2025年5月25日 22:26 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2024年第25卷第2期 >279-293. DOI:10.13430/j.cnki.jpgr.20230802002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
生姜IPT基因家族的鉴定与表达分析
DOI:
10.13430/j.cnki.jpgr.20230802002
CSTR:
作者:
  • 席克勇 1

    席克勇

    长江大学园艺园林学院/长江大学香辛作物研究院,湖北荆州434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 田野 1

    田野

    长江大学园艺园林学院/长江大学香辛作物研究院,湖北荆州434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王艳红 1

    王艳红

    长江大学园艺园林学院/长江大学香辛作物研究院,湖北荆州434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘奕清 1

    刘奕清

    长江大学园艺园林学院/长江大学香辛作物研究院,湖北荆州434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 尹军良 2

    尹军良

    长江大学农学院,湖北荆州434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 梁红艳 3

    梁红艳

    荆州农业科学院,湖北荆州434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 朱学栋 1

    朱学栋

    长江大学园艺园林学院/长江大学香辛作物研究院,湖北荆州434025
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 朱永兴 1

    朱永兴

    长江大学园艺园林学院/长江大学香辛作物研究院,湖北荆州434025
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.长江大学园艺园林学院/长江大学香辛作物研究院,湖北荆州434025;2.长江大学农学院,湖北荆州434025;3.荆州农业科学院,湖北荆州434025

作者简介:

研究方向为蔬菜逆境生理研究,E-mail: xky1172731440@163.com

通讯作者:

朱永兴,研究方向为蔬菜逆境生理研究,E-mail: xbnlzyx@163.com

中图分类号:

基金项目:

湖北省重点研发计划项目(2021BBA097,2022BBA0061);荆州市2022年度科技计划(2022BB36);重庆英才?优秀科学家项目(CQYC20220101514)


Identification and Transcriptional Profile Analysis of IPT Gene Family Members in Ginger
Author:
  • XI Keyong 1

    XI Keyong

    College of Horticulture and Gardening, Yangtze University/Xiangxin Crop Research Institute, Yangtze University, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TIAN Ye 1

    TIAN Ye

    College of Horticulture and Gardening, Yangtze University/Xiangxin Crop Research Institute, Yangtze University, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Yanhong 1

    WANG Yanhong

    College of Horticulture and Gardening, Yangtze University/Xiangxin Crop Research Institute, Yangtze University, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Yiqing 1

    LIU Yiqing

    College of Horticulture and Gardening, Yangtze University/Xiangxin Crop Research Institute, Yangtze University, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YIN Junliang 2

    YIN Junliang

    College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIANG Hongyan 3

    LIANG Hongyan

    Jingzhou Academy of Agricultural Sciences, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Xuedong 1

    ZHU Xuedong

    College of Horticulture and Gardening, Yangtze University/Xiangxin Crop Research Institute, Yangtze University, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Yongxing 1

    ZHU Yongxing

    College of Horticulture and Gardening, Yangtze University/Xiangxin Crop Research Institute, Yangtze University, Jingzhou 434025, Hubei
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Horticulture and Gardening, Yangtze University/Xiangxin Crop Research Institute, Yangtze University, Jingzhou 434025, Hubei;2.College of Agriculture, Yangtze University, Jingzhou 434025, Hubei;3.Jingzhou Academy of Agricultural Sciences, Jingzhou 434025, Hubei

Fund Project:

Foundation projects: Key Research and Development Program of Hubei Province, China (2022BBA0061, 2021BBA096); The Scientific and Technological Projects of Jingzhou, Hubei Province, China (2022BB36); Chongqing Outstanding Scientist Program(CQYC20220101514)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    生姜是一种重要的“药食同源”植物,但其种植过程中容易受到各种生物/非生物胁迫的影响,不利于生姜的安全生产。异戊烯基转移酶(IPT,isopentenyl-transferases)是催化细胞分裂素生物合成的关键酶,也是重要的限速酶,与植物的抗逆性关系密切。本研究通过系统的生物信息学分析,从生姜基因组中鉴定到10个ZoIPT,并且将其命名为ZoIPT1~ZoIPT10。其编码蛋白的氨基酸长度范围在283~491 aa之间,分子质量在31.14~54.02 kDa,等电点在4.97~9.37之间;蛋白质特征分析表明,所有ZoIPTs均具亲水性。共线性关系分析发现生姜IPT基因与15个芭蕉IPT基因存在共线性,与1个拟南芥IPT基因存在共线性。转录组数据分析结果显示,ZoIPTs有一定的组织表达特异性,并且能响应病害、低温等逆境胁迫,其中,ZoIPT3和ZoIPT5在生姜不同生长时期、不同部位、低温和病害胁迫下均有较高表达。qRT-PCR分析结果表明,ZoIPTs响应干旱、淹水、盐胁迫。在淹水和盐胁迫下,根茎中ZoIPT3表达量显著上升;在干旱胁迫下,叶和根茎中ZoIPT5的表达显著上升。综上所述,本研究通过系统的鉴定、进化分析、特征分析、启动子分析、表达模式分析,并对干旱、盐、淹水胁迫下的表达模式进行了分析,为深入研究ZoIPT在调控生姜生长发育和抗逆性中的生物学功能提供了理论基础。

    关键词:生姜;IPT;生物信息学分析;表达分析
    Abstract:

    Ginger is an important vegetable crop that can be used as medicine and food, but it is sensitive to various biotic and abiotic stresses during its cultivation, which is detrimental to the safe production. Isopentenyl-transferases (IPTs) are key enzymes that catalyze the biosynthesis of cytokinin and are also important rate-limiting enzymes of cytokinin, and it is closely related to the stress resistance of plants. Here, ten ZoIPTs had been identified from ginger genome through the bioinformatics analysis, designated ZoIPT1~ZoIPT10. The encoded protein ranged from 283 to 491 amino acids, with the molecular weight of 31.14 to 54.02 kDa, and the isoelectric point pI of 4.97 to 9.37. All these ZoIPTs were predicted to be hydrophilic. Transcriptome data analysis showed that ZoIPTs showed tissue-specific transcriptional patterns and could respond to stress treatments such as disease and low temperature. ZoIPT3 and ZoIPT5 were highly expressed at different growth stages, different tissues, and in response to low temperature and disease stress. qRT-PCR analysis showed that ZoIPTs was responsive to drought, flooding and salt stress. Under flooding and salt treatment conditions, the significant induction of ZoIPT3 in rhizomes was observed. Under drought stress, the expression of ZoIPT5 in leaves and rhizomes were significantly increased. In summary, with the results of the systematic identification, evolutionary analysis, characteristic analysis, promoter analysis, as well as transcriptional pattern analysis, and analyzed the expression patterns of ZoIPT genes under drought, flooding and salt stress, this study provided a theoretical basis for further in-depth research on the biological functions of ZoIPTs in regulating growth and development and stress responses in ginger.

    Key words:Zingiber officinale Roscoe.;IPT;bioinformatics analysis;expression analysis
    参考文献
    [1] Varakumar S, Umesh K V, Singhal R S. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 2017, 216:27-36
    [2] 任清盛, 李承永. 我国生姜产业现状及发展分析. 中国蔬菜, 2021, 8:8-11Ren Q S. Li C Y. Analysis of the current situation and development of China's ginger industry. China Vegetables, 2021, 8:8-11
    [3] Crowell D N, Salaz M S. Inhibition of growth of cultured tobacco cells at low concentrations of lovastatin is reversed by cytokinin. Journal of Plant Physiology, 1992, 100(4):2090-2095
    [4] Argueso C T, Ferreira F J, Epple P, To J P, Hutchison C E, Schaller G E, Dangl J L, Kieber J J. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genetics, 2012(1):e1002448
    [5] Chen C, Melitz D K. Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures. FEBS Letters, 1979, 107(1): 15-20
    [6] Blackwell J R, Horgan R. Cytokinin biosynthesis by extracts of Zea mays. Phytochemistry, 1994, 35(2):339-342
    [7] Barry G F, Rogers S G, Fraley R T, Brand L. Identification of a cloned cytokinin biosynthetic gene. The Proceedings of the National Academy of Sciences, 1984, 81:4776-4780
    [8] Akiyoshi D E, Klee H, Amasino R M, Nester E W, Gordon M P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. The Proceedings of the National Academy of Sciences , 1984, 81:5994-5998
    [9] Sakakibara H. Cytokinins activity, biosynthesis, and translocation. Annual Review of Plant Biology, 2006, 57:431-449
    [10] Frebort I, Kowalska M, Hluska T, Frebortova J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 2011, 62:2431-2452
    [11] Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. The Proceedings of the National Academy of Sciences, 2006, 103(44):16598-16603
    [12] Gujjar R S, Supaibulwatana K. The Mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants: Basel, 2019, 8(12):542
    [13] Hirose N, Takei K, Kuroha T, Kamada, Nobusada T, Hayashi H, Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany, 2008, 59:75-83
    [14] Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Naagasaki H, Inukai Y, Sato Y, Matsuoka M. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiology, 2006, 142:54-62
    [15] Satoshi M, Kaori K, Machiko F, Ichiro H, Shunsuke I. Roles and regulation of cytokinins in tomato fruit development. Journal of Experimental Botany, 2012, 63(15):5569-5579
    [16] Ye C J, Wu S W, Kong F N, Zhou C J, Yang Q K, Sun Y, Wang B. Identification and characterization of an isopentenyl transferase (IPT) gene in soybean (Glycine max L.). Plant Science, 2006, 170:542-550
    [17] Li H L, W L, Dong Z M, Jiang Y S, Jiang S J, Xing H T, Li Q, Liu G C, Tian S M, Wu Z Y, Wu B, Li Z X, Zhao P, Zhang Y, Tang J M, Xu J B, Huang K, Liu X, Zhang W L, Liao Q H, Ren Y, Huang X Z, Li Q Z, Li C Y, Wang Y, Xavier-Ravi Baskaran, Li H H, Liu Y, Wan T, Liu Q H, Zou Y, Jian J B, Xia Q Y ,Liu Y Q. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway. Horticulture Research, 2021, 8(1):242
    [18] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22):4673-4680
    [19] Sharma H, Sharma A, Rajput R, Sidhu S, Dhillon H, Verma P C, Pandey A, Upadhyay S K. Molecular characterization, evolutionary analysis, and expression profiling of BOR genes in important cereals. Plants, 2022, 11(7):911
    [20] Jiang Y S, Huang M J, Zhang M X, Lan J B, Wang W X, Tao X, Liu Y Q. Transcriptome analysis provides novel insights into high-soil-moisture-elevated susceptibility to Ralstonia solanacearum infection in ginger (Zingiber officinale Roscoe cv. Southwest). Plant Physiology and Biochemistry, 2018, 132:547-556
    [21] Huang M J, Xing H T, Li Z X, Li H L, Wu L, Jiang Y S. Identification and expression profile of the soil moisture and Ralstonia solanacearum response CYPome in ginger (Zingiber officinale). PeerJ, 2021, 9:11755
    [22] Li G, Ma J W, Yin J L, Guo F L, Xi K Y, Yang P H, Cai X D, Jia Q, Li L, Liu Y Q, Zhu Y X. Identification of reference genes for reverse transcription-quantitative PCR analysis of ginger under abiotic stress and for postharvest biology studies. Frontiers in Plant Science, 2022, 13:1587
    [23] Yin J L, Liu M Y, Ma D F, Wu J W, LI S L, Zhu Y X, Han B. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biology and Technology, 2018, 136:90-98
    [24] Varakumar S, Umesh K V, Singhal R S. Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 2017, 216:27-36
    [25] 陈小晶, 王东梅, 关红辉, 郭剑, 沙小茜, 李永祥, 张登峰, 刘旭洋, 何冠华, 石云素. 玉米CIPK基因家族的鉴定及ZmCIPK3的抗旱性功能研究. 植物遗传资源学报, 2022, 23(4):1064-1075Chen X J, Wang D M, Guan H H, Guo J, Sha X X, Li Y X, Zhang D F, Liu X Y, He G H, Shi Y S. Identification of CIPK gene family members and investigation of the drought tolerance of ZmCIPK3 in maize. Journal Of Plant Genetic Resources, 2022, 23(4):1064-1075
    [26] 杜强, 韩玲玲, 高芙蓉, 周逸龙, 彭子华, 王志龙, 陈秋红. 水稻DUF761基因家族成员鉴定与表达谱分析. 植物遗传资源学报, 2022, 23(5):1487-1499Du Q, Han L L, Gao F R,Zhou Y L, Peng Z H, Wang Z L, Chen Q H. Identification and expression profile analysis of DUF761 gene family members in rice. Journal of Plant Genetic Resources, 2022, 23(5):1487-1499
    [27] Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 2011, 62:2431-2452
    [28] Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, Yamaguchi S. Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. The Proceedings of the National Academy of Sciences, 2005, 102(28):9972-9977
    [29] 王娜. 小麦异戊烯基转移酶基因家族的生物信息学分析和TaIPT8的抗旱功能鉴定. 荆州:长江大学, 2022Wang N. Bioinformatics analysis of the isopentenyl transferase gene family in wheat and functional identification of TaIPT8 in drought tolerance. Jingzhou:Yangtze University, 2022
    [30] 田晓芹, 褚晶, 丁洪霞.藜麦异戊烯基转移酶基因(CqIPT)家族的全基因组鉴定与分析. 烟台大学学报: 自然科学与工程版, 2023, 36(2):149-156Tian X Q, Zhu J, Ding H X. Quinoa isoprene transferase gene (CqIPT) family Genome-wide identification and analysis. Journal of Yantai University, 2023, 36(2):149-156
    [31] Nishiyama R, Watanabe Y, Fujita Y, Le D T, Kojima M, Werner T, Vankova R, Yamaguchi, Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran L S. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell, 2011, 23(6):2169-2183
    [32] Rivero, Rosa M, Kojima, Mikiko, Gepstein, Amira, Sakakibara, Hitoshi, Mittler, Ron, Gepstein, Shimon, Blumwald, Eduardo. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. The Proceedings of the National Academy of Sciences, 2007, 104:19631-19636
    [33] Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal, 2011, 9(7):747-758
    [34] 李志强, 聂石辉, 王仙, 向莉, 刘恩良, 方伏荣. 大麦SRO家族的全基因组鉴定及生物信息学分析.植物生理学报, 2022, 58 (8):1496-1506Li Z Q, Nie S H, Wang X, Xiang L, Liu E L, Fang F R. Genome wide identification and bioinformatics of SOR family in barely. Plant Physiology Journal, 2022, 58 (8):1496-1506
    [35] 李民吉. 桃ATP/ADP PpIPT基因鉴定与表达分析. 泰安:山东农业大学, 2015Li M J. Identification and characterization of ATP/ADP PpIPT genes in peach, TaiAn:Shandong Agricultural University, 2015
    [36] Akamatsu A, Nagae M, Nishimura Y, Romero Montero D, Ninomiya S, Kojima M, Takebayashi Y, Sakakibara H, Kawaguchi M, Takeda N. Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. Plant Journal, 2021, 105(6):1507-1520
    [37] 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展. 生物技术通报, 2018, 34(7):1-13Gao X H, Fu X D. Research progress for the gibberellin signaling and action on plant growth and development. Biotechnology Bulletin, 2018, 34(7):1-13
    [38] Wang Y, Shen W, Chan Z, Wu Y. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis Thaliana. Frontiers in Plant Science, 2015, 19(6):1004
    [39] 蔡兆明, 程春红, 廖静静,王殿东. 茎瘤芥异戊烯基转移酶家族基因全基因组鉴定及表达分析.西北植物学报, 2022, 42(1): 38-47Cai Z M, Chen C H, Liao J J,Wang D D. Genome-wide identification and expression analysis of Isopentenyl transferase family genes in tuber mustard. Acta Botanica Brasilica-Occidentalia Sinica, 2022, 42(1):38-47
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

席克勇,田野,王艳红,等.生姜IPT基因家族的鉴定与表达分析[J].植物遗传资源学报,2024,25(2):279-293.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-02
  • 最后修改日期:2023-09-01
  • 录用日期:
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-01-26
文章二维码
您是第5866753位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!