2025年6月8日 18:40 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第2期 >162-170. DOI:10.13430/j.cnki.jpgr.20230717003 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
肌醇代谢在植物响应非生物胁迫中的作用
DOI:
10.13430/j.cnki.jpgr.20230717003
CSTR:
作者:
  • 于点

    于点

    哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭卫冷

    郭卫冷

    哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 丁炀

    丁炀

    哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘磊

    刘磊

    哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭睿

    郭睿

    哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王丹

    王丹

    哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 孙玉刚

    孙玉刚

    哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭长虹

    郭长虹

    哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室,哈尔滨 150000

作者简介:

研究方向为植物遗传学,E-mail:yudian227@163.com;郭卫冷为共同第一作者

通讯作者:

郭长虹,研究方向为植物遗传学,E-mail: kaku3008@126.com

中图分类号:

基金项目:

国家自然科学基金(U21A20182, 31972507);国家科技攻关项目(2022YFE0203300);黑龙江省博士后基金(LBH-Z21172);哈尔滨师范大学研究生创新基金(HSDSSCX2022-36)


The Role of Myo-inositol Metabolism in Plants Response to Abiotic Stress
Author:
  • YU Dian

    YU Dian

    College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Weileng

    GUO Weileng

    College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DING Yang

    DING Yang

    College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Lei

    LIU Lei

    College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Rui

    GUO Rui

    College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Dan

    WANG Dan

    College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Yugang

    SUN Yugang

    College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Changhong

    GUO Changhong

    College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

College of Life Science and Technology, Harbin Normal University/ Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150000

Fund Project:

Foundation projects: National Natural Science Foundation of China (U21A20182, 31972507); National Key R & D Program of China(2022YFE0203300);Postdoctoral Foundation of Heilongjiang Province (LBH-Z21172); Graduate Student Innovation Fund of Harbin Normal University (HSDSSCX2022-36)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [69]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非生物胁迫制约了植物的生长和发育,降低作物的产量,严重时导致植物死亡。为了应对非生物胁迫,植物在进化过程中形成了一系列胁迫响应机制,包括肌醇(MI, myo-inositol)代谢途径。肌醇为一类化学性质稳定的极性小分子,植物可通过积累其糖苷类衍生物参与渗透调节途径,从而响应非生物胁迫。肌醇-1-磷酸合酶(MIPS, myo-inositol-1-phosphate synthase)、肌醇单磷酸酶(IMP, inositol monophosphtease)和肌醇加氧酶(MIOX, myo-inositol oxygenase)在肌醇的生物合成或分解过程中发挥作用,它们通过调控植物中肌醇的含量,以及后续一系列复杂的转化途径,参与L-抗坏血酸(L-AsA, L-ascorbic acid)和部分细胞壁多糖的合成,响应盐、干旱、碱和低温等非生物胁迫。本文综述了肌醇的结构、生物学作用、肌醇代谢途径相关酶和肌醇衍生物在植物响应非生物胁迫中的研究进展,并对未来的研究方向进行了展望,旨在为利用肌醇代谢增强植物对非生物胁迫的抗性,培育抗逆植物品种提供理论基础。

    关键词:肌醇代谢;非生物胁迫;肌醇-1-磷酸合酶;肌醇单磷酸酶;肌醇加氧酶
    Abstract:

    Abiotic stress limits plant growth and development, causes yield losses in crops, and severe abiotic stress can even result in the death of plant. Plants have evolved a series of stress response mechanisms to adapt to abiotic stress, including the myo-inositol (MI) metabolic pathway. MI represents a class of small polar molecules with stable chemical properties. Plants can respond to a variety of abiotic stress by participating in osmoregulatory pathways through accumulating the glycoside derivatives of MI. Myo-inositol-1-phosphate synthase (MIPS), inositol monophosphate phosphatase (IMP), and myo-inositol oxygenase (MIOX) play a role in the process of the biosynthesis or decomposition of MI. They are involved in the synthesis of L-ascorbic acid (L-AsA) and cell wall polysaccharides by regulating the content of MI in plant and a series of subsequent complex transformation pathways, and ultimately response to abiotic stresses such as salt, drought, alkali, and low temperature. This paper reviewed the research progress of the structure, biological functions of MI, MI metabolic pathway-related enzymes and its derivatives in plants response to abiotic stresses, providing an outlook to the future research focuses. This study aims to provide a theoretical basis for enhancing plant resistance to abiotic stresses by utilizing MI metabolism and breeding stress-resistant plant varieties.

    Key words:myo-inositol metabolism;abiotic stresses;myo-inositol-1-phosphate synthase;inositol monophosphatase;myo-inositol oxygenase
    参考文献
    [1] Zhou X, Xiang Y, Li C, Yu G. Modulatory role of reactive oxygen species in root development in model plant of Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11(9): 485932
    [2] 赵晶晶, 周浓, 曹鸣宇. 非生物胁迫下植物体内丙酮醛代谢的研究进展. 中国农业科学, 2021, 54(8): 1627-1637Zhao J J, Zhou N, Cao M Y. Research progress of pyruvaldehyde metabolism in plants under abiotic stress. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637
    [3] Gupta A, Rico-Medina A, Ca?o-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368(6488): 266-269
    [4] Zheng S, Wei P, Huang L, Cai J, Xu Z. Efficient expression of myo-inositol oxygenase in Escherichia coli and application for conversion of myo-inositol to glucuronic acid. Food Science and Biotechnology, 2014, 23(2): 445-450
    [5] Vilchez J I, Yang Y, He D, Zi H, Peng L, Lv S, Kaushal R, Wang W, Huang W, Liu R, Lang Z, Miki D, Tang K, Pare P W, Song C P, Zhu J K, Zhang H. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nature Plants, 2020, 6(8): 983-995
    [6] Scherer. Ueber eine neue, aus dem Muskelfleische gewonnene Zuckerart. Justus Liebigs Annalen der Chemie, 1850, 73(3): 322-328
    [7] Thomas M P, Mills S J, Potter B V. The “other” inositols and their phosphates: Synthesis, biology, and medicine (with recent advances in myo-inositol chemistry). Angewandte Chemie International Edition, 2016, 55(5): 1614-1650
    [8] Loewus F A, Kelly S. Conversion of glucose to inositol in parsley leaves. Biochemical and Biophysical Research Communications, 1962, 7(3):204-208
    [9] Michell R H. Inositol derivatives: Evolution and functions. Nature Reviews Molecular Cell Biology, 2008, 9(2): 151-161
    [10] 陈红, 胡曼东, 陈芳艳, 赵静雅, 李定辰, 韩黎. 磷脂酰肌醇磷酸酶Sac1功能研究进展. 中国细胞生物学学报, 2022, 44(6): 1195-1201Chen H, Hu M D, Chen F Y, Zhao J Y, Li D C, Han L. Research progress on the function of phosphatidyl inositol phosphatase Sac1. Chinese Journal of Cell Biology, 2022, 44(6): 1195-1201
    [11] 徐功勋, 聂佩显, 周佳, 吕德国, 秦嗣军. 苹果肌醇半乳糖苷合酶基因家族鉴定与表达分析. 植物生理学报, 2022, 58(12): 2321-2332Xu G X, Nie P X, Zhou J, Lv D G, Qin S J. Identification and expression analysis of apple inositol galactoside synthase gene family. Chinese Plant Physiology Journal, 2022, 58(12): 2321-2332
    [12] Ibrahim S, Saleem B, Rehman N, Zafar S A, Naeem M K, Khan M R. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. Journal of Advanced Research, 2022, 37(7): 33-41
    [13] Li Y, Han P, Wang J, Shi T, You C. Production of myo-inositol: Recent advance and prospective. Biotechnology and Applied Biochemistry, 2022, 69(3): 1101-1111
    [14] Hazra A, Dasgupta N, Sengupta C, Das S. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics, 2019, 111(6): 1929-1945
    [15] Chhetri D R, Yonzone S, Tamang S, Mukherjee A K. L-myo-InositoL-1-phosphate synthase from bryophytes: Purification and characterization of the enzyme from Lunularia cruciata (L.) Dum. Brazilian Journal of Plant Physiology, 2009, 21(3): 243-250
    [16] Johnson M D, Sussex I M. 1 L-myo-inositol 1-phosphate synthase from Arabidopsis thaliana. Plant Physiology, 1995, 107(2): 613-619
    [17] Hegeman C E, Grabau E A. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiology, 2001, 126(4): 1598-1608
    [18] Basak P, Sangma S, Mukherjee A, Agarwal T, Sengupta S, Ray S, Majumder A L. Functional characterization of two myo-inositol-1-phosphate synthase (MIPS) gene promoters from the halophytic wild rice (Porteresia coarctata). Planta, 2018, 248(5): 1121-1141
    [19] Ray S, Patra B, Das-Chatterjee A, Ganguli A, Majumder A L. Identification and organization of chloroplastic and cytosolic L-myo-inositol 1-phosphate synthase coding gene (s) in Oryza sativa: Comparison with the wild halophytic rice, Porteresia coarctata. Planta, 2010, 231(5): 1211-1227
    [20] Cui M, Liang D, Ma F. Molecular cloning and characterization of a cDNA encoding kiwifruit L-myo-inositol-1-phosphate synthase, a key gene of inositol formation. Molecular Biology Reports, 2013, 40(1): 697-705
    [21] Zhang J, Yang N, Li Y, Zhu S, Zhang S, Sun Y, Zhang H X, Wang L, Su H. Overexpression of PeMIPS1 confers tolerance to salt and copper stresses by scavenging reactive oxygen species in transgenic poplar. Tree Physiology, 2018, 38(10): 1566-1577
    [22] Ma R, Song W, Wang F, Cao A, Xie S, Chen X, Jin X, Li H. A cotton (Gossypium hirsutum) myo-inositol-1-phosphate synthase (GhMIPS1D) gene promotes root cell elongation in Arabidopsis. International Journal of Molecular Sciences, 2019, 20(5): 1224
    [23] Takimoto K, Okada M, Matsuda Y, Nakagawa H. Purification and properties of myo-inositol-1-phosphatase from rat brain. The Journal of Biochemistry, 1985, 98(2): 363-370
    [24] Diehl R E, Whiting P, Potter J, Gee N, Ragan C I, Linemeyer D, Schoepfer R, Bennett C, Dixon R A. Cloning and expression of bovine brain inositol monophosphatase. Journal of Biological Chemistry, 1990, 265(11): 5946-5949
    [25] McAllister G, Whiting P, Hammond E A, Knowles M R, Atack J R, Bailey F J, Maigetter R, Ragan C I. cDNA cloning of human and rat brain myo-inositol monophosphatase. Expression and characterization of the human recombinant enzyme. Biochemical Journal, 1992, 284(3): 749-754
    [26] Nourbakhsh A, Collakova E, Gillaspy G E. Characterization of the inositol monophosphatase gene family in Arabidopsis. Frontiers in Plant Science, 2015, 5(1): 725-738
    [27] Zhang R X, Qin L J, Zhao D G. Overexpression of the OsIMP gene increases the accumulation of inositol and confers enhanced cold tolerance in tobacco through modulation of the antioxidant enzymes′ activities. Genes, 2017, 8(7): 179-194
    [28] Savino S, Borg A J E, Dennig A, Pfeiffer M, de Giorgi F, Weber H, Dubey K D, Rovira C, Mattevi A, Nidetzky B. Deciphering the enzymatic mechanism of sugar ring contraction in UDP-apiose biosynthesis. Nature Catalysis, 2019, 2(12): 1115-1123
    [29] Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta, 2005, 221(2): 243-254
    [30] Zhong R, Teng Q, Haghighat M, Yuan Y, Furey S T, Dasher R L, Ye Z H. Cytosol-localized UDP-xylose synthases provide the major source of UDP-xylose for the biosynthesis of xylan and xyloglucan. Plant Cell Physiol, 2017, 58(1): 156-174
    [31] Radzio J A, Lorence A, Chevone B I, Nessler C L. L-gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Molecular Biology, 2003, 53(6): 837-844
    [32] Thakur N, Flowerika, Chaturvedi S, Tiwari S. Wheat derived glucuronokinase as a potential target for regulating ascorbic acid and phytic acid content with increased root length under drought and ABA stresses in Arabidopsis thaliana. Plant Science, 2023, 331(3): 111671
    [33] Charalampous F C, Lyras C. Biochemical studies on inositol: IV. conversion of inositol to glucuronic acid by rat kidney extracts. Journal of Biological Chemistry, 1957, 228(1): 1-13
    [34] Nascimento D, Conti G, Labate M T V, Gutmanis G, Labate C A. Modulating Miox2 expression in Nicotiana tabacum and impacts on gene involved in cell wall biosynyhesis. Bioenergia em Revista: Diálogos, 2012, 2(1): 60-84
    [35] Duan J, Zhang M, Zhang H, Xiong H, Liu P, Ali J, Li J, Li Z. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Science, 2012, 196(8): 143-151
    [36] Chen C, Sun X, Duanmu H, Yu Y, Liu A, Xiao J, Zhu Y. Ectopic expression of a Glycine soja myo-inositol oxygenase gene (GsMIOX1a) in Arabidopsis enhances tolerance to alkaline stress. Public Library of Science One, 2015, 10(6): e0129998
    [37] Munir S, Mumtaz M A, Ahiakpa J K, Liu G, Chen W, Zhou G, Zheng W, Ye Z, Zhang Y. Genome-wide analysis of myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BioMed Central Genomics, 2020, 21(1): 284-298
    [38] Alok A, Kaur J, Tiwari S. Functional characterization of wheat myo-inositol oxygenase promoter under different abiotic stress conditions in Arabidopsis thaliana. Biotechnology Letters, 2020, 42(10): 2035-2047
    [39] Yang J, Yang J, Zhao L, Gu L, Wu F, Tian W, Sun Y, Zhang S, Su H, Wang L. Ectopic expression of a Malus hupehensis Rehd. myo-inositol oxygenase gene (MhMIOX2) enhances tolerance to salt stress. Scientia Horticulturae, 2021, 281(1): 109898
    [40] Li Z, Liu Z, Wei Y, Liu Y, Xing L, Liu M, Li P, Lu Q, Peng R. Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress. Public Library of Science One, 2021, 16(7): e0254111
    [41] Guo W, Yu D, Zhang R, Zhao W, Zhang L, Wang D, Sun Y, Guo C. Genome-wide identification of the myo-inositol oxygenase gene family in alfalfa (Medicago sativa L.) and expression analysis under abiotic stress. Plant Physiol Biochem, 2023, 200(5): 107787
    [42] Viviani A, Fambrini M, Giordani T, Pugliesi C. L-ascorbic acid in plants: From biosynthesis to its role in plant development and stress response. Agrochimica, 2021, 65(2): 151-170
    [43] Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 663-679
    [44] Lisko K A, Torres R, Harris R S, Belisle M, Vaughan M M, Jullian B, Chevone B I, Mendes P, Nessler C L, Lorence A. Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1, 4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cellular & Developmental Biology Plant, 2013, 49(6): 643-655
    [45] Lorence A, Chevone B I, Mendes P, Nessler C L. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology, 2004, 134(3): 1200-1205
    [46] Rui Y, Dinneny J R. A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytologist, 2020, 225(4): 1428-1439
    [47] Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. Journal of Integrative Plant Biology, 2021, 63(1): 251-272
    [48] Jamet E, Dunand C. Plant cell wall proteins and development. International Journal of Molecular Sciences, 2020, 21(8): 2731-2735
    [49] Loewus F A, Kelly S. Inositol metabolism in plants. I. labeling patterns in cell wall polysaccharides from detached plants given myo-inositol-2-t or-2-C14. Archives of Biochemistry and Biophysics, 1963, 102(1): 96-105
    [50] 周洁, 宋雪晴, 何旭东, 王保松. 柳树SjMIPS基因的克隆及其表达分析. 江苏林业科技, 2016, 43(6): 1-5Zhou J, Song X Q, He X D, Wang B S. Cloning and expression analysis of SjMIPS gene in willow. Jiangsu Forestry Science and Technology, 2016, 43(6): 1-5
    [51] Hu L Y, Zhou K, Liu Y, Yang S L, Zhang J, Gong X Q, Ma F W. Overexpression of MdMIPS1 enhances salt tolerance by improving osmosis, ion balance, and antioxidant activity in transgenic apple. Plant Science, 2020, 301(9): 110654
    [52] Hu L Y, Yue H, Zhang J Y, Li Y T S, Gong X Q, Zhou K,Ma F W. Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple. Journal of Integrative Agriculture, 2022, 21(7): 1968-1981
    [53] Tan J, Wang C, Xiang B, Han R, Guo Z. Hydrogen peroxide and nitric oxide mediated cold and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant, Cell & Environment, 2013, 36(2): 288-299
    [54] Kaur H, Shukla R K, Yadav G, Chattopadhyay D, Majee M. Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant, Cell & Environment, 2008, 31(11): 1701-1716
    [55] Sharma N. Wheat myo-inositol phosphate synthase influences plant growth and stress responses via ethylene mediated signaling. Scientific Reports, 2020, 10(1): 10766
    [56] Nepal N, Yactayo Chang J P, Medina Jiménez K, Acosta Gamboa L M, González Romero M E, Arteaga Vázquez M A, Lorence A. Mechanisms underlying the enhanced biomass and abiotic stress tolerance phenotype of an Arabidopsis MIOX over-expresser. Plant Direct, 2019, 3(9): e00165
    [57] Shi F, Dong Y, Wang M, Qiu D. Transcriptomics analyses reveal that OsMIOX improves rice drought tolerance by regulating the expression of plant hormone and sugar related genes. Plant Biotechnology Reports, 2020, 14(3): 339-349
    [58] 陈林英, 李佳佳, 王博, 杜婉清, 高梦雪, 刘慧, 檀淑琴, 邱丽娟, 王晓波. WRKY 转录因子在大豆响应生物和非生物胁迫中的功能研究进展. 植物遗传资源学报, 2022, 23(2): 323-332Chen L Y, Li J J, Wang B, Du W Q, Gao M X, Liu H, Tan S Q, Qiu L J, Wang X B. Research progress on the function of WRKY transcription factor response to biotic and abiotic stresses in soybean. Journal of Plant Genetic Resources, 2022, 23(2): 323-332
    [59] Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 2021, 22(9): 4609
    [60] Chen Y, Hoehenwarter W. Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiology, 2015, 169(4): 3021-3033
    [61] Golani Y, Kaye Y, Gilhar O, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5PTase9) controls plant salt tolerance by regulating endocytosis. Molecular Plant, 2013, 6(6): 1781-1794
    [62] Ozturk M, Turkyilmaz Unal B, Garcia-Caparros P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. Physiology Plant, 2021, 172(2): 1321-1335
    [63] Perera I Y, Hung C Y, Moore C D, Stevenson-Paulik J, Boss W F. Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. The Plant Cell, 2008, 20(10): 2876-2893
    [64] 楚乐乐, 罗成科, 田蕾, 张银霞, 杨淑琴, 李培富. 植物对碱胁迫适应机制的研究进展. 植物遗传资源学报, 2019, 20(4): 836-844Chu L L, Luo C K, Tian L, Zhang Y X, Yang S Q, Li P F. Research advance in plants′ adaptation to alkali stress. Journal of Plant Genetic Resources, 2019, 20(4): 836-844
    [65] Fang S, Hou X, Liang X. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science, 2021, 12: 667458
    [66] Kidokoro S, Shinozaki K, Yamaguchi Shinozaki K. Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science, 2022, 27(9): 922-935
    [67] He F Y, Xu J F, Jian Y Q, Duan S G, Hu J, Jin L P, Li G C. Overexpression of galactinol synthase 1 from Solanum commersonii (ScGolS1) confers freezing tolerance in transgenic potato. Horticultural Plant Journal, 2023, 9(3): 541-552
    [68] Endres S, Tenhaken R. Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiology, 2009, 149(2): 1042-1049
    [69] Ivanov Kavkova E, Bl?chl C, Tenhaken R. The Myo-inositol pathway does not contribute to ascorbic acid synthesis. Plant Biology, 2019, 21(S1): 95-102
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于点,郭卫冷,丁炀,等.肌醇代谢在植物响应非生物胁迫中的作用[J].植物遗传资源学报,2024,25(2):162-170.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:514
  • 下载次数: 1409
  • HTML阅读次数: 144
  • 引用次数: 0
历史
  • 收稿日期:2023-07-17
  • 最后修改日期:2023-08-02
  • 录用日期:
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-01-26
文章二维码
您是第5905525位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!