2025年5月24日 15:40 星期六
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第1期 >1-12. DOI:10.13430/j.cnki.jpgr.20230510001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
集群分离分析法在大豆性状遗传定位中的研究进展
DOI:
10.13430/j.cnki.jpgr.20230510001
CSTR:
作者:
  • 师立松

    师立松

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张艺龄

    张艺龄

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘方

    刘方

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 颜硕

    颜硕

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张孟茜

    张孟茜

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵璇

    赵璇

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李红雨

    李红雨

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 牛宁

    牛宁

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李占军

    李占军

    石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

石家庄市农林科学研究院/河北省大豆产业技术研究院,石家庄 050041

作者简介:

研究方向为大豆遗传育种,E-mail:shilisongning@163.com

通讯作者:

李占军,研究方向为大豆遗传育种,E-mail:nkylizhj@163.com

中图分类号:

基金项目:

石家庄市科学技术研究与发展计划项目(221490112A);河北省大豆产业技术研究院建设补助经费项目(225790287H);河北省科技计划项目现代种业科技创新专项(21326333D)


Research Progress of Bulked Segregant Analysis in Genetic Mapping in Soybean
Author:
  • SHI Lisong

    SHI Lisong

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Yiling

    ZHANG Yiling

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Fang

    LIU Fang

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAN Shuo

    YAN Shuo

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Mengxi

    ZHANG Mengxi

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Xuan

    ZHAO Xuan

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Hongyu

    LI Hongyu

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • NIU Ning

    NIU Ning

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Zhanjun

    LI Zhanjun

    Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Shijiazhuang Academy of Agricultural and Forestry Sciences/Hebei Academy of Provincial Soybean Industry Technology, Shijiazhuang 050041

Fund Project:

Foundation projects: Science and Technology Research and Developmental Program of Shijiazhuang (221490112A); Hebei Provincial Soybean Industry Technology Research Institute Construction Subsidy Funds Project (225790287H); Hebei Province Science and Technology Plan Project Modern Seed Industry Science and Technology Innovation Special Project (21326333D)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大豆是重要的油料作物,同时也是人类食用植物蛋白及畜牧业饲料蛋白的主要来源,在国家粮食结构和粮食安全中占有重要地位。利用简单高效的遗传定位方法,对大豆主要农艺性状进行相关基因挖掘,开发紧密连锁分子标记,有利于加快大豆的分子标记辅助选择及分子设计育种进程。集群分离分析法 (BSA,bulked segregant analysis)是一种利用样本混池的建库方式对极端性状进行QTL定位的方法,因其具有“快速、准确、经济、实用”的特点,已成为当下应用较为广泛的基因定位方法。随着高通量测序技术的兴起,基于全基因组重测序的BSA方法更为广泛地应用在粮油作物、蔬菜花卉等物种中,并且成功定位出许多农艺性状相关的基因。本文简要介绍了BSA方法及流程步骤,总结了BSA在大豆农艺性状、抗逆性状以及雄性不育性状遗传定位中研究进展,并讨论了下一代测序(NGS,next-generation sequencing)背景下BSA的机遇与挑战,以及BSA在大豆分子标记辅助选择(MAS)育种中发展趋势,以期为高产优质大豆品种的选育提供重要的理论基础。

    关键词:大豆;BSA;遗传定位
    Abstract:

    Soybean is not only an important oil crop, but also the main source of plant protein for human consumption and feed protein for animal husbandry, which plays an important role in the national food structure and food security. By using a simple and efficient genetic mapping method, the related genes of the main agronomic characters of soybean are mined and closely linked molecular markers are developed, which is helpful to speed up the process of molecular marker-assisted selection and molecular design breeding of soybean. Bulked Segregant Analysis (BSA) is a method to identify the gene loci through using the DNA pools with extreme traits. Due to its characteristics of fast, accurate, economical and practical, BSA has become a widely-applied method in genetic mapping. Taking advantage of high-throughput sequencing technology, BSA based on whole-genome resequencing has been widely applied in isolation of many genes underlying agronomic traits in grain and oil crops, vegetables, flowers and other species. This study briefly introduced the methods and procedures of BSA, summarized the research progress in genetic mapping of agronomic traits, stress resistance traits and male sterility traits in soybean, and further discussed the opportunities and challenges of BSA under the background of NGS, as well as the development trend of BSA in soybean molecular marker assisted selection (MAS) breeding. This study will provide theoretical basis for the cultivation of high quality soybean varieties.

    Key words:soybean;BSA;genetic mapping
    参考文献
    [1] Zhang Y H, Liu M F, He J B, Wang Y F, Xing G N, Li Y, Yang S P, Zhao T J, Gai J Y. Marker-assisted breeding for transgressive seed protein content in soybean (Glycine max(L.)merr.). Theoretical and Applied Genetics, 2015, 128(6): 1061-1072
    [2] 张玉芹, 陆翔, 李擎天, 陈受宜, 张劲松. 大豆品质调控基因克隆和功能研究进展. 中国农业科学, 2016, 49(22):4299-4309Zhang Y Q, Lu X, Li Q T, Chen S Y, Zhang J S. Recent advances in identification and functional analysis of genes responsible for soybean nutritional quality. Scientia Agricultura Sinica, 2016, 49(22):4299-4309
    [3] Du H P, Fang C, Li Y R, Kong F J, Liu B H. Understandings and future challenges in soybean functional genomics and molecular breeding. Journal of Integrative Plant Biology, 2023, 65(2):468-495
    [4] Yang Z M, Huang D Q, Tang W Q, Zheng Y, Liang K J, Cutler A J, Wu W R. Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS ONE, 2013, 8(7):e68433
    [5] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 1991, 88(21):9828-9832
    [6] Stewart G C, Roeder A H K, Patrick S, Chris S, Wolfgang L, Hector C. A genetic screen for mutations affecting cell division in the Arabidopsis thaliana embryo identifies seven loci required for cytokinesis. PLoS ONE, 2016, 11(1):e0146492
    [7] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30(2): 174-178
    [8] Li C S, Xiang X L, Huang Y, Zhou Y C, An D, Dong J Q, Zhao C X, Liu H J, Li Y B, Wang Q , Du C G, Messing J, Larkins B A, Wu Y R, Wang W Q. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nature Communications,2020, 11(1):17
    [9] Shen Y T, Liu J, Geng H Y, Zhang J X, Liu Y C, Zhang H K, Xing S L, Du J C, Ma S S, Tian Z X. De novo assembly of a Chinese soybean genome. Science China Life Sciences, 2018, 1(8):871-884
    [10] Liu Y C, Du H L, Li P C, Shen Y T, Peng H, Liu S L, Zhou G A, Zhang H K, Liu Z, Shi M, Huang X H, Li Y, Zhang M, Wang Z, Zhu B G, Han B, Liang C Z, Tian Z X. Pan-genome of wild and cultivated soybeans. Cell, 2020, 82(1):162-176
    [11] Zou C, Wang P X, Xu Y B. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 2016, 14(10):1941-1955
    [12] Sun Y P, Wang J K, Crouch J H, Xu Y B. Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Molecular Breeding, 2010, 26(3):493-511
    [13] 王金陵. 东北地区大豆株型的演变. 大豆通报, 1996 (1):5-7Wang J L. Evolution of soybean plant shape in northeast China. Soybean Bulletin, 1996 (1):5-7
    [14] 盖钧镒. 大豆高产理想型群体生理基础的探讨. 南京:江苏科技出版社, 1990: 35-41Gai J Y. Discussion on the physiological basis of soybean high yield ideal type population. Nanjing:Phoenix Science Press, 1990:35-41
    [15] Liu S L, Zhang M, Feng F, Tian Z X. Toward a “Green Revolution” for soybean. Molecular Plant, 2020, 13(5):688-697
    [16] 张久坤, 齐阳阳, 李立竹, 宁哓霜, 刘志华, 姜振峰, 李文滨. 利用BSA法定位大豆全基因组株高QTL及候选基因分析. 华北农学报, 2020, 35(S1):1-10Zhang J K, Qi Y Y, Li L Z, Ning X S, Liu Z H, Jiang Z F, Li W B. Genome-wide mapping of QTLs and candidate genes underlying plant height in soybean using BSA method. Acta Agriculturae Boreali-Sinica, 2020, 35(S1):1-10
    [17] Dong Z M, Chen L, Li Z, Liu N X, Zhang S C, Liu J, Liu B Q. Identification and molecular mapping of the semi-dwarf locus (sdf-1) in soybean by SLAF-seq method. Euphytica, 2020, 216(6):103
    [18] Li R C, Jiang H W, Zhang Z G, Zhao Y Y, Xie J G, Wang Q, Zheng H Y, Hou L L, Xiong X, Xin D W, Hu Z B, Liu C Y, Wu X X, Chen Q S. Combined linkage mapping and BSA to identify QTL and candidate genes for plant height and the number of nodes on the main stem in soybean. International Journal of Molecular Sciences, 2019, 21(1):42
    [19] 唐宽强. GmLIM1 基因调控大豆株高的分子机制. 北京: 中国科学院大学, 2020Tang K Q. Molecular mechanism of GmLIM1 gene regulation of soybean plant height. Beijing: University of Chinese Academy of Sciences, 2020
    [20] Zhang X L, Wang W B, Guo N, Zhang Y Y, Bu Y P, Zhao J M, Xing H. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics, 2018, 19(1):226
    [21] 赵圆圆, 李瑞超, 蒋洪蔚, 王乔, 谢建国, 刘春燕, 武小霞, 陈庆山. 大豆底荚高度QTL定位及候选基因挖掘. 中国油料作物学报, 2020, 42(1): 51-60Zhao Y Y, Li R C, Jiang H W, Wang Q, Xie J G, Liu C Y, Wu X X, Chen Q S. QTL mapping and candidate gene mining for first pod height in soybean. Chinese Journal of Oil Crop Sciences, 2020, 42(1): 51-60
    [22] 杨玉花, 白志元, 卫保国, 雷阳, 张瑞军. 基于BSA和SLAF-Seq技术对大豆主茎节数QTL精细定位. 核农学报, 2021, 35(9): 1953-1963Yang Y H, Bai Z Y, Wei B G, Lei Y, Zhang R J. Fine mapping of node numbers on the main stem QTLs in soybean based on BSA and SLAF-Seq. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 1953-1963
    [23] Wang X, Liu C K, Tu B J, Li Y S, Chen H, Zhang Q Y, Liu X B. Characterization on a novel rolled leaves and short petioles soybean mutant based on Seq-BSA and RNA-seq analysis. Journal of Plant Biology, 2022, 65:261-277
    [24] Jun T H, Kang S T, Van D A E. Genetic map of lps3: A new short petiole gene in soybeans. Genome, 2012, 55(2):140-146
    [25] 徐唯佳, 路锦, 高慧慧, 万明月, 李佳佳, 苗龙, 王晓波, 邱丽娟. 栽培大豆二列状互生叶序基因初步定位. 大豆科学, 2021, 40(4):457-465Xu W J, Lu J, Gao H H, Wan M Y, Li J J, Miao L, Wang X B, Qiu L J. Mapping of distichous alternate phyllotaxis gene in cultivated soybean. Soybean Science, 2021, 40(4):457-465
    [26] 张之昊, 王俊, 刘章雄, 邱丽娟. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因. 作物学报, 2020, 46(12):1839-1849Zhang Z H, Wang J, Liu Z X, Qiu L J. Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-Seq in soybean (Glycine max L.). Acta Agronomica Sinica, 2020, 46(12):1839-1849
    [27] 孙天宇. 大豆开花期相关数量性状位点(QTL)的定位. 北京:中国科学院大学, 2017Sun T Y. Quantitative trait loci mapping on flowering time of soybean. Beijing: University of Chinese Academy of Sciences, 2017
    [28] Watanabe S, Tsukamoto C, Oshita T, Yamada T, Anai T, Kaga A. Identification of quantitative trait loci for flowering time by a combination of restriction site-associated DNA sequencing and bulked segregant analysis in soybean. Breeding Science, 2017, 67(3):277-285
    [29] Lv T X, Wang L S, Zhang C Y, Liu S, Wang J X, Lu S J, Fang C, Kong L P, Li Y L, Li Y G, Hou X L, Liu B H, Kong F J, Li X M. Identification of two quantitative genes controlling soybean flowering using bulked-segregant analysis and genetic mapping. Frontiers Plant Science, 2022, 13:987073
    [30] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因. 作物学报, 2022, 48(3): 635-643Wang J, Zhang Y W, Jiao Z J, Liu P P, Chang W. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean. Acta Agronomica Sinica, 2022, 48(3): 635-643
    [31] 陈静静, 刘谢香, 于莉莉, 卢一鹏, 张嗣天, 张昊辰, 关荣霞, 邱丽娟. 利用BSA法发掘野生大豆种子硬实性相关QTL. 中国农业科学, 2019, 52(13): 2208-2219Chen J J, Liu X X, Yu L L, Lu Y P, Zhang S T, Zhang H C,Guan R X, Qiu L J. QTL mapping of hard seededness in wild soybean using BSA method. Scientia Agricultura Sinica, 2019, 52(13): 2208-2219
    [32] Xie J G, Wang Q, Zhang Z G, Xin X, Yang M L, Qi Z M, Xin D W, Zhu R S, Sun M M, Dong X H, Jiang H W, Chen Q S. QTL-seq identified QTLs and candidate genes for two-seed pod length and width in soybean (Glycine max). Plant Breeding, 2021, 140(3):1-11
    [33] 宋健. 大豆种皮色相关基因的图位克隆及功能解析. 北京: 中国农业科学院, 2019Song J. Map-based cloning and functional analysis of genes controlling seed coat color in soybean (Glycine max (L.)Merr.). Beijing: Chinese Academy of Agricultural Sciences, 2019
    [34] 郁晓敏, 金杭霞, 杨清华, 傅旭军, 郭丹丹, 吕晓男, 袁凤杰. 利用SLAF-seq结合BSA方法发掘大豆种皮色相关基因. 分子植物育种, 2021, 19(2): 385-391Yu X M, Jin H X, Yang Q H, Fu X J, Guo D D, Lv X N, Yuan F J. Mapping of soybean genes related to seed-coat color using SLAF-seq and BSA methods. Molecular Plant Breeding, 2021, 19(2): 385-391
    [35] Guo X Y, Jiang J H, Liu Y, Yu L L, Chang R Z, Guan R X,Qiu L. Identification of a novel salt tolerance-related locus in wild soybean (Glycine soja Sieb. & Zucc.). Frontiers Plant Science, 2021, 12:791175
    [36] 郑宪彪. 大豆突变体耐盐表型鉴定及耐盐基因定位群体遗传分析.泰安: 山东农业大学, 2020Zheng X B. Identification of salt tolerance phenotype of soybean mutants and population genetic analysis of salt tolerance gene mapping. Taian: Shandong Agricultural University, 2020
    [37] 李玉卓. 大豆耐盐碱性快速鉴定方法的建立及耐盐碱基因的初步挖掘. 北京: 中国科学院大学, 2021Li Y Z. Establishment of a rapid screening protocol for identification of saline-alkali tolerance and preliminary cloning of genes underlying saline-alkali tolerance in soybean. Beijing: University of Chinese Academy of Sciences, 2021
    [38] 曾维英, 苏燕竹, 赖振光, 杨守臻, 陈怀珠, 谭玉荣, 孙祖东, 盖钧镒. 基于BSA-Seq技术鉴定大豆耐荫性状相关候选基因. 中国油料作物学报, 2021, 43(6):1006-1015Zeng W Y, Su Y Z, Lai Z G, Yang S Z, Chen H Z,Tan Y R, Sun Z D, Gai J Y. Identification of candidate gene controlling shade-tolerant by BSA-Seq in soybean. Chinese Journal of Oil Crop Sciences, 2021, 43(6):1006-1015
    [39] Li H C, Zhi H J, Gai J Y, Guo D Q, Wang Y W, Li K, Bai L, Yang H. Inheritance and gene mapping of resistance to soybean mosaic virus strain sc14 in soybean. Journal of Integrative Plant Biology, 2006, 48 (12):1466-1472
    [40] Wang D G, Ma Y, Liu N, Yang Z L, Zheng G J, Zhi H J. Fine mapping and identification of the soybean RSC4 resistance candidate gene to soybean mosaic virus. Plant Breeding, 2011, 13(6):653-659
    [41] 贾慧颖. 大豆对大豆花叶病毒抗病位点RSC3的定位及候选基因分析. 南京: 南京农业大学, 2019Jia H Y. Localization and candiddate gene prediction of the locus RSC3 resistant to soybean mosaic virus in soybean. Nanjing: Nanjing Agricultural University,2019
    [42] Sun J T, Li L H, Zhao J M, Huang J, Yan Q, Xing H, Guo N. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean (Glycine max (L.) Merr.). Theoretical and Applied Genetics, 2014, 124(4):913-919
    [43] Zhang J Q, Xia C J, Duan C X, Sun S L, Wang X M, Wu X F, Zhu Z D. Identification and candidate gene analysis of a novel phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS ONE, 2013, 8(7): e69799
    [44] Ping J Q, Fitzgerald J C, Zhang C B, Lin F, Bai Y H, Wang D C, Aggarwal R, Rehman M, Crasta O, Ma J X. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean. Theoretical and Applied Genetics, 2016, 129(2):445-451
    [45] Chen L Y, Wang W D, Ping J Q, Fitzgerald J C, Cai G H, Clark C B, Aggarwal R, Ma J. Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean. Theoretical and Applied Genetics, 2021, 134(12):3863-3872
    [46] Vuong T D, Walker D R, Nguyen B T, Nguyen T T, Dinh H X, Hyten D L, Cregan P B, Sleper D A, Lee J D, Shannon J G, Nguyen H T. Molecular characterization of resistance to soybean rust (Phakopsora pachyrhizi Syd. & Syd.) in soybean cultivar DT 2000 (PI 635999). PLoS ONE, 2016, 11(12):e0164493
    [47] Bhor T J, Chimote V P, Deshmukh M P. Molecular tagging of Asiatic soybean rust resistance in exotic genotype EC 241780 reveals complementation of two genes. Plant Breeding, 2015, 134(1):70-77
    [48] 赵胜. 大豆种质SX6907抗锈性状遗传及基因定位研究. 北京: 中国农业科学院, 2016Zhao S. Genetic and mapping of resistance gene to rust in soybean germplasm SX6907. Beijing: Chinese Academy of Agricultural Sciences, 2016
    [49] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因. 作物学报, 2021, 47(8):1460-1471Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq. Acta Agronomica Sinica, 2021, 47(8):1460-1471
    [50] Shaibu A S, Zhang S R, Ma J K, Feng Y, Huai Y Y, Qi J, Li J, Abdelghany A M, Azam M, Htway H T P, Sun J M, Li B. The GmSNAP11 contributes to resistance to soybean cyst nematode race 4 in Glycine max. Frontiers in Plant Science,2022, 13:939763
    [51] Schuster I, Abdelnoor R V, Marin S, Carvalho V, Kiihl R, Silva J, Sediyama C, Barros E, Moreiraet M. Identification of a new major QTL associated with resistance to soybean cyst nematode (Heterodera glycines). Theoretical and Applied Genetics, 2001, 102(1):91-96
    [52] 李永宽, 张井勇, 赵国龙, 李蓉, 林春晶, 赵丽梅, 彭宝, 张春宝. 大豆RN型细胞质雄性不育育性恢复抑制基因Rf-I的遗传分析与定位. 农业生物技术学报, 2020, 28(5): 761-770Li Y K, Zhang J Y, Zhao G L, Li R, Lin C J, Zhao L M, Peng B, Zhang C B. Genetic analysis and mapping of Rf-I, an inhibitor of fertility restorer gene for CMS-RN in soybean (Glycine max). Journal of Agricultural Biotechnology, 2020, 28(5): 761-770
    [53] 郭凤兰, 林春晶, 王鹏年, 杨绪磊, 吴铮, 彭宝, 赵丽梅, 张春宝. 大豆细胞质雄性不育恢复基因GmRf1的精细定位. 植物遗传资源学报, 2022, 23(2): 518-526Guo F L, Lin C J, Wang P N, Yang X L, Wu Z, Peng B, Zhao L M, Zhang C B. Fine mapping of a restorer-of-fertility gene GmRf1 for the cytoplasmic male sterility in soybean. Journal of Plant Genetic Resources, 2022, 23(2): 518-526
    [54] 贾顺耕, 郭凤兰, 林春晶, 孙妍妍, 张颖, 雷蕾, 彭宝, 赵丽梅, 张春宝. 大豆细胞质雄性不育育性恢复基因Rf3的定位. 植物遗传资源学报, 2021, 22(5):1411-1417Jia S G, Guo F L, Lin C J, Sun Y Y, Zhang Y, Lei L, Peng B, Zhao L M, Zhang C B. Mapping of fertility restorer gene Rf3 of cytoplasmic male sterility in soybean. Journal of Plant Genetic Resources, 2021, 22(5):1411-1417
    [55] Nadeem M, Chen A D, Hong H L, Li D D, Li J J, Zhao D, Wang W, Wang X B, Qiu L J. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). Journal of Integrative Plant Biology, 2021, 63(6):1054-1064
    [56] Fang X L, Sun X Y, Yang X D, Li Q, Lin C J, Xu J, Gong W J, Wang Y F, Liu L , Zhao L M, Liu B H, Qin J, Zhang M C, Zhang C B, Kong F J, Li M N. MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean. Science China Life Sciences, 2021, 64(9):1533-1545
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

师立松,张艺龄,刘方,等.集群分离分析法在大豆性状遗传定位中的研究进展[J].植物遗传资源学报,2024,25(1):1-12.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:322
  • 下载次数: 963
  • HTML阅读次数: 219
  • 引用次数: 0
历史
  • 收稿日期:2023-05-10
  • 最后修改日期:2023-07-18
  • 录用日期:
  • 在线发布日期: 2024-01-08
  • 出版日期: 2024-01-08
文章二维码
您是第5863526位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!