Cercós M, Tadeo F R, Talón M. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biology, 2009, 9: 127
    [14] Kim D, Langmead B, Salzberg S. HISAT:A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12 (4):357-360
    [15] Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S. The genome sequence of sweet cherry(Prunus avium)for use in genomics-assisted breeding. DNA Research, 2017, 24 (5): 499-508
    [16] Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015, 33(3):290-295
    [17] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 2014,15(12), 550
    [18] Estornell L H, Agustí J, Merelo P, Talón M, Tadeo F R. Elucidating mechanisms underlying organ abscission. Plant Science, 2013, 199-200: 48-60
    [19] Ying P, Li C, Liu X, Xia R, Zhao M, Li J. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Scientific Report, 2016, 6: 37135
    [20] Wu X, Yu M, Chen H, Ma R, Yu Z. Regulation of the protein and gene expressions of ethylene biosynthesis enzymes under different temperature during peach fruit ripening. Acta Physiologiae Plantarum, 2018, 40(3): 1-9
    [21] Nakano T, Kato H, Shima Y, Ito Y. Apple SVP family MADS-Box proteins and the tomato pedicel abscission zone regulator JOINTLESS have similar molecular activities. Plant and Cell Physiology, 2015, 56(6): 1097-1106
    [22] Xie R, Dong C, Ma Y, Deng L, He S, Yi S, Lv Q, Zheng Y. Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A. Funct Integr Genomics, 2015, 15(6): 729-740
    [23] Hagemann M H, Winterhagen P, Hegele M, Wünsche J N. Ethephon induced abscission in mango: Physiological fruitlet responses. Frontiers in Plant Science, 2015, 6: 706
    [24] Li C, Wang Y, Huang X, Li J, Wang H, Li J. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. Frontiers in Plant Science, 2015, 6: 439
    [25] Domingos S, Scafidi P, Cardoso V, Leitao A E, Di Lorenzo R, Oliveira C M, Goulao L F. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways. Frontiers in Plant Science, 2015, 6: 457
    [26] Jones J E, Mertes E, Close D C . Does carbohydrate availability play a role in sweet cherry fruitlet abscission? Acta Horticulturae, 2016(1119): 53-58
    [27] 毕楷杰, 孙耀国, 杨敏生, 张军. 银腺杨不同部位叶片形态、生理及转录差异分析. 植物遗传资源学报, 2023, 24(3):829-842Bi K J, Sun Y G, Yang M S, Zhang Jun. Leaf morphology and physiological analysis of different parts of silver glandular poplar. Journal of Plant Genetic Resources, 2023, 24(3):829-842
    [28] Woodward A W, Bartel B. Auxin:Regulation,action,and interaction. Annals of Botany, 2005, 95(5) : 707
    [29] Abel S, Theologis A. Early genes and auxin action. Plant Physiology, 1996, 111(1):9-17
    [30] 仇志浪. 贵州甜樱桃异常生理落果的分子机制. 贵阳:贵州大学, 2021Chou Z L. Molecular mechanisms of abnormal physiological fruit drop in sweet cherry. Guiyang:Guizhou University,2021
    [31] Abebie B, Lers A, Philosoph-Hadas S, Goren R, Riov J, Meir S. Differential effects of NAA and 2,4-D in reducing floret abscission in cestrum (Cestrum elegans) cut flowers are associated with their differential activation of Aux/IAA homologous genes. Annals of Botany, 2008, 101(2): 249-259
    [32] Peer W A. From perception to attenuation: Auxin signalling and responses. Current Opinion in Plant Biology, 2013, 16 (5): 561-568
    [33] Xie R, Ge T, Zhang J, Pan X, Ma Y, Yi S, Zheng Y. The molecular events of IAA inhibiting citrus fruitlet abscission revealed by digital gene expression profiling. Plant Physiology and Biochemistry, 2018, 130: 192-204
    [34] Sawicki M, A?t Barka E, Clément C, Vaillant-Gaveau N, Jacquard C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. Journal of Experimental Botany, 2015, 66(7): 1707-1719
    [35] Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J. De novo transcriptome profiling of flowers, flower pedicels and pods of Lupinus luteus (Yellow Lupine) reveals complex expression changes during organ abscission. Frontiers in Plant Science, 2017, 8: 641
    [36] Kim J, Sundaresan S, Philosoph-Hadas S, Yang R, Meir S, Tucker M L. Examination of the abscission-associated transcriptomes for soybean, tomato, and arabidopsis highlights the conserved biosynthesis of an extensible extracellular matrix and boundary layer. Frontiers in Plant Science, 2015, 6: 1109
    [37] Merelo P, Agustí J, Arbona V, Costa M L, Estornell L H, Gómez-Cadenas A, Coimbra S, Gómez M D, Pérez-Amador M A, Domingo C, Talón M, Tadeo F R. Corrigendum: Cell wall remodeling in abscission zone cells during ethylene-promoted fruit abscission in Citrus. Frontiers in Plant Science, 2017, 8: 301
    [38] Lashbrook C C, Cai S. Cell wall remodeling in Arabidopsis stamen abscission zones: Temporal aspects of control inferred from transcriptional profiling. Plant Signaling and Behavior, 2008, 3(9): 733-736
    [39] Zhang J, Zhang Y, He Y, Du T, Shan D, Fan H, Wang W, Qin Z, Xin C, Pei H. Metabolome and transcriptome integration reveals insights into the process of delayed petal abscission in rose by STS. Frontiers in Plant Science, 2022, 13: 1045270
    [40] Wei J, Yang Q, Ni J, Gao Y, Tang Y, Bai S, Teng Y. Early defoliation induces auxin redistribution, promoting paradormancy release in pear buds. Plant Physiology, 2022, 190(4):2739-2756
    [41] Liao W, Li Y, Yang Y, Wang G, Peng M. Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission. BMC Genomics, 2016, 17:538
    [42] Nakano T, Fujisawa M, Shima Y, Ito Y. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany, 2014, 65(12), 3111-3119
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董美超,尹拓,周东果,等.两个柠檬品种叶片离区响应乙烯利处理的转录组分析[J].植物遗传资源学报,2024,25(7):1199-1210.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:136
  • 下载次数: 465
  • HTML阅读次数: 70
  • 引用次数: 0
历史
  • 收稿日期:2023-10-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码
您是第5866886位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!