2025年6月11日 10:10 星期三
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第2期 >151-161. DOI:10.13430/j.cnki.jpgr.20230811001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
基因调控植物花器官发育的研究进展
DOI:
10.13430/j.cnki.jpgr.20230811001
CSTR:
作者:
  • 杜朝金 1,2

    杜朝金

    西南林业大学林学院,昆明 650224;云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张汉尧 1

    张汉尧

    西南林业大学林学院,昆明 650224
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 罗心平 2

    罗心平

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 宋云连 2

    宋云连

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 毕珏 2

    毕珏

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王跃全 2

    王跃全

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张惠云 2

    张惠云

    云南省农业科学院热带亚热带经济作物研究所,保山 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.西南林业大学林学院,昆明 650224;2.云南省农业科学院热带亚热带经济作物研究所,保山 678000

作者简介:

研究方向为林木遗传育种,E-mail:2206019867@qq.com

通讯作者:

张惠云,研究方向为荔枝龙眼育种、栽培生理研究与品种、技术推广,E-mail:ynkmzhy@163.com

中图分类号:

基金项目:

云南省创新引导与科技型企业培育计划 (202204BI090021);国家重点研发计划 (2022YFD1601806);国家现代农业产业技术体系资助项目 (CARS-32)


Progress in Gene Regulation of Plant Floral Organ Development
Author:
  • DU Chaojin 1,2

    DU Chaojin

    College of Forestry, Southwest Forestry University, Kunming 650224;Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences,Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Hanyao 1

    ZHANG Hanyao

    College of Forestry, Southwest Forestry University, Kunming 650224
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LUO Xinping 2

    LUO Xinping

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences,Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Yunlian 2

    SONG Yunlian

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences,Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • BI Jue 2

    BI Jue

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences,Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Yuequan 2

    WANG Yuequan

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences,Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Huiyun 2

    ZHANG Huiyun

    Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences,Baoshan 678000
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Forestry, Southwest Forestry University, Kunming 650224;2.Institute of Tropical Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences,Baoshan 678000

Fund Project:

Foundation projects: Yunnan Province Innovation Guidance and Technology-based Enterprise Cultivation Program (202204BI090021);National Key R&D Program (2022YFD1601806);National Modern Agricultural Industrial Technology System Funding Program (CARS-32)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [88]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    花作为被子植物的繁殖器官,是植物的重要组成部分,也是研究植物进化、分类的重要依据。花器官的发育受到外部环境和内部生理等多种因素的影响,不同物种或同一物种间出现不同的性状,基因作为其中的关键因子,在整个过程中发挥着重要作用,其在花发育调控中的作用一直都是大家研究的热点。花器官的花萼、花冠、雄蕊、雌蕊、胚珠五轮结构分别受到AE花发育模型中A、B、C、D、E五类基因的调控,这些基因在花器官发育过程中形成了一个复杂的基因调控网络。各类基因的表达或沉默均会导致花器官的结构发生改变,但不同的物种之间又存在差异。本研究综述了MADS-box、AP2/ERF基因家族相关成员AP1、AP2、AP3、PI、AG、SEP、AGL6、SHP、STK及其他基因NAP、SPL、TGA、PAN、WOX等在花器官建成中的调控作用,从分子水平解析了基因在花器官发育中的影响,为进一步深入了解基因在各植物花器官发育调控中的作用提供参考。

    关键词:花器官;基因调控;MADS-box;AP2/ERF;NAP
    Abstract:

    As the reproductive organ of angiosperms, the flowers are a vital part of plants and a prime basis for the study of plant evolution andclassification. The development of the floral organ is affected by a variety of factors, such as the external environment and internal physiology, leading to different traits in different species or among the same species, and genes, as the key factors therein, play a vital role in the whole process, and the role of their genes in the regulation of floral development has been a hot topic of research. The five whorls of structures of the calyx, corolla, stamen, pistil, and ovule of the floral organ are regulated by five categories of genes, A, B, C, D, and E, in the AE model of floral development, and these genes form a complex gene regulatory network in the process of floral organ development. The expression or silencing of each category of genes leads to structural changes in the floral organs, but there are differences among different species. In this paper, we reviewed the regulatory roles of MADS-box, AP2/ERF gene family members AP1, AP2, AP3, PI, AG, SEP, AGL6, SHP, STK, and other genes such as NAP, SPL, TGA, PAN, and WOX in the construction of floral organs, and the effects of genes in the development of floral organs at the molecular level were analyzed. The influence of genes on floral organ development at the molecular level was also analyzed. This study provides a reference for further understanding the role of genes in the regulation of floral organ development in various plants.

    Key words:floral organ;gene regulation;MADS-box;AP2/ERF;NAP
    参考文献
    [1] 孟雨婷,黄晓晨,侯元同,邱念伟. 花的形态与花发育的ABCDE模型. 生物学杂志, 2017, 34(6): 105-107,115Meng Y T, Huang X C, Hou Y T, Qiu N W. The floral morphology and the ABCDE model of floral organ development. Journal of Biology, 2017, 34(6): 105-107,115
    [2] Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37
    [3] Meyerowitz E M. Plants and the logic of development. Genetics, 1997, 145(1): 5-9
    [4] 彭洁,刘引,武荣花,冯慧,镡媛,杨一鹏,张华. 重瓣花及其分子机制的研究进展. 中国农学通报, 2023, 39(19): 65-72Peng J, Liu Y, Wu R H, Feng H, Chan Y, Yang Y P, Zhang H. Research progress of double flower and its molecular mechanism. Chinese Agricultural Science Bulletin, 2023, 39(19): 65-72
    [5] Colombo L, Franken J, Koetje E, van Went J, Dons H J, Angenent G C, van Tunen A J. The petunia MADS-box gene FBP11 determines ovule identity. Plant Cell, 1995, 7(11): 1859-1868
    [6] Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Münster T, Winter K U, Saedler H. A short history of MADS-box genes in plants. Plant Molecular Biology, 2000, 42(1): 115-149
    [7] Thei?en G, Melzer R, Rümpler F. MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution. Development, 2016, 143(18): 3259-3271
    [8] 何荆洲,范继征,曾艳华,李秀玲,卢家仕,卜朝阳. 蝴蝶兰“大辣椒”APETALA1基因的克隆及表达. 北方园艺,2021, 474(3): 83-90He J Z, Fan J Z, Zeng Y H, Li X L, Lu J S, Bu Z Y. Molecular cloningand expression of APETALA1 gene from phalaenopsis ‘Big Chili’. Northern Horticulture, 2021, 474(3): 83-90
    [9] Bendahmane M, Dubois A, Raymond O, Bris M L. Genetics and genomics of flower initiation and development in roses. Journal of Experimental Botany, 2013, 64(4): 847-857
    [10] Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022-2025
    [11] Han Y, Tang A, Wan H, Zhang T, Cheng T, Wang J, Yang W, Pan H, Zhang Q. An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Frontiers in Plant Science, 2018, 9: 481
    [12] Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky M F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992, 360: 273-277
    [13] 甄妮. 月季A类花器官发育基因的克隆与功能分析. 北京:北京林业大学, 2017Zhen N. Isolation and function analysis of class a genes related to flower development in roses. Beijing: Beijing Forestry University, 2017
    [14] 孙迎坤. 山茶花MADS-box家族A类和C类基因克隆及功能分析. 北京: 中国林业科学研究院,2013Sun Y K. Isolation and function analysis of class A and C genes of MADS-box family from Camellia japonica. Beijing: Chinese Academy of Forestry,2013
    [15] 安利忻,刘荣维,陈章良,李毅. 花分生组织决定基因AP1转化矮牵牛的研究. 植物学报, 2001(1): 63-66An L X, Liu R W, Chen Z L, Li Y. Studies on petunia hybrida transformed with flower-meristem-identity gene AP1. Acta Botanica Sinica, 2001(1): 63-66
    [16] Sung S K, Yu G H, An G. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology, 1999, 120: 969-978
    [17] Hsu H F, Huang C H, Chou L H, Yang C H. Ectopic expression of an orchid(Oncidium Gower Ramsey)AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiology, 2003, 44: 783-794
    [18] Chi Y, Huang F, Liu H, Yang S, Yu D. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. Journal of Plant Physiology, 2011, 168(18): 2251-2259
    [19] 王一非. 红花MADS-box基因家族生物信息学分析及CtMADS24调控功能研究. 长春:吉林农业大学, 2022Wang Y F. Bioinformatics analysis and CtMADS24 regulation function of MADS-box gene family in Carthamus tinctorius L. Changchun: Jilin Agricultural University, 2022
    [20] Chen M K, Lin I C, Yang C H. Functional analysis of three lily(Lilium longiflorum)APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiology, 2008, 49: 704-717
    [21] Huang H J,Chen S,Li H Y,Jiang J. Next-generation transcriptome analysis in transgenic birch overexpressing and suppressing APETALA1 sheds lights in reproduction development and diterpenoid biosynthesis. Plant Cell Reports, 2015, 34(9): 1663-1680
    [22] 王朔,黄海娇,杨光,姜静,刘桂丰.转基因白桦杂种T1代的生长发育及AP1基因的遗传分析. 北京林业大学学报,2016,38(9):1-7Wang S, Huang H J, Yang G, Jiang J, Liu G F. Growth and developmental analysis of T1 generation from BpAP1 transgenic birch. Journal of Beijing Forestry University, 2016,38(9):1-7
    [23] 肖晨星. 梅花PmAG基因功能验证和重瓣候选基因的筛选. 武汉:华中农业大学, 2021Xiao C X. Functional analysis of Prunus mume PmAG and selection of candidated genes for double flower.Wuhan: Huazhong Agricultural University, 2021
    [24] 袁友泉,李超超,许馨月,张志宏,刘月学.草莓FaAP1基因植物表达载体构建及在拟南芥中的超表达. 华中农业大学学报,2015,34(5):13-18Yuan Y Q, Li C C, Xu X Y, Zhang Z H, Liu Y X. Constructing FaAP1 expression vector of strawberry and its ectopic-expression in Arabidopsis. Journal of Huazhong Agricultural University, 2015,34(5):13-18
    [25] Gao M, Jiang W, Lin Z, Lin Q, Ye Q, Wang W, Xie Q, He X, Luo C, Chen Q. SMRT and illumina RNA-Seq identifies potential candidate genes related to the double flower phenotype and unveils SsAP2 as a key regulator of the double-flower trait in Sagittaria sagittifolia. International Journal of Molecular Sciences, 2022, 23(4): 2240
    [26] Maes T, Van de Steene N, Zethof J, Karimi M, D′Hauw M, Mares G, Van Montagu M, Gerats T. Petunia Ap2-like genes and their role in flower and seed development. Plant Cell, 2001, 13(2): 229-244
    [27] 董姬秀. 荷花APETALA3、LEAFY基因的克隆与表达分析.郑州: 河南农业大学,2014Dong J X. Cloning and expression analysis of APETALA3 and LEAFY gene in lotus. Zhengzhou: Henan Agricultural University, 2014
    [28] 蒋素华,黄萍,王默霏,梁芳,许申平,崔波.萼脊兰MADS-box基因的克隆及表达载体构建.华北农学报,2017,32(3):65-69Jiang S H, Huang P, Wang M F, Liang F, Xu S P, Cui B. Cloning and construction of expression vector of MADS-box gene from Sedirea japonica. Acta Agriculturae Boreali-Sinica, 2017,32(3): 65-69
    [29] Irish V F. Evolution of petal identity. Journal of Experimental Botany, 2009, 60(9): 2517-2527
    [30] 刘轶,郑唐春,代丽娟,刘彩霞,王庆娜,曲冠证. 拟南芥AtPAP1基因植物表达载体构建及在烟草中遗传转化分析. 植物生理学报, 2017, 53(7): 1199-1207Liu Y, Zheng T C, Dai L J, Liu C X, Wang Q N, Qu G Z. Construction of plant expression vector and genetic transformation analysis of Arabidopsis thaliana AtPAP1 gene in Nicotiana tabacum. Plant Physiology Journal, 2017, 53(7): 1199-1207
    [31] Jing D, Xia Y, Chen F, Wang Z, Zhang S, Wang J. Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant. Plant Science, 2015, 231: 40-51
    [32] Liu W, Shen X, Liang H, Wang Y, He Z, Zhang D, Chen F. Isolation and functional analysis of PISTILLATA homolog from Magnolia wufengensis. Frontiers in Plant Science, 2018, 9: 1743
    [33] Fei Y, Liu Z X. Isolation and characterization of the PISTILLATA ortholog gene from Cymbidium faberi Rolfe. Agronomy, 2019, 9(8): 425
    [34] Chen M K, Hsieh W P, Yang C H. Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. Journal of Experimental Botany, 2012, 63(2): 941-961
    [35] Tsai W C, Lee P F, Chen H I, Hsiao Y Y, Wei W J, Pan Z J, Chuang M H, Kuoh C S, Chen W H, Chen H H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiology, 2005, 46(7): 1125-1139
    [36] Yao J L, Xu J, Tomes S, Cui W, Luo Z, Deng C, Ireland H S, Schaffer R J, Gleave A P. Ectopic expression of the PISTILLATA homologous MdPI inhibits fruit tissue growth and changes fruit shape in apple . Plant Direct, 2018, 2(4): 15-19
    [37] Fang Z W, Qi R, Li X F, Liu Z X. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant. Gene, 2014, 550(2): 200-206
    [38] Roque E, Serwatowska J, Cruz Rochina M, Wen J, Mysore K S, Yenush L, Beltrán J P, Ca?as L A. Functional specialization of duplicated AP3-like genes in Medicago truncatula. Plant Journal, 2013, 73(4): 663-675
    [39] Zhang Y, Wang X, Zhang W, Yu F, Tian J, Li D, Guo A. Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes. PLoS ONE, 2011, 6(6): e20930
    [40] Jing D, Chen W, Shi M, Wang D, Xia Y, He Q, Dang J, Guo Q, Liang G. Ectopic expression of an Eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant. Biochemical and Biophysical Research Communications, 2020, 523(1): 33-38
    [41] Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346(6279): 35-39
    [42] Sieburth L E, Running M P, Meyerowitz E M. Genetic separation of third and fourth whorl functions of AGAMOUS. Plant Cell, 1995, 7(8): 1249-1258
    [43] Sage-Ono K, Ozeki Y, Hiyama S. Induction of double flowers in Pharbitis nil using a class-C MADS-box transcription factor with Chimeric REpressor gene-Silencing Technology. Plant Biotechnology (Tokyo, Japan), 2011, 28(2): 153-165
    [44] Ma N, Chen W, Fan T, Tian Y, Zhang S, Zeng D, Li Y. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biology, 2015, 15: 237
    [45] 田亚然,范天刚,张钢,李永红. 低温引起月季花朵过度重瓣化关键基因的表达及分析. 热带作物学报, 2016, 37(6): 1147-1154Tian Y R, Fan T G, Zhang G, Li Y H. Expression and analysis of key genes of excessive double flowers in rose caused by low temperature. Chinese Journal of Tropical Crops, 2016, 37(6): 1147-1154
    [46] Tanaka Y, Oshima Y, Yamamura T, Sugiyama M, Mitsuda N, Ohtsubo N, Ohme-Takagi M, Terakawa T. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Scientific Reports, 2013, 3: 2641
    [47] Bowman J L. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences, 1997, 22(4): 515-527
    [48] 徐雷,宋伟杰,王利琳. 豌豆 AGAMOUS 同源基因功能的初步研究. 科学通报, 2009, 54(20): 3207-3212Xu L, Song W J, Wang L L. Preliminary study on the functions of AGAMOUS homologous genes in Pisum sativum. Chinese Science Bulletin, 2009, 54(20): 3207-3212
    [49] Sasaki K, Yoshioka S, Aida R, Ohtsubo N. Production of petaloid phenotype in the reproductive organs of compound flowerheads by the co-suppression of class-C genes in hexaploid Chrysanthemum morifolium. Planta, 2021, 253(5): 100
    [50] Rodríguez-Cazorla E, Ortu?o-Miquel S, Candela H, Bailey-Steinitz L J, Yanofsky M F, Martínez-Laborda A, Ripoll J J, Vera A. Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genetics, 2018,14(1):e1007182
    [51] 刘志雄,于先泥. 日本晚樱同源异型基因PrseAP3的克隆及其在单瓣与重瓣花中的表达分析. 华中农业大学学报, 2012,31(5): 578-583Liu Z X, Yu X N. Cloning and expressing analysis of a floral homeotic gene PrseAP3 from Prunus lannesiana. Journal of Huazhong Agricultural University, 2012,31(5): 578-583
    [52] 袁秀云,许申平,张燕,梁芳,蒋素华,牛苏燕,崔波. 蝴蝶兰花发育基因PhSTK的克隆及在突变体中的表达分析. 植物生理学报,2022,58(8): 1565-1574Yuan X Y, Xu S P, Zhang Y, Liang F, Jiang S H, Niu S Y, Cui B. Cloning of the floral organ identity gene PhSTK from Phalaenopsis and its expression analysis in floral organ mutants. Plant Physiology Journal, 2022,58(8): 1565-1574
    [53] Dirks-Mulder A, But?t R, van Schaik P, Wijnands J W, van den Berg R, Krol L, Doebar S, van Kooperen K, de Boer H, Kramer E M, Smets E F, Vos R A, Vrijdaghs A, Gravendeel B. Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system. BMC Evolutionary Biology, 2017, 17(1):89
    [54] Chen Y Y, Lee P F, Hsiao Y Y, Wu W L, Pan Z J, Lee Y I, Liu K W, Chen L J, Liu Z J, Tsai W C. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol, 2012, 53(6): 1053-1067
    [55] 夏胜应,刘志雄.CygoSTK基因在普通春兰与奇花品种‘天彭牡丹’中的表达比较. 广西植物, 2020,40(4):518-525Xia S Y, Liu Z X. Expression comparison of CygoSTK gene in Cymbidium goeringii and abnormal flower variety ‘Tian Peng Mu Dan’. Guihaia, 2020,40(4):518-525
    [56] 陶显良. 玉米ZmSTK2基因启动子花粉特异性元件分析及基因对花粉脂质代谢的影响. 沈阳: 沈阳农业大学,2023Tao X L. Analysis of pollen specific elements of maize ZmSTK2 gene promoter and its effect on lipid metabolism in late pollen development. Shenyang: Shenyang Agricultural University,2023
    [57] Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 2004, 14(21): 1935-1940
    [58] 崔荣峰,孟征. 花同源异型MADS-box基因在被子植物中的功能保守性和多样性. 植物学通报, 2007, 24(1): 31-41Cui R F, Meng Z. Functional conservation and diversity of floral homeotic MADS-box genes in angiosperms. Chinese Bulletin of Botany, 2007, 24(1): 31-41
    [59] Zhao X Y, Cheng Z J, Zhang X S. Overexpression of TaMADS1, a SEPALLATA-like gene in wheat,causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006, 223(4): 698-707
    [60] Kaufmann K, Mui?o J M, Jauregui R, Airoldi C A, Smaczniak C, Krajewski P, Angenent G C, Weigel D. Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLOS Biology, 2009, 7(4): e1000090
    [61] Wang J Y, Jiu S T, Xu Y, Ali Sabir I, Wang L, Ma C, Xu W P, Wang S P, Zhang C X. SVP-like gene PavSVP potentially suppressing flowering with PavSEP,PavAP1, and PavJONITLESS in sweet cherries ( Prunus avium L.). Plant Physiology and Biochemistry, 2021, 159: 277-284
    [62] Cheng Z H, Zhuo S B, Liu X F, Che G, Wang Z Y, Gu R, Shen J J, Song W Y, Zhou Z Y, Han D G, Zhang X L. The MADS-box gene CsSHP participates in fruit maturation and floral organ development in cucumber. Frontiers in Plant Science, 2019, 10: 1781
    [63] Pu Z Q, Ma Y Y, Lu M X, Ma Y Q, Xu Z Q. Cloning of a SEPALLATA4-like gene(IiSEP4) in Isatis indigotica Fortune and characterization of its function in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 154: 229-237
    [64] Ampomah-Dwamena C, Morris B A, Sutherland P, Veit B, Yao J L. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiology, 2002, 130: 605-617
    [65] Zhu W W, Yang L, Wu D, Meng Q C, Deng X, Huang G Q, Zhang J, Chen X F, Ferrándiz C, Liang W Q, Dreni L, Zhang D B. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. The New Phytologist, 2022, 233(4): 1682-1700
    [66] Zhou Y Z, Xu Z D, Yong X, Ahmad S, Yang W R, Cheng T R, Wang J, Zhang Q X. SEP-class genes in Prunus mume and their likely role in floral organ development. BMC Plant Biology, 2017, 17(1):10
    [67] Yu X, Duan X, Zhang R, Fu X, Ye L, Kong H, Xu G, Shan H. Prevalent exon-intron structural changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-box gene subfamilies provide new insights into their evolution. Front Plant Science, 2016, 7: 598
    [68] Ma J, Deng S, Chen L, Jia Z, Sang Z, Zhu Z, Ma L, Chen F. Gene duplication led to divergence of expression patterns, protein-protein interaction patterns and floral development functions of AGL6-like genes in the basal angiosperm Magnolia wufengensis (Magnoliaceae). Tree Physiology, 2019, 39(5): 861-876
    [69] Yu X, Chen G, Guo X, Lu Y, Zhang J, Hu J, Tian S, Hu Z. Silencing SlAGL6, a tomato AGAMOUS-LIKE6 lineage gene, generates fused sepal and green petal. Plant Cell Reports, 2017, 36(6): 959-969
    [70] Hsu H F, Chen W H, Shen Y H, Hsu W H, Mao W T, Yang C H. Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nature Communications, 2021, 12(1): 902
    [71] Rijpkema A S, Zethof J, Gerats T, Vandenbussche M. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. The Plant Journal, 2009, 60(1): 1-9
    [72] Li B J, Zheng B Q, Wang J Y, Tsai W C, Lu H C, Zou L H, Wan X, Zhang D Y, Qiao H J, Liu Z J, Wang Y. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Communications Biology, 2020, 3(1): 89
    [73] Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli G B, Pezzotti M, Ferrario S, Angenent G C, Gerats T. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. The Plant Cell , 2003, 15(11): 2680-2693
    [74] Sablowski R W, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92(1): 93-103
    [75] Kim J J, Lee J H, Kim W, Jung H S, Huijser P, Ahn J H. The micro RNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiology, 2012, 159(1): 461-478
    [76] Usami T, Horiguchi G, Yano S, Tsukaya H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development, 2009, 136: 955-964
    [77] Wang Y, Hu Z, Yang Y, Chen X, Chen G. Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters. International Journal of Molecular Sciences, 2009, 10(1): 116-132
    [78] Zhang X, Dou L, Pang C, Song M, Wei H, Fan S, Wang C, Yu S. Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Molecular Genetics and Genomics, 2015, 290(1): 115-126
    [79] Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. Arabidopsis SBP-Box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology, 2009, 50(12): 2133-2145
    [80] 陈晓博. 参与番茄花柄离区发育的转录因子 SPL3 的基因功能研究. 北京:中国农业科学院, 2010Chen X B. Functional study of a transcription factor SQUAMOSA promoter binding protein like 3 in tomato flower abscission zone development. Beijing: Chinese Academy of Agricultural Sciences , 2010
    [81] Chuang C F, Running M, Williams R W, Meyerowitz E M. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes & Development, 1999, 13(3): 334-344
    [82] Hepworth S R, Zhang Y, McKim S, Li X, Haughn G W. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. The Plant Cell, 2005, 17(5): 1434-1448
    [83] Murmu J, Bush M J, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert P R, Zachgo S, Hepworth S R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology, 2010, 154(3): 1492-1504
    [84] Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. The Plant Journal, 2005, 44(1): 100-113
    [85] Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, Moreau H, Kreis M, Lecharny A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 2008, 8: 291
    [86] Minh-Thu P T, Kim J S, Chae S, Jun K M, Lee G S, Kim D E, Cheong J J, Song S I, Nahm B H, Kim Y K. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice. Molecules and Cells, 2018, 41(8): 781-798
    [87] Zhang C, Wang J, Wang X, Li C, Ye Z, Zhang J. UF, a WOX gene, regulates a novel phenotype of un-fused flower in tomato. Plant Science, 2020, 297: 110523
    [88] Li Z, Liu D, Xia Y, Li Z, Jing D, Du J, Niu N, Ma S, Wang J, Song Y, Yang Z, Zhang G. Identification of the WUSCHEL-related homeobox(WOX)gene family, and interaction and functional analysis of TaWOX9 and TaWUS in wheat. International Journal of Molecular Sciences, 2020, 21(5): 1581
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜朝金,张汉尧,罗心平,等.基因调控植物花器官发育的研究进展[J].植物遗传资源学报,2024,25(2):151-161.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:469
  • 下载次数: 2515
  • HTML阅读次数: 179
  • 引用次数: 0
历史
  • 收稿日期:2023-08-11
  • 最后修改日期:2023-09-14
  • 录用日期:
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-01-26
文章二维码
您是第5914054位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!