2025年5月25日 7:15 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第2期 >237-248. DOI:10.13430/j.cnki.jpgr.20240526001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
大豆种质资源时序性冠层覆盖度鉴定评价及优异种质筛选
DOI:
10.13430/j.cnki.jpgr.20240526001
CSTR:
作者:
  • 王琦 1,2

    王琦

    东北农业大学农学院,哈尔滨 150030;作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 白东 2

    白东

    作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张皓 2

    张皓

    作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 田宇 2

    田宇

    作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 车荧璞 2

    车荧璞

    作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李进冬 2

    李进冬

    作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郑海洋 2

    郑海洋

    作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 金秀良 2

    金秀良

    作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李英慧 1,2

    李英慧

    东北农业大学农学院,哈尔滨 150030;作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邱丽娟 2

    邱丽娟

    作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.东北农业大学农学院,哈尔滨 150030;2.作物基因资源与育种国家重点实验室/农作物基因资源与遗传改良国家重大科学工程/ 中国农业科学院作物科学研究所粮食作物遗传资源评价与利用重点实验室,北京 100081

作者简介:

研究方向为大豆优异基因挖掘,E-mail : wangqi_abc@163.com

通讯作者:

李英慧,研究方向为种质资源精准鉴定与评价,E-mail: liyinghui@caas.cn
邱丽娟,研究方向为大豆基因资源挖掘与利用,E-mail: qiulijuan@caas.cn

中图分类号:

基金项目:

国家重点研发计划(2021YFD1201600)


Identification and Evaluation of Time-series Canopy Cover of Soybean Germplasm Resources and Screening of Elite Germplasm
Author:
  • WANG Qi 1,2

    WANG Qi

    College of Agriculture, Northeast Agricultural University, Harbin 150030;State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • BAI Dong 2

    BAI Dong

    State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Hao 2

    ZHANG Hao

    State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TIAN Yu 2

    TIAN Yu

    State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHE Yingpu 2

    CHE Yingpu

    State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Jindong 2

    LI Jindong

    State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHENG Haiyang 2

    ZHENG Haiyang

    State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIN Xiuliang 2

    JIN Xiuliang

    State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Yinghui 1,2

    LI Yinghui

    College of Agriculture, Northeast Agricultural University, Harbin 150030;State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIU Lijuan 2

    QIU Lijuan

    State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Agriculture, Northeast Agricultural University, Harbin 150030;2.State Key Laboratory of Crop Gene Resources and Breeding/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081

Fund Project:

Foundation project: National Key Research and Development Program of China (2021YFD1201600)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    农作物种质资源是新品种培育的物质基础,高通量表型分析技术的发展为优异种质的挖掘与利用提供了崭新的视角。本研究利用无人机收集了1129份大豆种质的时序性冠层覆盖度数据,对最大冠层覆盖度和封垄速度这两个分属空间维度和时间维度的性状进行了统计分析,旨在揭示不同生态区来源的种质资源在田间的动态生长特征和差异。结果表明,在江西省南昌种植环境下,1129份大豆种质资源的最大冠层覆盖度和封垄速度具有丰富的表型多样性,变异系数分别为16.09%和49.35%。不同结荚习性和生态区的种质在冠层覆盖度和封垄速度上表现不同,有限结荚习性的种质具有更高的冠层覆盖度和更快的封垄速度,来自南方生态区的大豆种质比来自其他生态区的大豆种质具有更高的冠层覆盖度和更快的封垄速度。最终筛选出最大冠层覆盖度在90%以上且封垄速度在0.3 d-1以上的优异种质21份。这些种质适合南方地区种植,在生长发育前期能够快速封垄,有效抑制杂草生长,从而降低田间管理成本,并且在生育前期能够快速积累较多生物量,从而在生育后期实现高产。研究结果为培育具有优异特性的高产大豆新品种提供材料基础,对于大豆生产具有重要意义。

    关键词:大豆;种质资源;时序性;最大冠层覆盖度;封垄速度
    Abstract:

    Crop germplasm resources serve as the foundational material for the development of new varieties. Advances in high-throughput phenotyping technology offer a new perspective for the exploration and utilization of superior germplasm. In this study, the time-series canopy coverage data from 1129 soybean germplasms, collected by unmanned air vehicles, along with two spatial and temporal traits, max canopy coverage (MaxCC) and canopy cover increase speed (CCSpeed), were statistically analyzed. This analysis aimed to reveal the dynamic growth characteristics and variations of germplasm resources from different ecological regions in the field. The results showed that under the planting environments of Nanchang, Jiangxi province, the MaxCC and CCSpeed of these germplasm resources exhibited substantial phenotypic diversity, with variation coefficients of 16.09% and 49.35%, respectively. Germplasms with distinct growth habits and ecological origin varied in their MaxCC and CCSpeed; those with a determinate stem growth habit showed faster CCSpeed and a higher MaxCC. Soybean germplasms from southern ecological regions demonstrated higher MaxCC and faster CCSpeed compared from other regions. Twenty-one elite germplasms with MaxCC above 90% and the CCSpeed above 0.3 d-1 were selected. These germplasms are suitable for planting in the southern region due to their early canopy closure, which can mitigate weed pressure, thus reducing field management costs. Rapid accumulation of biomass during the early growth stage can lead to higher yields in later stages. These findings provide a material basis for the breeding of new high-yielding soybean varieties with desirable characteristics and hold significant implications for soybean production.

    Key words:soybean;germplasm resources;time series;max canopy cover;canopy cover increase speed
    参考文献
    [1] Qin P X, Wang T R, Luo Y C. A review on plant-based proteins from soybean: Health benefits and soy product development. Journal of Agriculture and Food Research, 2022, 7: 100265
    [2] Sharma S, Kaur M, Goyal R, Gill B. Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. Journal of Food Science and Technology, 2014, 51: 551-557
    [3] Hubert B, Rosegrant M, Van Boekel M, Ortiz R. The future of food: Scenarios for 2050. Crop Science, 2010, 50: 33-50
    [4] Hartman G L, West E D, Herman T K. Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Security, 2011, 3: 5-17
    [5] 冯锋, 张志楠, 谷勇哲, 何俊卿, 田志喜. 提升我国大豆供给能力路径刍议. 中国科学院院刊, 2022,37 (9): 1281-1289Feng F, Zhang Z N, Gu Y G, He J Q, Tian Z X. Discussion on approaches to improving soybean supply capacity in China. Bulletin of Chinese Academy of Sciences, 2022, 37(9): 1281-1289
    [6] Modgil R, Tanwar B, Goyal A, Kumar V. Soybean (Glycine max). Oilseeds: Health Attributes and Food Applications, 2021, 4: 1-46
    [7] Li D L, Zhang Z W, Gao X Y, Zhang H, Bai D, Wang Q, Zheng T Q, Li Y H, Qiu L J. The elite variations in germplasms for soybean breeding. Molecular Breeding, 2023, 43 (5): 37
    [8] 赵朝森, 赵现伟, 孙丽萍, 厉苏宁, 郭兵福, 王瑞珍. 不同来源大豆种质资源的田间鉴定与筛选. 西北农业学报, 2021, 30 (11):1638-1647Zhao C S, Zhao X W, Sun L P, Li S N, Guo B F, Wang R Z. Field identification and selection of excellent soybean germplasm resources from different origins. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30 (11): 1638-1647
    [9] 王晓鸣, 邱丽娟, 景蕊莲, 任贵兴, 李英慧, 李春辉, 秦培友, 谷勇哲, 李龙. 作物种质资源表型性状鉴定评价: 现状与趋势. 植物遗传资源学报, 2022, 23 (1): 12-20Wang X M, Qiu L J, Jing R L, Ren G X, Li Y H, Li C H, Qin P Y, Gu Y Z, Li L. Evaluation on phenotypic traits of crop germplasm: Status and development. Journal of Plant Genetic Resources, 2022, 23 (1): 12-20
    [10] 傅蒙蒙, 王燕平, 任海祥, 王德亮, 包荣军, 杨兴勇, 田忠艳, 傅连舜, 程延喜, 苏江顺, 孙宾成, 杜维广, 赵团结, 盖钧镒. 东北大豆种质资源株型和产量性状的生态特征分析. 大豆科学, 2017, 36 (1): 1-11Fu M M, Wang Y P, Ren H X, Wang D L, Bao R J, Yang X Y, Tian Z Y, Fu L S, Cheng Y X, Su J S, Sun B C, Du W G, Zhao T J, Gai J Y. Ecological characteristics analysis of northeast soybean germplasm yield and plant type traits. Soybean Science, 2017, 36 (1): 1-11
    [11] 王玲燕, 黄金华, 张素平, 黄中文, 董彦琪, 朱红彩, 唐振海. 夏大豆种质资源农艺性状与产量的多样性分析. 湖北农业科学, 2022, 61 (10): 15-19Wang L Y, Huang J H, Zhang S P, Huang Z W, Dong Y Q, Zhu H C, Tang Z H. Diversity analysis of agronomic characters and yield of summer soybean germplasm resources. Hubei Agricultural Sciences, 2022, 61 (10): 15-19
    [12] 杨瑾, 汪孝璊, 叶文武, 郑小波, 王源超. 黄淮海地区大豆种质资源对疫霉根腐病的抗性鉴定. 大豆科学, 2020, 39 (1): 12-22Yang J, Wang X M, Ye W W, Zheng X B, Wang Y C. Identification of soybean resistance to phytophthora sojae in the germplasm resources from Huanghuaihai region of China. Soybean Science, 2020, 39 (1): 12-22
    [13] 李艺阳, 吴冕, 王幸, 顾和平, 陈新, 崔晓艳. 大豆炭疽病病原鉴定及大豆种质资源抗病性评价. 植物病理学报, 2024, 54 (1): 1-14Li Y Y, Wu M, Wang X, Gu H P, Chen X, Cui X Y. Identification of the causing agents of soybean anthracnose and evaluation of soybean germplasm for resistance to the main anthracnose pathogen. Acta Phytopathologica Sinica, 2024, 54 (1): 1-14
    [14] 汪明华, 李佳佳, 陆少奇, 邵文韬, 程安东, 张文明, 王晓波, 邱丽娟. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定. 植物遗传资源学报, 2019, 20 (4): 891-902Wang M H, Li J J, Lu S Q, Shao W T, Cheng A D, Zhang W M, Wang X B, Qiu L J. Construction of evaluation standard for tolerance to high-temperature and screening of heat-tolerant germplasm resources in soybean. Journal of Plant Genetic Resources, 2019, 20 (4): 891-902
    [15] Mele G, Gargiulo L. Automatic cell identification and counting of leaf epidermis for plant phenotyping. MethodsX, 2020, 7: 100860-100866
    [16] Faulkner C, Zhou J, Evrard A, Bourdais G, MacLean D, Haweker H, Eckes P, Robatzek S. An automated quantitative image analysis tool for the identification of microtubule patterns in plants. Traffic, 2017, 18 (10): 683-693
    [17] Gallegos J E, Adames N R, Roger M F, Kraikivski P, Ibele A, Nurzynski K, Kudlow E, Murali T M, Tyson J J, Peccoud J. Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants. NPJ Systems Biology and Applications, 2020, 6 (1):11-25
    [18] Zhang Y, Wang J, Du J, Zhao Y, Lu X, Wen W, Gu S, Fan J, Wang C, Wu S, Wang Y, Liao S,Zhao C, Guo X. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high‐throughput phenotypic analysis. Plant Biotechnology Journal, 2021, 19 (1): 35-50
    [19] Baek J H, Lee E, Kim N, Kim S L, Choi I, Ji H, Chung Y S, Choi M S, Moon J K, Kim K H. High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors, 2020, 20 (1): 248-257
    [20] Teramoto S, Takayasu S, Kitomi Y, Arai S Y, Tanabata T, Uga Y. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography. Plant Methods, 2020, 16 (1): 66-79
    [21] Shao M R, Jiang N, Li M, Howard A, Lehner K, Mullen J L, Gunn S L, Mckay J K, Topp C N. Complementary phenotyping of maize root system architecture by root pulling force and X-ray imaging. Plant Phenomics, 2021,3(1):298-309
    [22] 潘朝阳, 陆展华, 刘维, 王晓飞, 王石光, 陈浩, 方志强, 巫浩翔, 何秀英. 表型组学研究进展及其在作物研究中的应用. 广东农业科学, 2022, 49 (9): 105-113Pan Z Y, Lu Z H, Liu W, Wang X F, Wang S G, Chen H, Fang Z Q, Wu H X, He X Y. Advances in phenomics and its application in crop research. Guangdong Agricultural Sciences, 2022, 49 (9): 105-113
    [23] 封伟祎, 朱俊科, 彭文宇, 宋晓斐, 毕爱君, 车海龙. 无人机多光谱遥感在农作物生长监测中的应用综述. 农业与技术, 2023, 43 (21): 42-46Feng W Y, Zhu J K, Peng W Y, Song X F, Bi A J, Che H L. A review of the application of unmanned aerial multispectral remote sensing in crop growth monitoring. Agriculture & Technology, 2023, 43 (21): 42-46
    [24] 万亮, 杜晓月, 陈硕博, 于丰华, 朱姜蓬, 许童羽, 何勇, 岑海燕. 基于无人机多源图谱融合的水稻稻穗表型监测. 农业工程学报, 2022, 38 (9): 162-170Wan L, Du X Y, Chen S B, Yu F H, Zhu J P, Xu T Y, He Y, Cen H Y. Rice panicle phenotyping using UAV-based multi-source spectral image data fusion. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (9): 162-170
    [25] 刘建春, 陈思, 文波龙, 刘宏远, 李晓峰. 基于无人机多光谱遥感的水稻株高估测方法. 遥感信息, 2023, 38 (3): 61-68Liu J C, Chen S, Wen B L, Liu H Y, Li X F. Rice plant height estimation method based on UAV multispectral-remote sensing. Remote Sensing Information, 2023, 38 (3): 61-68
    [26] 王猛, 隋学艳, 梁守真, 侯学会, 梁永全. 利用无人机遥感技术提取农作物植被覆盖度方法研究. 作物杂志, 2020 (3): 177-183Wang M, Sui X Y, Liang S Z, Hou X H, Liang Y Q. Research on the method of extracting crop vegetation coverage using UAV remote sensing technology. Crops, 2020 (3): 177-183
    [27] Liang T, Duan B, Luo X, Luo X Y, Ma Y, Yuan Z Q, Zhu R S, Peng Y, Gong Y, Fang S H, Wu X T. Identification of high nitrogen use efficiency phenotype in rice (Oryza sativa L.) through entire growth duration by unmanned aerial vehicle multispectral imagery. Frontiers in Plant Science, 2021, 12:740414
    [28] 向友珍, 安嘉琪, 赵笑, 金琳, 李志军, 张富仓. 基于无人机多光谱遥感的大豆生长参数和产量估算. 农业机械学报, 2023, 54 (8): 230-239Xiang Y Z, An J Q, Zhao X, Jin L, Li Z J, Zhang F C. Soybean growth parameters and yield estimation based on UAV multispectral remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (8): 230-239
    [29] Jin X L, Zarco T P J, Schmidhalter U, Reynolds M P, Hawkesford M J, Varshney R K, Yang T, Nie C W, Li Z H, Ming B, Xiao Y G, Xie Y D, Li S K. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, 2020, 9 (1): 200-231
    [30] Shu M Y, Li Q, Ghafoor A, Zhu J Y, Li B G, Ma Y T. Using the plant height and canopy coverage to estimation maize aboveground biomass with UAV digital images. European Journal of Agronomy, 2023, 151: 126957-126967
    [31] Li D L, Bai D, Tian Y, Li Y H, Zhao C S, Wang Q, Guo S Y, Luan X Y, Wang R Z, Yang J L, Hawkesford M J, Schnable J C, Jin X L, Qiu L J. Time series canopy phenotyping enables the identification of genetic variants controlling dynamic phenotypes in soybean. Journal of Integrative Plant Biology, 2023, 65 (1): 117-132
    [32] Verhoeven G. Taking computer vision aloft-archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeological Prospection, 2011, 18 (1): 67-73
    [33] Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 2008, 63 (2): 282-293
    [34] 赵朝森, 赵现伟, 郭兵福, 孙丽萍, 厉苏宁, 王瑞珍. 江西秋播不同来源大豆品质性状鉴定及优异种质筛选. 大豆科学, 2022, 41 (4): 413-419Zhao C S, Zhao X W, Guo B F, Sun L P, Li S N, Wang R Z. Identification of quality characters and screening of excellent germplasm of soybean from different sources in autumn sowing in Jiangxi province. Soybean Science, 2022, 41 (4): 413-419
    [35] 徐先超. 不同生态类型大豆资源农艺性状的评价及优异种质遴选.南京:南京农业大学, 2021Xu X C. Evaluation of agronomic traits and selection of excellent germplasm form soybean resources from different ecological types. Nanjing:Nanjing Agricultural University, 2021
    [36] 张海平, 张俊峰, 陈妍, 张海生, 闫凯, 穆志新. 大豆种质资源萌发期耐旱性评价. 植物遗传资源学报, 2021, 22 (1): 130-138Zhang H P, Zhang J F, Chen Y, Zhang H S, Yan K, Mu Z X. Identification and evaluation of soybean germplasm resources for drought tolerance during germination stage. Journal of Plant Genetic Resources, 2021, 22 (1): 130-138
    [37] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定. 作物学报, 2024, 50 (3): 623-632Wang Q, Zhu Y X, Zhou M M, Zhang W, Zhang H M, Chen X, Chen H T, Cui X Y. Genome-wide assoclation analysis and candidate genes predication of leaf characteristics traits in soybean (Glvcine max L.). Acta Agronomica Sinica, 2024, 50 (3): 623-632
    [38] Xiong S S, Guo D D, Wan Z, Quan L, Lu W T, Xue Y G, Liu B H, Zhai H. Regulation of soybean stem growth habit: A ten-year progress report. The Crop Journal, 2023, 11 (6): 1642-1648
    [39] 赵团结, 盖钧镒, 李海旺, 邢邯, 邱家驯. 超高产大豆育种研究的进展与讨论. 中国农业科学, 2006, 57 (22): 29-37Zhao T J, Gai J Y, Li H W, Xing H, Qiu J X. Advances in breeding for super high-yielding soybean cultivars. Scientia Agricultura Sinica, 2006, 57 (22): 29-37
    相似文献
    引证文献
引用本文

王琦,白东,张皓,等.大豆种质资源时序性冠层覆盖度鉴定评价及优异种质筛选[J].植物遗传资源学报,2025,26(2):237-248.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-23
  • 出版日期:
文章二维码
您是第位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!