2025年5月25日 22:26 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第5期 >679-694. DOI:10.13430/j.cnki.jpgr.20241229002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
香雪兰花色花香物质合成和调控研究进展
DOI:
10.13430/j.cnki.jpgr.20241229002
CSTR:
作者:
  • 张佳

    张佳

    东北师范大学生命科学学院分子表观遗传学教育部重点实验室,长春130024
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李月庆

    李月庆

    东北师范大学生命科学学院分子表观遗传学教育部重点实验室,长春130024
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 单晓彤

    单晓彤

    东北师范大学生命科学学院分子表观遗传学教育部重点实验室,长春130024
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王丽

    王丽

    东北师范大学生命科学学院分子表观遗传学教育部重点实验室,长春130024
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 高翔

    高翔

    东北师范大学生命科学学院分子表观遗传学教育部重点实验室,长春130024
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

东北师范大学生命科学学院分子表观遗传学教育部重点实验室,长春130024

作者简介:

研究方向为植物分子遗传学,E-mail:zhangj656@nenu.edu.cn

通讯作者:

高 翔,研究方向为经济作物重要农艺形状转录调控网络解析,E-mail:gaoxiang424@163.com
王 丽,研究方向为植物花香花色代谢、真菌免疫学、肿瘤血管发生机制,E-mail:Wanglee57@163.com

中图分类号:

基金项目:

国家自然科学基金(31972445,31670382)


The Biosynthesis and Regulation of Floral Volatile Organic Compounds and Pigments in Freesia hybrida
Author:
  • ZHANG Jia

    ZHANG Jia

    Key Laboratory of Molecular Epigenetics of MOE, School of Life Sciences, Northeast Normal University, Changchun 130024
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Yueqing

    LI Yueqing

    Key Laboratory of Molecular Epigenetics of MOE, School of Life Sciences, Northeast Normal University, Changchun 130024
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHAN Xiaotong

    SHAN Xiaotong

    Key Laboratory of Molecular Epigenetics of MOE, School of Life Sciences, Northeast Normal University, Changchun 130024
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Li

    WANG Li

    Key Laboratory of Molecular Epigenetics of MOE, School of Life Sciences, Northeast Normal University, Changchun 130024
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Xiang

    GAO Xiang

    Key Laboratory of Molecular Epigenetics of MOE, School of Life Sciences, Northeast Normal University, Changchun 130024
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Key Laboratory of Molecular Epigenetics of MOE, School of Life Sciences, Northeast Normal University, Changchun 130024

Fund Project:

Foundation project: National Natural Science Foundation of China (31972445,31670382)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [109]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    花香和花色是花卉作物重要的观赏性状,是决定花卉品质、影响花卉经济价值的关键因素,因此,培育花色丰富、花香怡人的花卉新品种长期以来都是园艺工作者的主要育种目标。香雪兰作为球根切花品种的代表,其花朵颜色鲜艳、香气怡人,是研究植物花色花香的良好材料。本文综述了香雪兰花色花香合成代谢通路以及转录调控的研究进展,重点介绍了控制香雪兰花色苷合成的关键结构基因FhCHS1、FhDFR、Fh3GT、Fh5GT和萜类物质合成的关键结构基因FhTPS1~FhTPS14,此外还介绍了野生种TPS基因的天然等位基因变体序列之间的微小氨基酸差异驱动的酶的催化活性和产物特异性,为阐明花香种间遗传差异奠定了基础。花色苷的合成除了受到结构基因的调控,也受到MYB-bHLH-WD40的调控,花香的合成则受到FhMYB21L2和FhMYC2的调控,此外FhMYB21L2协同调控了黄酮醇合酶基因FhFLS2的表达,最后展望了花色苷和萜类物质合成的潜在应用前景。

    关键词:花色;花香;转录调控
    Abstract:

    Floral fragrance and flower color are important ornamental traits of flower crops, which are key factors that determine flower quality and affect flower economic values. Therefore, cultivating new flower varieties with rich floral colors and pleasant flowers has long been the main breeding goal of horticulturists. As a representative of bulb cut flower varieties, Freesia hybrida has bright flowers and pleasant aroma. The key structural genes FhCHS1, FhDFR, Fh3GT, Fh5GT that control the synthesis of anthocyanin in Freesia and the key structural genes for terpene synthesis, FhTPS1 to FhTPS14, are highlighted, in addition to the fact that small amino acid differences between the sequences of the natural variants of the TPS genes in the wild species drive the enzyme's catalytic activity and product specificity, laying the groundwork for elucidating genetic differences among floral scents species. The synthesis of anthocyanin is also regulated by MYB-bHLH-WD40 in addition to structural genes, and the synthesis of floral scent is regulated by FhMYB21L2 and FhMYC2, in addition to the co-regulation of the expression of the flavonol synthase gene, FhFLS2, by FhMYB21L2. Finally, we look ahead to the potential application of the synthesis of anthocyanin and terpenoids.

    Key words:flower color;flower scent;transcriptional regulation
    参考文献
    [1] Amrad A, Moser M, Mandel T, de Vries M, Schuurink R C, Freitas L, Kuhlemeier C. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Current Biology, 2016, 26 (24): 3303-3312
    [2] Chandler S F, Brugliera F. Genetic modification in floriculture.Biotechnology Letters, 2011, 33(2): 207-211
    [3] Maleka M F, Albertyn J, Spies J J. The floriculture industry and flower pigmentation. Philosophical Transactions in Genetics, 2013, 2: 55-110
    [4] Davies K M, Schwinn K E. Molecular biology and biotechnology of flower pigments. In Plant Developmental Biology - Biotechnological Perspectives, 2010, 2: 161-187
    [5] 黎洁, 李霆格, 王童欣, 王健. 植物花青素和甜菜色素互斥机理研究进展. 植物遗传资源学报, 2023, 24(6): 1515-1526Li J, Li T G, Wang T X, Wang J. Review of the mutually exclusive mechanism between the anthocyanins and betalains pigments in plants. Journal of Plant Genetic Resource,2023, 24(6): 1515-1526
    [6] Zhou X W, Fan Z Q, Chen Y, Zhu Y L, Li J Y, Yin H F. Functional analyses of a flavonol synthaselike gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation. Journal of Biosciences, 2013, 38: 593-604
    [7] Huits H S, Cerats A C, Kreike M M. Cenetic control of dihydroflavonol 4-reductase gene expression in Petuniahybrida. The Plant Journal, 1994, 6(3): 295 -310
    [8] Bieza K, Lois R. An arabidopsis mutant tolerant to lethal ultraviole-B levels shows constitutively elevaled accumulation offlavonoids and other phenolics. Plant Physiology, 2001, 126(3): 1105-1115
    [9] Mo Y, Nacel C, Taylor L P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols infunctional pollen. Proceedings of the National Academy of Science of the USA, 1992, 89(15): 7213-7217
    [10] 范文广, 柴佳靖, 李保豫, 田亚琴, 田辉, 任海伟, 白鹏, 潘香逸. 百合花青苷分子调控研究进展. 植物遗传资源学报, 2023, 24(5): 1236-1247Fan W G, Chai J J, Li B Y, Tian Y Q, Tian H, Ren H W, Bai P, Fan X Y. Advances in molecular regulation of anthocyanin biosynthesis in Lilium. Journal of Plant Genetic Resources,2023, 24(5): 1236-1247
    [11] Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62: 2465-2483
    [12] Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18: 477-483
    [13] Morita Y, Takagi K, Fukuchi-Mizutani M, Ishiguro K, Tanaka Y, Nitasaka E, Nakayama M, Saito N, Kagami T, Ilda S. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. The Plant Journal, 2014, 78: 294-304
    [14] Mol J, Jenkins G, Schafer E, Weiss D, Walbot V. Signal per-ception, transduction, and gene expression involved in anthocyanin biosynthesis.Critical Reviews in Plant Sciences,1996,15:525-557
    [15] Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions.Plant Signaling & Behavior, 2015,10(1):e970440
    [16] 杜丹妮, 张超, 高树林, 董丽. 低温对牡丹切花花色和花青素苷合成的影响. 植物遗传资源学报, 2016, 17(2): 295-302Du D N, Zhang C, Gao S L, Dong L. Effect of low temperature on flower color and anthocyanin biosynthesis in Tree Peony(paeonia suffruticosa) 'Luoyang Hong' cut Flower. Journal of Plant Genetic Resources, 2016, 17(2): 295-302
    [17] Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesisin plants. Current Opinion in Plant Biology,2014,19:81-90
    [18] Ji X H, Wang Y T, Zhang R, Wu S J, An M M, Li M, Wang C Z,Chen X L, Zhang Y M, Chen X S. Effect of auxin,cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of redfleshed apple (Malus sieversii f. niedzwetzkyana).Plant Cell, Tissue and Organ Culture, 2015,120:325-337
    [19] Lewis D R, Ramirez M V, Miller N D, Vallabhaneni P, Ray K W, Helm R F, Winkel B S, Muday G K. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.Plant Physiology, 2011,156(1):144-164
    [20] Han J, Li T, Wang X, Zhang X, Bai X, Shao H, Wang S, Hu Z, Wu J, Leng P. AmMYB24 regulates floral terpenoid biosynthesis induced by blue light in snapdragon flowers. Frontiers in Plant Science, 2022, 13:885168
    [21] Jakobsen H B, Olsen C E. Influence of climatic factors on emission of flower volatiles in situ. Planta,1994,192:365-371
    [22] Klatt F W. Revisio Iridearum: Freesia Eckl. Linnaea,1866,34:672-674
    [23] Brown N E. Freesia Klatt and its history. Journal of South African Botany,1935, 1: 1-31
    [24] Burman N L. Flora Indica: Cui accedit series zoophytorum indicorum, nec non prodromus florae capensis.Prodromus florae capensis. Amsterdam: Cornelius Haak,Leiden, 1768:937-942 [25] Klatt F W. Freesia leichtlinii F. W. Klatt. Gartenflora ,1874, 23: 289-290
    [26] Wongchaochant S, Inamoto K, Doi M. Analysis of flower scent of Freesia species and cultivars. Acta Horticulturae, 2005, 673: 595-601
    [27] Manning J C, Goldblatt P, Duncan G D, Forest F, Kaiser R, Tatarenko I. Botany and horticulture of the genus Freesia (Iridaceae). Strelitzia 27. South African National Biodiversity Institute, Pretoria,2010: 114
    [28] Ryndin A V, Kulyan R V, Slepchenko N A.Subtropical and flower crops breeding at the Subtropical Scientific Centre. Vavilovskii Zhurnal Genet Selektsii, 2021, 25(4): 420-432
    [29] 徐怡倩, 袁媛, 陶秀花, 杨娟, 失益敏, 唐东芹. 小苍兰花瓣主要花色苷组分研究. 植物研究, 2016, 36(2): 184-189Xu Y Q, Yuan Y, Tao X H, Yang J, Shi Y M, Tang D Q. Main anthocyanin profiles in petals of Freesia hybrida. Bulletin of Botanicaal Research, 2016, 36(2): 184-189
    [30] Sun W, Liang L, Meng X Y, Li Y Q, Gao F, Liu X, Wang S C, Gao X, Wang L. Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida. Frontiers in Plant Science, 2016, 7: 410
    [31] Zhu J , Guo X , Li X , Tang D Q. Composition of flavonoids in the petals of Freesia and prediction of four novel transcription factors involving in Freesia flavonoid pathway. Frontiers in Plant Science, 2021, 12: 2539-2539
    [32] Tang D L, Sun Y, Li X, Yan Z, Shi Y M. De novo sequencing of the Freesia hybrida petal transcriptome to discover putative anthocyanin biosynthetic genes and develop EST-SSR markers. Acta Physiologiae Plantarum, 2018, 40: 168
    [33] Gao F, Liu B, Li M, Gao X, Fang Q, Liu C, Ding H, Wang L, Gao X. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia× hybrida. Journal of Experimental Botany, 2018, 69: 4249-4265
    [34] 林榕燕, 钟淮钦, 黄敏玲, 罗远华, 林兵. 小苍兰品种花香成分分析.福建农业学报, 2016, 31(11): 1216-1220Lin R Y, Zhong H Q, Huang M L, Luo Y H, Lin B.Aromatics in Flowers of Freesia hybrida. Fujian Journal of Agricultural Sciences, 2016, 31(11): 1216-1220
    [35] Weng S, Fu X, Gao Y, Liu T, Sun Y, Tang D. Identification and evaluation of aromatic volatile compounds in 26 cultivars and 8 hybrids of Freesia hybrida.Molecules, 2021, 26(15): 4482
    [36] Srinivasan A , Ahn M S , Jo G S , Jo J N, Seo K H, Kim W H, Kang Y I, Lee Y R, Choi Y J. Analysis of relative scent intensity, volatile compounds and gene expression in Freesia "Shiny Gold". Plants, 2020, 9(11): 1597
    [37] Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 2011, 181: 219-229
    [38] Pourcel L, Bohorquez-Restrepo A, Irani N G, Grotewold E. Anthocyanin biosynthesis, regulation, and transport: New insights from model species. Recent Advances in Polyphenol Research, 2012, 3: 143-160
    [39] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 1995, 7: 1071-1083
    [40] Forkmann G, Martens S. Metabolic engineering and applications of flavonoids. Current Opinion in Biotechnology, 2001, 12: 155-160
    [41] Nakatsuka A, Izumi Y, Yamagish M. Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the Asiatic hybrid lily. Plant Science, 2003, 165: 759-767
    [42] 蒋会兵, 夏丽飞, 田易萍, 戴伟东, 孙云南, 陈林波.基于转录组测序的紫芽茶树花青素合成相关基因分析. 植物遗传资源学报, 2018, 19(5): 967-978Jiang H B, Xia L F, Tian Y P, Dai W D, Sun Y N, Chen L B, Transcriptome analysis of anthocyanin synthesis related genes in purple Bud Tea Plant. Journal of Plant Genetic Resources, 2018, 19(5): 967-978
    [43] Martens S, Mith?fer A. Flavones and flavone synthases. Phytochemistry, 2005, 66: 2399-2407
    [44] Yoshida K, Iwasaka R, Shimada N, Ayabe S I, Aoki T, Sakuta M. Transcriptional control of the dihydroflavonol 4-reductase multigene family in Lotus japonicus. Journal of Plant Research, 2010, 123: 801-805
    [45] Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wang L. Molecular and biochemical analysis of chalcone synthase from Freesia hybrid in flavonoid biosynthetic pathway. Public Library of Science ONE, 2015, 10(3): e0119054
    [46] Shimada N, Sasaki R, Sato S, Kaneko T, Tabata S, Aoki T, Ayabe S. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome. Journal of Experimental Botany, 2005, 56: 2573-2585
    [47] Singh K, Kumar S, Yadav S K, Ahuja P S. Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]. Plant Biotechnology Reports, 2009, 3: 95-101
    [48] Xie D Y, Jackson L A, Cooper J D, Ferreira D, Paiva N L. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiology, 2004, 134: 979-994
    [49] Fischer T C, Halbwirth H, Meisel B, Stich K, Forkmann G. Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Archives of Biochemistry and Biophysics, 2003, 412: 223-230
    [50] Lo Piero A R, Puglisi I, Petrone G. Gene characterization, analysis of expression and in vitro synthesis of dihydroflavonol 4-reductase from Citrus sinensis (L.) Osbeck. Phytochemistry, 2006, 67(7): 684-695
    [51] Wang H, Fan W, Li H, Yang J, Huang J, Zhang P. Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. Public Library of Science ONE, 2013, 8(11): e78484
    [52] Cheng H, Li L, Cheng S, Cao F, Xu F, Yuan H,Wu C, Eugene A P. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway. Public Library of Science ONE, 2013, 8(8): e72017
    [53] Huang Y, Gou J, Jia Z, Yang L, Sun Y, Xiao X, Song F, Luo K, Brett N. Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa. Public Library of Science ONE, 2012, 7: e30364
    [54] Li Y, Liu X, Cai X, Shan X, Gao R, Yang S, Han T, Wang S, Wang L, Gao X. Dihydroflavonol 4-Reductase genes from Freesia hybrida play important and partially overlapping roles in the biosynthesis of flavonoids. Frontiers in Plant Science, 2017, 8: 428
    [55] Sun W, Meng X, Liang L, Li Y, Zhou T, Cai X, Wang L, Gao X. Overexpression of a Freesia hybrida flavonoid 3-O-glycosyltransferase gene, Fh3GT1, enhances transcription of key anthocyanin genes and accumulation of anthocyanin and flavonol in transgenic petunia (Petunia hybrida). In Vitro Cellular & Developmental Biology-Plant, 2017, 53(5): 478-488
    [56] Meng X, Li Y, Zhou T, Sun W, Shan X, Gao X, Wang L. Functional differentiation of duplicated flavonoid 3-o-glycosyltransferases in the flavonol and anthocyanin biosynthesis of Freesia hybrida. Frontiers in Plant Science, 2019, 10: 1330
    [57] Ju Z, Sun W, Meng X Y, Liang L J, Li Y Q, Zhou T T, Shen H, Gao X, Wang L. Isolation and functional characterization of two 5-o-glucosyltransferases related to anthocyanin biosynthesis from Freesia hybrida. Plant Cell, Tissue and Organ Culture, 2018, 135: 99-110
    [58] Caballero-Ortega H , Pereda-Miranda R , Abdullaev F I .HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry, 2007, 100(3): 1126-1131
    [59] Frusciante S , Diretto G , Bruno M , Ferrante B, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 2014, 111(33): 12246-12251
    [60] He S Y, Qian Z Y, Wen N, Tang F T, Xu G L, Zhou C H. Influence of Crocetin on experimental atherosclerosis in hyperlipidamic-diet quails. European Journal of Pharmacology, 2007, 12;554(2-3):191-5
    [61] Nam K N, Park Y M, Jung H J, Lee J Y, Min B D, Park S U, Jung W S, Cho K H, Park J H, Kang I, Hong J W, Lee E H. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. European Journal of Pharmacology, 2010, 648(1-3): 110-616
    [62] Bie X, Chen Y, Zheng X, Dai H. The role of crocetin in protection following cerebral contusion and in the enhancement of angiogenesis in rats. Fitoterapia, 2011, 82(7): 997-1002
    [63] Fang Q, Li Y, Liu B, Meng X, Yang Z, Yang S, Bao T, Kimani S, Gao X, Wang L. Cloning and functional characterization of a carotenoid cleavage dioxygenase 2 gene in safranal and crocin biosynthesis from Freesia hybrida. Plant Physiology and Biochemistry, 2020, 154: 439-450
    [64] Ma D, Constabel C P. MYB repressors as regulators of phenylpropanoid metabolism in Plants. Trends in Plant Science. 2019, 24(3): 275-289
    [65] Baudry A, Heim M A, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant Journal, 2004, 39(3): 366-380
    [66] Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant Journal, 2008, 53(5): 814-827
    [67] Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta, 2013, 1829(11): 1236-1247
    [68] Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytologist, 2014, 202(1): 132-144
    [69] Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18(9): 477-483
    [70] Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 2015, 20(3): 176-185
    [71] Li Y, Shan X, Gao R, Yang S, Wang S, Gao X, Wang L. Two IIIf clade-bHLHs from Freesia hybrida play divergent roles in flavonoid biosynthesis and trichome formation when ectopically expressed in Arabidopsis. Scientific Reports, 2016, 6: 30514
    [72] Shan X, Li Y, Yang S, Gao R, Zhou L, Bao T, Han T, Wang S, Gao X, Wang L. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana. Plant Physiology and Biochemistry,2019, 141: 60-72
    [73] Li Y, Shan X, Tong L, Wei C, Lu K, Li S, Kimani S, Wang S, Wang L, Gao X. The Conserved and particular roles of the R2R3-MYB regulator FhPAP1 from Freesia hybrida in flower anthocyanin biosynthesis. Plant and Cell Physiology, 2020, 61(7): 1365-1380
    [74] Li Y, Shan X, Gao R, Han T, Zhang J, Wang Y, Kimani S, Wang L, Gao X. MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Communications Biology, 2020, 3(1): 396
    [75] Li Y, Shan X, Zhou L, Gao R, Yang S, Wang S, Wang L, Gao X. The R2R3-MYB factor FhMYB5 from Freesia hybrida contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis. Frontiers in Plant Science, 2019, 9: 1935
    [76] Kitaoka N, Lu X, Yang B, Peters R J. The application of synthetic biology to elucidation of plant mono-, sesqui- and diterpenoid metabolism. Molecular Plant, 2015, 8(1): 6-16
    [77] Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology, 2013, 64: 665-700
    [78] Jia Q, Brown R, K?llner T G, Fu J, Chen X, Wong G K, Gershenzon J, Peters R J, Chen F. Origin and early evolution of the plant terpene synthase family. Proceeding of the National Academy of Sciences of the United States of America, 2022, 119(15): e2100361119
    [79] Karunanithi P S, Zerbe P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Frontiers in Plant Science. 2019, 10: 1166
    [80] Degenhardt J, K?llner T G, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70(15-16): 1621-1637
    [81] Falara V, Akhtar T A, Nguyen T T, Spyropoulou E A, Bleeker P M, Schauvinhold I, Matsuba Y, Bonini M E, Schilmiller A L, Last R L, Schuurink R C, Pichersky E. The tomato terpene synthase gene family. Plant Physiology, 2011, 157(2): 770-789
    [82] Wurtzel E T, Kutchan T M. Plant metabolism, the diverse chemistry set of the future. Science, 2016, 353(6305): 1232-1236
    [83] Hayashi K, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander L N, Yamane H, Hasebe M, Nozaki H. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiology, 2010, 153(3): 1085-1097
    [84] Chen F , Tholl D , Bohlmann J , Pichersky E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant Journal, 2011, 66(1): 212-229
    [85] Kumar S, Kempinski C, Zhuang X, Norris A, Mafu S, Zi J, Bell S A, Nybo S E, Kinison S E, Jiang Z, Goklany S, Linscott K B, Chen X, Jia Q, Brown S D, Bowman J L, Babbitt P C, Peters R J, Chen F, Chappell J. Molecular diversity of terpene synthases in the Liverwort Marchantia polymorpha. The Plant Cell, 2016, 28(10): 2632-2650
    [86] Yahyaa M, Matsuba Y, Brandt W, Doron-Faigenboim A, Bar E, McClain A, Davidovich-Rikanati R, Lewinsohn E, Pichersky E, Ibdah M. Identification, functional characterization, and evolution of terpene synthases from a Basal Dicot. Plant Physiology, 2015, 169(3): 1683-1697
    [87] Tholl D, Lee S. Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book, 2011, 9: e0143
    [88] Dornelas M C, Mazzafera P. A genomic approach to characterization of the Citrus terpene synthase gene family. Genetics and Molecular Biology, 2007, 30: 832-840
    [89] Külheim C, Padovan A, Hefer C, Krause S T, K?llner T G, Myburg A A, Degenhardt J, Foley W J. The Eucalyptus terpene synthase gene family. BMC Genomics, 2015, 16(1): 450
    [90] Martin D M, Aubourg S, Schouwey M B, Daviet L, Schalk M, Toub O, Lund S T, Bohlmann J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 2010, 10: 226
    [91] Nieuwenhuizen N J, Green S A, Chen X, Bailleul E J, Matich A J, Wang M Y, Atkinson R G. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiology, 2013, 161(2): 787-804
    [92] Amborella G P, Victor A A, Barbazuk W B, DePamphilis C W, Der J P, Mack J L, Ma H, Palmer J D, Rounsley S, Sankoff D. The Amborella genome and the evolution of flowering plants. Science, 2013, 342(6165): 1241089
    [93] Bao T, Kimani S, Li Y, Li H, Yang S, Zhang J, Wang Q, Wang Z, Ning G, Wang L, Gao X. Allelic variation of terpene synthases drives terpene diversity in the wild species of the Freesia genus. Plant Physiology, 2023, 192(3): 2419-2435
    [94] Zvi M M B, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytologist, 2012, 195(2): 335-345
    [95] Reeves P H, Ellis C M, Ploense S E, Wu M F, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley B J, Hodgens C, Farmer E E, Nagpal P, Reed J W. A regulatory network for coordinated flower maturation. PLoS Genetics , 2012, 8(2): e1002506
    [96] Hong G J, Xue X Y, Mao Y B, Wang L J, Chen X Y. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell, 2012 , 24(6): 2635-2648
    [97] Ma D, Pu G, Lei C, Ma L, Wang H, Guo Y, Chen J, Du Z, Wang H, Li G, Ye H, Liu B. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant and Cell Physiology, 2009, 50(12): 2146-2161
    [98] Nieuwenhuizen N J, Chen X, Wang M Y, Matich A J, Perez R L, Allan A C, Green S A, Atkinson R G. Natural variation in monoterpene synthesis in kiwifruit: Transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiology, 2015, 167(4): 1243-1258
    [99] Zhou F, Sun T H, Zhao L, Pan X W, Lu S. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression. Frontiers in Plant Science, 2015, 6:304
    [100] Yu Z X, Li J X, Yang C Q, Hu W L, Wang L J, Chen X Y. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L.. Molecular Plant, 2012, 5(2): 353-365
    [101] Shen S L, Yin X R, Zhang B, Xie X L, Jiang Q, Grierson D, Chen K S. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange. Journal of Experimental Botany, 2016, 67(14): 4105-4115
    [102] Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, Chen K, Hancock R. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany, 2017, 68(17): 4929-4938
    [103] Yu Z X, Wang L J, Zhao B, Shan C M, Zhang Y H, Chen D F, Chen X Y. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant, 2015, 8(1): 98-110
    [104] Spyropoulou E A, Haring M A, Schuurink R C. Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. Plant Molecular Biology, 2014, 84(3): 345-357
    [105] Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. Journal of Experimental Botany, 2020, 1(14):4140-4158
    [106] Shan X, Li Y, Yang S, Yang Z, Qiu M, Gao R, Han T, Meng X, Xu Z, Wang L, Gao X. The spatio-temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida. New Phytologist, 2020, 228(6): 1864-1879
    [107] 王丽. 香雪兰的快速繁殖技术. CN, CN1232167 China, 2005Wang L, Rapid propagation technology of Freesia hybrida. CN, CN1232167 China, 2005
    [108] Shan X, Li Y, Zhou L, Tong L, Wei C, Qiu L, Gao X, Wang L. Efficient isolation of protoplasts from freesia callus and its application in transient expression assays.Plant Cell, Tissue and Organ Culture, 2019, 138: 529-541
    [109] Uwagaki Y, Matsuda E, Komaki M, Murahama M, Otani M, Nishizawa N, Hamada T. Agrobacterium-mediated transformation and regeneration of Freesia×hybrida. Plant Biotechnology, 2015, 32(2): 165-168
    [110] Li Y, Bao T, Zhang J, Li H, Shan X, Yan H, Kimani S, Zhang L, Gao X. The coordinated interaction or regulation between floral pigments and volatile organic compounds. Horticultural Plant Journal, 2024, (24): 2468-0141
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张佳,李月庆,单晓彤,等.香雪兰花色花香物质合成和调控研究进展[J].植物遗传资源学报,2024,25(5):679-694.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:336
  • 下载次数: 520
  • HTML阅读次数: 111
  • 引用次数: 0
历史
  • 收稿日期:2023-12-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-17
  • 出版日期: 2024-05-10
文章二维码
您是第5866753位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!