2025年6月8日 19:02 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第10期 >1726-1736. DOI:10.13430/j.cnki.jpgr.20240110001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
一粒系小麦遗传多样性分析及抗条锈菌CYR34鉴定
DOI:
10.13430/j.cnki.jpgr.20240110001
CSTR:
作者:
  • 徐晓伟 1

    徐晓伟

    中国农业科学院植物保护研究所/植物病虫害综合治理全国重点实验室,北京 100193
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 冯晶 1,2

    冯晶

    中国农业科学院植物保护研究所/植物病虫害综合治理全国重点实验室,北京 100193;农业农村部国家植物保护甘谷观测实验站,甘肃甘谷 741200
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王凤涛 1,2

    王凤涛

    中国农业科学院植物保护研究所/植物病虫害综合治理全国重点实验室,北京 100193;农业农村部国家植物保护甘谷观测实验站,甘肃甘谷 741200
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵小倩 1

    赵小倩

    中国农业科学院植物保护研究所/植物病虫害综合治理全国重点实验室,北京 100193
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 秦艳艳 1

    秦艳艳

    中国农业科学院植物保护研究所/植物病虫害综合治理全国重点实验室,北京 100193
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 童朝阳 1

    童朝阳

    中国农业科学院植物保护研究所/植物病虫害综合治理全国重点实验室,北京 100193
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 蔺瑞明 1,2

    蔺瑞明

    中国农业科学院植物保护研究所/植物病虫害综合治理全国重点实验室,北京 100193;农业农村部国家植物保护甘谷观测实验站,甘肃甘谷 741200
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.中国农业科学院植物保护研究所/植物病虫害综合治理全国重点实验室,北京 100193;2.农业农村部国家植物保护甘谷观测实验站,甘肃甘谷 741200

作者简介:

研究方向为植物抗病性遗传,E-mail: xxw15621405359@163.com

通讯作者:

冯 晶,研究方向为植物抗病性遗传,E-mail: jingfeng@ippcaas.cn
蔺瑞明,研究方向为分子植物病理学,E-mail: linruiming@caas.cn

中图分类号:

基金项目:

国家重点研发计划(2021YFD1401000); 中国农业科学院科技创新工程


Genetic Diversity Analysis and Identification of Stripe Rust Resistance to CYR34 in Einkorn Wheat
Author:
  • XU Xiaowei 1

    XU Xiaowei

    Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FENG Jing 1,2

    FENG Jing

    Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193;National Agricultural Experimental Station for Plant Protection at Gangu, Ministry of Agriculture and Rural Affairs, Gangu 741200, Gansu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Fengtao 1,2

    WANG Fengtao

    Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193;National Agricultural Experimental Station for Plant Protection at Gangu, Ministry of Agriculture and Rural Affairs, Gangu 741200, Gansu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Xiaoqian 1

    ZHAO Xiaoqian

    Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIN Yanyan 1

    QIN Yanyan

    Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TONG Chaoyang 1

    TONG Chaoyang

    Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIN Ruiming 1,2

    LIN Ruiming

    Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193;National Agricultural Experimental Station for Plant Protection at Gangu, Ministry of Agriculture and Rural Affairs, Gangu 741200, Gansu
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193;2.National Agricultural Experimental Station for Plant Protection at Gangu, Ministry of Agriculture and Rural Affairs, Gangu 741200, Gansu

Fund Project:

Foundation projects: National Key R&D Program of China (2021YFD1401000); Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    一粒系小麦(Einkorn wheat, AA)作为小麦的基础物种,在形成普通小麦的过程中染色体组部分位点丢失,评价一粒系小麦的遗传多样性及对病害抗性的水平对普通小麦育种和遗传改良具有重要的理论意义和育种价值。本研究利用15对条带清晰、多态性高的SSR引物对170份一粒系小麦材料进行遗传多样性分析,并接种条锈菌流行生理小种CYR34进行抗病性评价。结果表明,SSR分析获得71个等位变异,引物平均多态性信息含量为0.6540;聚类分析和群体结构分析均将170份供试材料分为两个类群,两类群内的平均遗传距离分别为0.4732和0.5404;抗病性评价获得19份抗性较好的材料,其中免疫材料3份,近免疫材料2份,高抗1份,中抗13份,占供试材料的11.17 %;有3对SSR引物与一粒系小麦抗条锈病显著相关。综上所述,一粒系小麦存在较多的等位基因变异,含有优异的抗条锈病基因,具有提高小麦抗条锈病的育种潜力。

    关键词:一粒系小麦;遗传多样性;条锈病;SSR分子标记;聚类分析
    Abstract:

    Einkorn wheat (AA), as the basic species of wheat, has lost some loci of the A chromosome during the evolution of bread wheat. Evaluating the genetic diversity and disease resistance level of einkorn wheat has important theoretical significance and breeding value for common wheat breeding and genetic improvement. In our study, 15 pairs of SSR primers with clear bands and high polymorphism were used to analyze the genetic diversity of 170 einkorn wheat materials, and the current epidemic stripe rust physiological race CYR34 was used for disease resistance evaluation. The results showed that 71 alleles were obtained by SSR analysis, and the average polymorphism information content of primers was 0.6540. Cluster analysis and population structure analysis showed that tested materials were divided into two groups, and the average genetic distance within the two groups was 0.4732 and 0.5404, respectively. Through evaluation of disease resistance, 19 materials with better resistance were obtained, including 3 immunity, 2 near immunity, 1 high resistance and 13 medium resistance materials, accounting for 11.17% of the tested materials. Three pairs of primers had a correlation with the resistance of einkorn wheat to stripe rust. In summary, einkorn wheat contains abundant allelic variations and stripe rust resistance genes, which has the breeding potential to improve wheat resistance to stripe rust.

    Key words:einkorn wheat;genetic diversity;stripe rust;SSR molecular marker;cluster analysis
    参考文献
    [1] 陈万权,康振生,马占鸿,徐世昌,金社林,姜玉英.中国小麦条锈病综合治理理论与实践.中国农业科学, 2013, 46(20): 4254-4262Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013, 46(20): 4254-4262
    [2] 康振生,王晓杰,赵杰,汤春蕾,黄丽丽.小麦条锈菌致病性及其变异研究进展.中国农业科学, 2015, 48(17): 3439-3453Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015, 48(17): 3439-3453
    [3] 韩德俊,康振生.中国小麦品种抗条锈病现状及存在问题与对策.植物保护, 2018, 44(5): 1-12Han D J, Kang Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Protection, 2018, 44(5): 1-12
    [4] Xu L S, Wang M N, Cheng P, Hulbert S H, Chen X M. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theoretical and Applied Genetics, 2013, 126: 523-533
    [5] Marais G F, Pretorius Z A, Wellings C R, McCallum B, Marais A S. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica, 2005, 143: 115-123
    [6] 董玉琛,郑殿升.中国小麦遗传资源.北京:中国农业出版社, 1998: 31-56Dong Y C, Zheng D S. Wheat genetic resources in China. Beijing: China Agriculture Press, 1998: 31-56
    [7] Ф Дорофеев B, Коровина О Н. Пшеница, Культурная Флора в СССР. Лениград: колос, 1979: изд
    [8] Multani D S, Dhaliwal H S, Sharma S K, Gill K S. Inheritance of isoproturon tolerance in durum transferred from Triticum monococcum. Plant Breeding, 1989, 102: 166-168
    [9] Shi A N, Leath S, Murphy J P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology, 1998, 88(2): 144-147
    [10] Olson E L, Guedira G B, Marshall D, Stack E, Bowden R L, Jin Y, Rouse M, Pumphrey M O. Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Science, 2010, 50(5): 1823-1830
    [11] Shi S C, Hegarty J, Shen T, Hua L, Li H N, Luo J, Li H Y, Bai S S, Zhang C Z, Dubcovsky J. Stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal translocation of Triticum monococcum chromosome 5AmL into common wheat. Theoretical and Applied Genetics, 2021, 134(7): 2197-2211
    [12] 王明玉,冀凯燕,冯晶,蔺瑞明,王凤涛,徐世昌.104个小麦品种抗条锈性及遗传多样性分析.植物保护学报, 2018, 45(1): 27-36Wang M Y, Ji K Y, Feng J, Lin R M, Wang F T, Xu S C. Identification of the resistance of 104 wheat varieties to stripe rust and analysis of their genetic diversity. Journal of Plant Protection, 2018, 45(1): 27-36
    [13] 刘博,刘太国,章振羽,贾秋珍,王保通,高利,彭云良,金社林,陈万权.中国小麦条锈菌条中34号的发现及其致病特性.植物病理学报, 2017, 47(5): 681-687Liu B, Liu T G, Zhang Z Y, Jia Q Z, Wang B T, Gao L, Peng Y L, Jin S L, Chen W Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2017, 47(5): 681-687.
    [14] 中华人民共和国农业部. NY/T 2953—2016小麦区域试验品种抗条锈病鉴定技术规程. 北京:中国农业出版社, 2016Agricultural Ministry of the People's Republic of China. NY/T 2953—2016 technical specification for identification of stripe rust resistance of wheat regional test varieties. Beijing: China Agriculture Press, 2016
    [15] Hill-ambroz K L, Brown-guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Science, 2002, 42: 2088-2091
    [16] Lelley T, Stachel M, Grausgruber H, Vollmann J. Analysis of relationship between Aegilops tauschil and the D genome of wheat utilizing microsatellites. Genome, 2000, 43: 661-668
    [17] 樊文强,盖红梅,孙鑫,杨爱国,张忠锋,任民. SSR数据格式转换软件DataFormater.分子植物育种, 2016, 14: 265-270Fan W Q, Ge H M, Sun X, Yang A G, Zhang Z F, Ren M. DataFormater, a software for SSR data formatting to develop population genetics analysis. Molecular Plant Breeding, 2016, 14: 265-270
    [18] Yeh F C, Boyle T J B. Population genetic analysis of co-dominant and dominant marker and quantitative traits. Belgian Journal of Botany, 1997, 130: 129-157
    [19] Liu K J, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129
    [20] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:A simulation study. Molecular Ecology, 2005, 14(8):2611-2620
    [21] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19):2633-2635
    [22] Letunic I, Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 2016, 44: 242-245
    [23] Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28: 511-526
    [24] 刘玉玲,张红岩,滕长才,周仙莉,侯万伟.蚕豆SSR标记遗传多样性及与淀粉含量的关联分析.作物学报, 2022, 48: 2786-2805Liu Y L, Zhang H Y, Teng C C, Zhou X L, Hou W W. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.). Acta Agronomica Sinica, 2022, 48: 2786-2805
    [25] Devos K M, Dubcovsky J, Dvo?ák J, Chinoy C N, Gale M D. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theoretical and Applied Genetics, 1995, 91: 282-288
    [26] 施永泰,边红武,韩凝,潘建伟,童微星,朱睦元.中国江、浙地区栽培大麦遗传资源的RAPD研究.作物学报, 2004, 30: 258-265Shi Y T, Bian H W, Han N, Pan J W, Tong W X, Zhu M Y. Genetic variation analysis by RAPD of some barley cultivars in China. Acta Agronomica Sinica, 2004, 30: 258-265
    [27] Fricano A, Brandolini A, Rossini L, Sourdille P, Wunder J, Effgen S, Hidalgo A, Erba D, Piffanelli P, Salamini F. Crossability of Triticum urartu and Triticum monococcum wheats, homoeologous recombination, and description of a panel of interspecific introgression lines. G3-Genes Genomes Genetics, 2014, 4(10): 1931-1941
    [28] 董宏图,刘婉辉,彭福祥,李映辉,赵传志,唐华山,张晶,耿妙苗,解超杰,孙其信.一粒系小麦遗传多样性分析及抗病性鉴定.植物遗传资源学报, 2014, 15(2): 377-382Dong H T, Liu W H, Peng F X, Li Y H, Zhao C Z, Tang H S, Zhang J, Geng M M, Xie C J, Sun Q X. Evaluation of the genetic diversity and disease resistance of einkorn wheats. Journal of Plant Genetic Resources, 2014, 15(2): 377-382
    [29] 孙果忠.我国小麦种业发展现状及未来建议.农业科技通讯, 2021, (7): 4-8Sun G Z. Development status and future suggestions of wheat seed industry in China. Bulletin of Agricultural Science and Technology, 2021, (7): 4-8
    [30] 曹廷杰,谢菁忠,吴秋红,陈永兴,王振忠,赵虹,王西成,詹克慧,徐如强,王际睿,罗明成,刘志勇.河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析.作物学报, 2015, 41(2): 197-206Cao T J, Xie J Z, Wu Q H, Chen Y X, Wang Z Z, Zhao H, Wang X C, Zhan K H, Xu R Q, Wang J R, Luo M C, Liu Z Y. Genetic diversity of registered wheat varieties in Henan province based on pedigree and single-nucleotide polymorphism. Acta Agronomica Sinica, 2015, 41(2): 197-206
    [31] 梅铭凤,姚国旗,江玉梅,马正强.一粒小麦种质遗传多样性分析.麦类作物学报, 2005, (1): 20-25Mei M F, Yao G Q, Jiang Y M, Ma Z Q. Characterizing the genetic diversity of a group of einkorn wheat lines. Journal of Triticeae Crops, 2005, (1): 20-25
    [32] Ciaffi M, Dominici L, Lafiandr A D. Gliadin polymorphism in wild and cultivated einkorn wheats. Theoretical and Applied Genetics, 1997, 94: 68-74.
    [33] 胡朝月,王凤涛,郎晓威,冯晶,李俊凯,蔺瑞明,姚小波.小麦抗条锈病基因对中国条锈菌主要流行小种的抗性分析.中国农业科学, 2022, 55(3): 491-502Hu C Y, Wang F T, Lang X W, Feng J, Li J K, Lin R M, Yao X B. Resistance analyses on wheat stripe rust resistance genes to the predominant races of Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2022, 55(3): 491-502
    [34] Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains N S, Goel R K, Keller B, Dhaliwal H S, Singh K. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theoretical and Applied Genetics, 2008, 116: 313-324
    [35] 文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析: I.群体结构及关联标记.作物学报, 2008, 34: 1169-1178Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic quality traits and SSR markers in chinese cultivated and wild soybeans: I. Population structure and associated markers. Acta Agronomica Sinica, 2008, 34: 1169-1178
    [36] Marais G F, McCallum B, Marais A S. Leaf rust and stripe rust resistance genes derived from Aegilops Sharonensis. Euphytica, 2006, 149: 373-380
    [37] Marais F, Marais A, Mccallum B, Pretorius Z. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Science, 2009, 49(3): 871-879
    [38] Mesfin G, Bariana H, Wong D, Hayden M, Bansal U. Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Disease, 2019, 103(6): 1166-1171
    [39] Singh S P, Hurni S, Ruinelli M, Brunner S, Martin J S, Krukowski P, Peditto D, Buchmann G, Zbinden H, Keller B. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Molecular Biology, 2018, 98(3): 249-260
    [40] Du W L, Zhao J X, Wang J, Wang L M, Wu J, Yang Q H, Liu S H, Chen X H. Cytogenetic and molecular marker-based characterization of a wheat-Psathyrostachys huashanica Keng 2Ns(2D) substitution line. Plant Molecular Biology Reporter, 2015, 33(3): 414-423
    [41] 董玉琛.小麦的基因源.麦类作物学报, 2000, (3): 78-81Dong Y C. The gene source of wheat. Journal of Triticeae Crops, 2000, (3): 78-81
    相似文献
    引证文献
引用本文

徐晓伟,冯晶,王凤涛,等.一粒系小麦遗传多样性分析及抗条锈菌CYR34鉴定[J].植物遗传资源学报,2024,25(10):1726-1736.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-09
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!