2025年5月11日 1:57 星期日
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第4期 >775-783. DOI:10.13430/j.cnki.jpgr.20240628001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
OsELF3-1与OsARID3互作调控水稻根部性状
DOI:
10.13430/j.cnki.jpgr.20240628001
CSTR:
作者:
  • 孙琪 1

    孙琪

    沈阳农业大学水稻研究所,沈阳 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 芦佳浩 1

    芦佳浩

    沈阳农业大学水稻研究所,沈阳 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈昊 1

    陈昊

    沈阳农业大学水稻研究所,沈阳 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王潇澈 1

    王潇澈

    沈阳农业大学水稻研究所,沈阳 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 于之雯 1

    于之雯

    沈阳农业大学水稻研究所,沈阳 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵辰妃 1

    赵辰妃

    沈阳农业大学水稻研究所,沈阳 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐铨 1

    徐铨

    沈阳农业大学水稻研究所,沈阳 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 马殿荣 1,2

    马殿荣

    沈阳农业大学水稻研究所,沈阳 110866;辽宁省水稻研究所,沈阳 110101
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.沈阳农业大学水稻研究所,沈阳 110866;2.辽宁省水稻研究所,沈阳 110101

作者简介:

研究方向为遗传育种和栽培生理生态,E-mail : sunqi03@163.com

通讯作者:

徐 铨,水稻分子育种,E-mail : kobexu34@syau.edu.cn
马殿荣,水稻遗传育种和栽培生理生态,E-mail : madianrong@163.com

中图分类号:

基金项目:

沈阳市科学技术局种业创新专项(23-410-2-02-01)


OsELF3-1 Interacts with OsARID3 to Regulate Root Traits in Rice
Author:
  • SUN Qi 1

    SUN Qi

    Rice Research Institute of Shenyang Agricultural University, Shenyang 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Jiahao 1

    LU Jiahao

    Rice Research Institute of Shenyang Agricultural University, Shenyang 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Hao 1

    CHEN Hao

    Rice Research Institute of Shenyang Agricultural University, Shenyang 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Xiaoche 1

    WANG Xiaoche

    Rice Research Institute of Shenyang Agricultural University, Shenyang 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YU Zhiwen 1

    YU Zhiwen

    Rice Research Institute of Shenyang Agricultural University, Shenyang 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Chenfei 1

    ZHAO Chenfei

    Rice Research Institute of Shenyang Agricultural University, Shenyang 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Quan 1

    XU Quan

    Rice Research Institute of Shenyang Agricultural University, Shenyang 110866
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MA Dianrong 1,2

    MA Dianrong

    Rice Research Institute of Shenyang Agricultural University, Shenyang 110866;Rice Research Institute of Liaoning Province, Shenyang 110101
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Rice Research Institute of Shenyang Agricultural University, Shenyang 110866;2.Rice Research Institute of Liaoning Province, Shenyang 110101

Fund Project:

Foundation project: Shenyang Science and Technology Bureau Seed Industry Innovation Project (23-410-2-02-01)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    根系是水稻植株的重要组成部分,在植物固定、水分和营养物质获取等生长发育过程中起重要作用。本研究发现oself3-1突变体的根系显著变短,将突变体与野生型笹锦杂交构建F2分离群体进行遗传分析,表明突变性状由一个隐性单基因调控。通过图位克隆将OsELF3-1定位在6号染色体一段50.9 kb的区间内,该区间内共有4个开放阅读框(ORF),通过序列比对发现突变体仅在ORF4(OsELF3-1)的第二个外显子上缺失7个碱基,导致基因发生移码并提前终止,推测OsELF3-1为目标基因。OsELF3-1的CRISPR/Cas9敲除突变体的根系显著短于野生型笹锦,验证OsELF3-1参与根系长度调控。为进一步阐明OsELF3-1的调控网络,利用酵母双杂交筛选到OsELF3-1的互作蛋白OsARID3,OsARID3具有ARID功能结构域(ARID3 DNA binding domain)、α-晶体蛋白/热休克蛋白20结构域(α-crystallin/Hsp_domain)及热休克蛋白20(HsP20)等结构域,以及依靠钾离子的钠离子/钙离子交换的结构域(K+-dependent and Na+/Ca+ exchange domain)。调查OsARID3-RNAi突变体发现其根系显著短于野生型笹锦,说明OsARID3可能参与根系长度调控。通过3 K测序数据分析发现OsARID3自然变异共有15个单倍型,且存在明显的籼稻、粳稻分化,粳稻主要属于单倍型I、IV和VI。综上所述,本研究发现OsELF3-1与OsARID3互作调控水稻根系,为进一步深入解析水稻根系生长发育调控网络提供理论基础和种质资源。

    关键词:水稻;根系;OsELF3-1;OsARID3;图位克隆
    Abstract:

    The root system is a critical component of rice plant, playing essential roles in plant fixation, water uptake, and nutrient acquisition. In this study, we observed that the root system of the oself3-1 mutant was significantly shorter compared to the wild type. To investigate the genetic basis of this trait, the mutant was crossed with the wild-type cultivar Sasaishiki to generate an F2 population. Genetic analysis revealed that the mutant phenotype is controlled by a recessive single gene. Through map-based cloning, OsELF3-1 was located in a 50.9 kb interval on chromosome 6, which contains four open reading frames (ORFs). Sequence analysis identified a 7-base pair deletion in the second exon of ORF4 (OsELF3-1), resulting in frameshift mutation and premature termination. OsELF3-1 was hypothesized as the causal gene. Knockout mutants of OsELF3-1 exhibited significantly shorter roots the wild type Sasaishiki, thereby validating the role of OsELF3-1 in regulating root length. To further elucidate the regulatory network of OsELF3-1, we employed a yeast two-hybrid screening and identified OsARID3 as an interacting protein. OsARID3 contains several functional domains, including an ARID domain, an α-crystallin/Hsp domain, a HsP20 domain, and a potassium dependent sodium/calcium ion exchange domain. Investigation of OsARID3-RNAi mutants revealed showed that their mutants also displayed significantly shorter roots than wild type Sasaishiki, suggesting that OsARID3 is involved in the regulation of root length. Analysis of natural variation in OsARID3 using 3K rice genome sequencing data identified 15 haplotypes, with distinct differentiation between indica and japonica subspecies. Notably, japonica rice predominantly harbored haplotypes I, IV and VI. In summary, this study found that OsELF3-1 and OsARID3 interact to regulate rice root development. These findings provide a theoretical basis and valuable germplasm resources for further exploration of the regulatory networks underlying root growth and development.

    Key words:rice;root;OsELF3-1;OsARID3;map cloning
    参考文献
    [1] Stephanie S, Ive D S. Root system architecture: Insights from Arabidopsis and cereal crop. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1441-1452
    [2] 王留艳. 缺氮胁迫下细胞分裂素对水稻幼苗氮素分配及叶片衰老的调控作用.武汉:华中农业大学, 2017Wang L Y. The regulation of cytokinin on nitrogen distribution and leaf senescence in rice seedlings under nitrogen deficiency. Wuhan:Huazhong Agricultural University, 2017
    [3] 褚光. 不同水分、养分利用效率水稻品种的根系特征及其调控技术.扬州:扬州大学, 2016Chu G. Roots traits for rice varieties with different water and nitrogen use efficiencies and their regulation techniques.Ynagzhou: Agricultural College Yangzhou University, 2016
    [4] Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109: 7-13
    [5] 谷娇娇, 胡博文, 贾琰, 沙汉景, 李经纬, 马超, 赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响. 作物杂志, 2019 (4): 176-182Gu J J, Hu B W, Jia Y, Sha H J, Li J W, Ma C, Zhao H W. Effects of salt stress on root related traits and yield of rice. Crops, 2019 (4): 176-182
    [6] Rebouillat J, Dievart A, Verdeil L J., Escoute J, Giese G, Breitler J C, Gantet P, Espeout S, Guiderdoni E, Périn C. Molecular genetics of rice root development. Rice, 2009, 2(1): 15-34
    [7] E Z G, Ge L, Wang L. Molecular mechanism of adventitious root formation in rice. Plant Growth Regulation, 2012, 68(3): 325-331
    [8] Yu P, Gutjahr C, Li C J, Hochholdinger F. Genetic control of lateral root formation in cereals. Trends in Plant Science, 2016, 21(1): 951-961
    [9] Li J, Zhu S H, Song X W, Shen Y, Chen H M, Yu J, Yi K K, Liu Y F, Valerie J K, Wu P, Deng X W. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. The Plant Cell, 2006, 18(2): 340-349
    [10] Yusaku U, Kazuhiko S, Satoshi O, Jagadish R, Manabu I, Naho H, Yuka K, Yoshiaki I, Kazuko O, Noriko K, Haruhiko I, Hinako T, Ritsuko M, Yoshiaki N, Wu J Z, Takashi M, Toshiyuki T, Kazutoshi O, Yano Masahiro. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45: 1097-1102
    [11] 王萌冉, 秦俭, 吴凡, 王学春, 黎腊梅, 胡瑶, 赵长坤, 陈婷, 杨国涛, 陈永军, 胡运高. 不同基因型杂交水稻根系分布特征及其对水稻耐旱能力的影响. 东 北 师 大 学 报 :自 然 科 学 版,2021, 53(4): 84-92Wang M R, Qin J, Wu F, Wang X C, Li L M, Hu Y, Zhao C K, Chen T, Yang G T, Chen Y J, Hu Y G. Root distribution characteristics of hybrid rice with different genotypes and their effects on drought tolerance of rice. Journal of Northeast Normal University: Natural Science Edition, 2021, 53(4): 84-92
    [12] Song M Q, Fan X R, Chen J G, Qu H Y, Luo L, Xu G H. OsNAR2.1 interaction with OsNIT1 and OsNIT2 functions in root-growth responses to nitrate and ammonium. Plant Physiology, 2020, 183(1): 289-303
    [13] Huang S J, Chen S, Liang Z H, Zhang C M, Yan M, Chen J G, Xu G H, Fan X R, Zhang Y L. Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner. Scientific Reports, 2015, 5: 18192
    [14] Kazuki M, Eri O T, Kiyosumi H, Kaworu E, Tsuyu A, Masahiro Y. Natural variation in Hd17, a homolog of arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant & Cell Physiology, 2012, 53(4): 709-716
    [15] Hiroki S, Eri O T, Yutaka O, Yoshihiro Y, Haruka I, Takayuki Y, Kazuki M, Kiyosumi H, Masahiro Y, Hiromo I, Takatoshi T. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant & Cell Physiology, 2012, 53(4): 717-728
    [16] Wang X L, He Y Q, Wei H, Wang L. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell & Environment, 2021, 44: 3283-3301
    [17] Ning Y S, Shi X T, Wang R Y, Fan J B, Chan H P, Zhang C Y, Zhang T, Ouyang X H, Li S G, Wang G L. OsELF3-2, an Ortholog of Arabidopsis ELF3, interacts with the E3 ligase APIP6 and negatively regulates immunity against magnaporthe oryzae in rice. Molecular Plant, 2015, 8: 1679-1682
    [18] Yi H, Shi H, Mao W, Yin J J, Ma Y Y, Xu L, Jing L J, He M, Zhu X B; Lu X, Xiong Q, Tang Y Y, Hou Q Q, Song L, Wang L, Li W T, Yu H, Chen X W, Li J Y, Wang J. E3 ubiquitin ligase IPI1 controls rice immunity and flowering via both E3 ligase-dependent and -independent pathways. Developmental Cell, 2024, 59(20):2719-2730
    [19] Xu X, Shi X T, You X M, Hao Z Y, Wang R Y, Wang M, He F, Peng S S, Tao H, Liu Zheng, Wang J S, Zhang C Y, Feng Q, Wu W X, Wang G L, Ning Y S. A pair of E3 ubiquitin ligases control immunity and flowering by targeting different ELF3 proteins in rice. Developmental Cell, 2024,59(20):2731-2744
    [20] Sun Q, Yu Z W, Wang X C, Chen H, Lu J H, Zhao C F, Jiang L L, Li F C, Xu Q, Ma D R. EARLY FLOWERING 3-1 represses Grain number, plant height, and heading date7 to promote ABC1 REPRESSOR1 and regulate nitrogen uptake in rice. Plant Physiology, 2024, 196(3): 1857-1868
    [21] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408
    [22] Locedie M, Roven R F, Dmytro C, Frances N B, Jeffrey D, Juan M A S, Kevin P, Alexandre P, Inna D, Victor S, Ruaraidh S H, Kenneth L M, Nickolai A, Ramil M. SNP-Seek II: A resource for allele mining and analysis of big genomic data in Oryza sativa. Current Plant Biology, 2016, 7-8: 16-25
    [23] Zhao H, Yao W, Ouyang Y D, Yang W N, Lian G W, Lian X M, Xing Y Z, Chen L L, Xie W B. RiceVarMap:A comprehensive database of rice genomic variations. Nucleic Acids Research, 2015, 43: 1018-1022
    [24] Dmitri A N, Anne H, Elizabeth E H, Jasmine J K, Takato I, Thomas F S, Eva M F, Steve A K. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011, 475(7356): 398-402
    [25] 徐艳. 水稻 OsSKIPa互作蛋白OsTMF和 OsARID3在抗逆和发育中的功能鉴定. 武汉:华中农业大学, 2015Xu Y. Functional characterization of OsSKLPa-interacting proteins OsTMF and OsARID3 in stress resistance and development. Wuhan:Huazhong Agricultural University, 2015
    [26] Kortschak R D, Tucker P W, Saint R. ARID proteins come in from the desert. Trends in Biochemical Sciences, 2000, 25(6): 294-299
    [27] Deborah W, Antonia P, Peter B D, Elizabeth M. ARID proteins: A diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell growth & Differentiation, 2002, 13(3): 95-106
    [28] Xu Y, Zong W, Hou X, Yao J L, Liu H B, Li X H, Zhao Y D, Xiong L Z. OsARID3, an AT-rich Interaction Domain-containing protein, is required for shoot meristem development in rice. The Plant Journal, 2015, 83(5): 806-817
    [29] 项聪英. HSP20基因的克隆及功能初步分析. 杭州:浙江师范大学, 2016Xiang C Y. Cloning and preliminary function on analysis of HSP20 gene. Hangzhou: Zhejiang Normal University, 2016
    [30] Hicks K A, Albertson T M, Wagner D R. EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. The Plant Cell, 2001, 13: 1281-1292
    [31] 褚越洋. 拟南芥 AtHD2D 基因对根系发育的影响初探. 杨凌:西北农林科技大学, 2021Chu Y Y. A basic study on effect of AtHD2D gene on root development in Arabidopsis thaliana. Yangling:Northwest A & F University, 2021
    [32] 吴玲玲. OsPIN1同源基因对水稻根系发育的影响. 杭州:浙江大学, 2021Wu L L. Effect of OsPIN1 paralogous genes on the development of rice root system. Hangzhou:Zhejiang University, 2021
    [33] Fu C, Yang X O, Chen X, Chen W, Ma Y, Hu J, Li S. OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Plant Biology, 2009, 11: 751-757
    [34] Wang Q, Su Q M, Nian J Q, Zhang J, Guo Meng, Dong G J, Hu J, Wang R S, Wei C H, Li G W, Wang W, Guo H S , Lin S Y, Qian W F , Xie X Z, Qian Q, Chen F, Zuo J R. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14(6): 1012-1023
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙琪,芦佳浩,陈昊,等.OsELF3-1与OsARID3互作调控水稻根部性状[J].植物遗传资源学报,2025,26(4):775-783.

复制
分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:38
  • 下载次数: 94
  • HTML阅读次数: 14
  • 引用次数: 0
历史
  • 收稿日期:2024-06-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码
您是第5828261位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!