2025年6月13日 7:48 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第4期 >622-632. DOI:10.13430/j.cnki.jpgr.20240803001 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
甘蓝类蔬菜抽薹开花调控相关基因研究进展
DOI:
10.13430/j.cnki.jpgr.20240803001
CSTR:
作者:
  • 钟世浚

    钟世浚

    西南大学园艺园林学院/长江上游农业生物安全与绿色生产教育部重点实验室,重庆400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 颜文晨

    颜文晨

    西南大学园艺园林学院/长江上游农业生物安全与绿色生产教育部重点实验室,重庆400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘霄芸

    刘霄芸

    西南大学园艺园林学院/长江上游农业生物安全与绿色生产教育部重点实验室,重庆400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 任雪松

    任雪松

    西南大学园艺园林学院/长江上游农业生物安全与绿色生产教育部重点实验室,重庆400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 司军

    司军

    西南大学园艺园林学院/长江上游农业生物安全与绿色生产教育部重点实验室,重庆400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 宋洪元

    宋洪元

    西南大学园艺园林学院/长江上游农业生物安全与绿色生产教育部重点实验室,重庆400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李勤菲

    李勤菲

    西南大学园艺园林学院/长江上游农业生物安全与绿色生产教育部重点实验室,重庆400715
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

西南大学园艺园林学院/长江上游农业生物安全与绿色生产教育部重点实验室,重庆400715

作者简介:

研究方向为蔬菜种质创新与遗传育种,E-mail: zhongshijun1999@outlook.com

通讯作者:

李勤菲,研究方向为蔬菜种质创新与遗传育种,E-mail: feifei1984998@126.com

中图分类号:

基金项目:

国家自然科学基金(32172569); 重庆市研究生科研创新项目(CYS23214)


Research Progress of Genes Related to the Regulation of Bolting and Flowering in Brassica oleracea Vegetables
Author:
  • ZHONG Shijun

    ZHONG Shijun

    College of Horticulture and Landscape Architecture, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAN Wenchen

    YAN Wenchen

    College of Horticulture and Landscape Architecture, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Xiaoyun

    LIU Xiaoyun

    College of Horticulture and Landscape Architecture, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • REN Xuesong

    REN Xuesong

    College of Horticulture and Landscape Architecture, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SI Jun

    SI Jun

    College of Horticulture and Landscape Architecture, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Hongyuan

    SONG Hongyuan

    College of Horticulture and Landscape Architecture, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Qinfei

    LI Qinfei

    College of Horticulture and Landscape Architecture, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

College of Horticulture and Landscape Architecture, Southwest University/Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715

Fund Project:

Foundation projects: National Natural Science Foundation of China (32172569); Chongqing Graduate Research and Innovation Project (CYS23214)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [81]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    甘蓝类蔬菜是重要的蔬菜作物,主要包含结球甘蓝、花椰菜、青花菜、苤蓝、抱子甘蓝和芥兰等多个变种。在生产和制种过程中,该类蔬菜常发生未熟抽薹和亲本花期不遇等现象,利用分子设计育种改良甘蓝的耐抽薹性,可以有效地解决这些问题。然而甘蓝类蔬菜变种丰富,开花习性差异大,抽薹开花调控相关基因的研究相对分散。本文在简述了高等植物抽薹开花5种调控途径的基础上,归纳了诱导甘蓝类蔬菜抽薹开花所需的最适环境条件,总结了在春化途径、赤霉素途径和光周期途径中影响甘蓝类蔬菜抽薹开花的调控基因及其变异,构建了甘蓝类蔬菜的抽薹开花调控基因网络,并对甘蓝类蔬菜抽薹开花调控方面的后续研究提出了展望。本文为甘蓝类蔬菜耐抽薹性的改良提供参考。

    关键词:甘蓝类蔬菜;抽薹开花;开花时间;基因
    Abstract:

    Brassica oleracea vegetables, a group of leafy crops encompassing cabbage, cauliflower, broccoli, kohlrabi, brussels sprout, and kale, face persistent challenges in production and breeding, including premature bolting and asynchronous flowering between two parents. Improving bolting resistance by molecular design breeding strategies holds significant promise. However, the genetic complexity underlying flowering regulation in B. oleracea is compounded by the diverse flowering mechanisms across subspecies and fragmented knowledge of associated regulatory genes. This review concludes optimal environmental conditions for flowering of B. oleracea vegetables and summarizes genes and variants for flowering pathways which are mainly involved in gibberellin pathway, vernalization, and photoperiodic responses on the basis of five main flower regulation pathways in higher plants. The prospect of the follow-up research on the regulation of bolting and flowering of cabbage vegetables is also suggested. A conceptual gene interaction network that integrates key regulators of bolting and flowering of B. oleracea vegetables is proposed, providing a valuable reference for improving bolting resistance of B. oleracea vegetables.

    Key words:Brassica oleracea vegetables;bolting and flowering;flowering time;genes
    参考文献
    [1] Blumel M, Dally N, Jung C. Flowering time regulation in crops-what did we learn from Arabidopsis ? Current Opinion in Biotechnology, 2015, 32: 121-129
    [2] Freytes S N, Canelo M, Cerdan P D. Regulation of lowering time: When and where? Current Opinion in Plant Biology, 2021, 63: 102049
    [3] Wang J W, Czech B, Weigel D. miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 2009, 138(4): 738-749
    [4] Sheldon C C, Rouse D T, Finnegan E J, Peacock W J, Dennis E S. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences, 2000, 97(7): 3753-3758
    [5] Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Development, 2000, 14(18): 2366-2376
    [6] Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science, 2010, 327(5961): 94-97
    [7] Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dwan C. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Molecular Cell, 2014, 54(1): 156-165
    [8] Choi K, Kim J, Hwang H J, Kim S, Park C, Kim S Y, Lee I. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell, 2011, 23(1): 289-303
    [9] Pien S, Fleury D, Mylne J S, Crevillen P, Inze D, Avramova Z, Dean C, Grossniklaus U. ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell, 2008, 20(3): 580-588
    [10] Sharma N, Geuten K, Giri B S, Varma A. The molecular mechanism of vernalization in Arabidopsis and cereals: Role of Flowering Locus C and its homologs. Physiologia Plantarum, 2020, 170(3): 373-383
    [11] Legris M, Ince Y C, Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nature Communications, 2019, 10(1): 5219
    [12] Galvao V C, Fankhauser C. Sensing the light environment in plants: Photoreceptors and early signaling steps. Current Opinion in Neurobiology, 2015, 34: 46-53
    [13] Johansson M, Staiger D. Time to flower: Interplay between photoperiod and the circadian clock. Journal of Experimental Botany, 2015, 66(3): 719-730
    [14] Anwer M U, Davis A, Davis S J, Quint M. Photoperiod sensing of the circadian clock is controlled by EARLY FLOWERING 3 and GIGANTEA. Plant Journal, 2020, 101(6): 1397-1410
    [15] Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N H, Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell, 2010, 22(3): 594-605
    [16] Luo X, Yin M, He Y. Molecular genetic understanding of photoperiodic regulation of flowering time in Arabidopsis and soybean. International Journal of Molecular Sciences, 2021, 23(1): 466
    [17] Sawa M, Kay S A. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 2011, 108(28): 11698-11703
    [18] Tiwari S B, Shen Y, Chang H C, Hou Y, Harris A, Ma S F, Mcpartland M, Hymus G J, Adam L, Marion C, Belachew A, Repetti P P, Reuber T L, Ratcliffe O J. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist, 2010, 187(1): 57-66
    [19] Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiology, 2020, 61(11): 1832-1849
    [20] Bao S, Hua C, Shen L, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1): 118-131
    [21] Simpson G G. The autonomous pathway: Epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology, 2004, 7(5): 570-574
    [22] Wang J W. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany, 2014, 65(17): 4723-4730
    [23] 汤青林, 王小佳, 宋明, 张洪, 任雪松, 牛义. 芥菜和甘蓝启动抽薹的温光诱导体系研究. 西南大学学报:自然科学版, 2007, 29(12): 113-117Tang Q L, Wang X J, Song M, Zhang H, Ren X S, Niu Y. Research on bolting-inducing system of mustard (Brassica juncea) and cabbage (Brassica oleracea) with temperature and photoperiod. Journal of Southwest University:Natural Science Edition, 2007, 29(12): 113-117
    [24] 杨小明, 李成琼, 宋洪元. 春甘蓝耐抽薹性研究进展. 北方园艺, 2009 (1): 111-114Yang X M, Li C Q, Song H Y. The progress of study on the bolting tolerance in spring cabbage. Northern Horticulture, 2009 (1): 111-114
    [25] De Z D, Leopold A C. Altering juvenility with auxin. Science, 1955, 122(3176): 925-926
    [26] Wiebe H J, Habegger R, Liebig H P. Quantification of vernalization and devernalization effects for kohlrabi (Brassica oleracea convar. acephala var. gongylodes L.). Scientia Horticulturae, 1992, 50(1): 11-20
    [27] 吴国平, 王建华, 王丽娟, 毛忠良, 陈智超, 刘小风. 幼苗春化特性对结球甘蓝开花及繁种的影响. 江苏农业科学, 2013, 41(6): 121-122Wu G P, Wang J H, Wang L J, Mao Z L, Chen Z C, Liu X F. Effects of seedling vernalization characteristics on flowering and propagation of cabbage. Jiangsu Agricultural Sciences, 2013, 41(6):121-122
    [28] 徐磊, 林碧英, 林义章. 春化作用与甘蓝类蔬菜的生育障碍(综述). 亚热带植物科学, 2002, 31(4): 73-76Xu L, Lin B Y, Lin Y Z. Relationship between breeding disturbance and vernalization in cabbage vegetable. Subtropical Plant Science, 2002, 31(4):73-76
    [29] Adzi? S, Girek Z, Pavlovi? N, Zdravkovi? J, Cviki? D, Pavlovi? S, Prodanovi? S. Vernalization and seed yield of late head cabbage in different phases of rosette development by applying GA3 in vivo. Acta Horticulturae, 2013,1005:369-374
    [30] 王超, 张韬, 吴世昌. 春甘蓝抽薹特性的研究(Ⅰ)——抽薹鉴定的方法. 东北农业大学学报, 2003, 34(2): 129-132Wang C, Zhang T, Wu S C. Study on the method screening for bolting resistance in spring cabbages. Journal of Northeast Agricultural University, 2003, 34(2):129-132
    [31] 刘奎彬, 方文惠, 张宝珍, 李素文, 孙德岭, 赵前程. 不同播种期花椰菜生长发育特性. 华北农学报, 2002, 17(1): 64-68Liu K B, Fang W H, Zhang B Z, Li S W, Sun D L, Zhao Q C. Study on growth and development characteristics in cauliflower at different sowing date. Acta Agriculturae Boreali-Sinica, 2002, 17(1):64-68
    [32] Farnham M W, Bjorkman T. Breeding vegetables adapted to high temperatures: A case study with broccoli. HortScience Horts, 2011, 46(8): 1093-1097
    [33] Lindemann-zutz K, Fricke A, Stützel H. Prediction of time to harvest and its variability in broccoli (Brassica oleracea var. italica) Part I. Plant developmental variation and forecast of time to head induction. Scientia Horticulturae, 2016, 198: 424-433
    [34] 关佩聪, 梁承愈. 芥兰花芽分化与品种、播种期和春化条件的关系. 华南农业大学学报, 1989, 10(2): 60-66Guan P C, Liang C Y. Flower bud differentiation of Chinese Kale (Brassica alboglabra Bailey) and its relation to cultivar sowing time and vernalization. Journal of South China Agricultural University, 1989, 10(2):60-66
    [35] Schranz M E, Quijada P, Sung S-B, Lukens L, Amasino R, Osborn T C. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics, 2002, 162(3): 1457-1468
    [36] Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, Kuginuki Y, Matsumoto S, Hirai M. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theoretical and Applied Genetics, 2007, 114(4): 595-608
    [37] Lin S I, Wang J G, Poon S Y, Su C L, Wang S S, Chiou T J. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiology, 2005, 137(3): 1037-1048
    [38] Woodhouse S, He Z, Woolfenden H, Steuernagel B, Haerty W, Bancroft I, Irwin J A, Morris R J, Wells R. Validation of a novel associative transcriptomics pipeline in Brassica oleracea: Identifying candidates for vernalisation response. BMC Genomics, 2021, 22(1): 539
    [39] Irwin J A, Soumpourou E, Lister C, Ligthart J D, Kennedy S, Dean C. Nucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas. The Plant Journal, 2016, 87(6): 597-605
    [40] Li Q, Peng A, Yang J, Zheng S, Li Z, Mu Y, Chen L, Si J, Ren X, Song H. A 215-bp indel at intron I of BoFLC2 affects flowering time in Brassica oleracea var. capitata during vernalization. Theoretical and Applied Genetics, 2022, 135(8): 2785-2797
    [41] Tang Q, Kuang H, Yu C, An G, Tao R, Zhang W, Jia Y. Non-vernalization requirement in Chinese kale caused by loss of BoFLC and low expressions of its paralogs. Theoretical and Applied Genetics, 2022, 135(2): 473-483
    [42] Itabashi E, Shea D J., Fukino N, Fujimoto R, Okazaki K, Kakizaki T, Ohara T. Comparison of cold responses for orthologs of cabbage vernalization-related genes. The Horticulture Journal, 2019, 88(4): 462-470
    [43] Abuyusuf M, Nath U K, Kim H T, Islam M R, Park J I, Nou I S. Molecular markers based on sequence variation in BoFLC1.C9 for characterizing early- and late-flowering cabbage genotypes. BMC Genetics, 2019, 20(1): 42
    [44] Kinoshita Y, Motoki K, Hosokawa M. Upregulation of tandem duplicated BoFLC1 genes is associated with the non-flowering trait in Brassica oleracea var. capitata. Theoretical and Applied Genetics, 2023, 136(3): 41
    [45] Lin Y R, Lee J Y, Tseng M C, Lee C Y, Shen C H, Wang C S, Liou C C, Shuang L S, Paterson A H, Hwu K K. Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Scientific Reports, 2018, 8(1): 13609
    [46] Razi H, Howell E C, Newbury H J, Kearsey M J. Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theoretical and Applied Genetics, 2008, 116(2): 179-192
    [47] Hawkes E. Conservation and function of COOLAIR long non-coding RNAs in Brassica flowering time control. Norwich: University of East Anglia, 2017
    [48] Nielsen M. Deciphering the role of PRC2 accessory proteins in promoting cold-induced epigenetic switching in Arabidopsis thaliana. Norwich:University of East Anglia, 2021
    [49] 赵荣秋. 甘蓝春化相关基因BoVIN3的克隆及分析. 哈尔滨:东北农业大学, 2013Zhao R Q. Clone vernalization related gene BoVIN3 from cabbage and analysis. Harbin: Northeast Agricultural University, 2013
    [50] Irwin J A, Lister C, Soumpourou E, Zhang Y, Howell E C, Teakle G, Dean C. Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC Plant Biology, 2012, 12(1): 21
    [51] Фадина О А. Структурные особенности гена FRIGIDA у видов Brassica. Москва: Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии, 2014
    [52] Hamano M, Yamato Y, Yamazaki H, Miura H. Endogenous gibberellins and their effects on flowering and stem elongation in cabbage (Brassica oleracea var.capitata). The Journal of Horticultural Science and Biotechnology, 2015, 77(2): 220-225
    [53] Ohyanagi Hajime, Yano Kentaro, Yamamoto Eiji, Ai Kitazumi. Plant omics advances in big data biology. Wallingford: CABI, 2022: 151-171
    [54] 李必元, 赵彦婷, 岳智臣, 雷娟利, 胡齐赞, 陶鹏. 甘蓝DELLA基因家族鉴定及其mRNA在嫁接体中的运输分析. 遗传, 2023, 45(2): 156-164Li B Y, Zhao Y T, Yue Z C, Lei J L, Hu Q Z, Tao P. Identification of DELLA gene family in head cabbage and analysis of mRNA transport in the heterograft. Hereditas, 2023, 45(2): 156-164
    [55] 田素波, 郭春晓, 郑成淑. 光周期诱导植物成花的分子调控机制. 园艺学报, 2010, 37(2): 325-330Tian S B, Guo C X, Zheng C S. Molecular mechanism of controlling flower formation by photoperiod inducement in plants. Acta Horticulturae Sinica, 2010, 37(2):325-330
    [56] Salathia N, Lynn J R, Millar A J, King G J. Detection and resolution of genetic loci affecting circadian period in Brassica oleracea. Theoretical and Applied Genetics, 2007, 114(4): 683-692
    [57] Xing Y Y, Jiang Y J, Muhammad A R, Song J S. Genome-wide identification of pseudo-response regulator (PRR) family members in cabbage (Brassica oleracea var. capitata L.) and their expression in response to abiotic stress. The Journal of Horticultural Science and Biotechnology, 2023, 99(2): 168-178
    [58] Song H, Yi H, Han C T, Park J I, Hur Y. Allelic variation in Brassica oleracea CIRCADIAN CLOCK ASSOCIATED 1 (BoCCA1) is associated with freezing tolerance. Horticulture, Environment, and Biotechnology, 2018, 59(3): 423-434
    [59] Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5: 3930
    [60] Thiruvengadam M, Shih C F, Yang C H. Expression of an antisense Brassica oleracea GIGANTEA (BoGI) gene in transgenic broccoli causes delayed flowering, leaf senescence, and post-harvest yellowing retardation. Plant Molecular Biology Reporter, 2015, 33(5): 1499-1509
    [61] Lou P, Wu J, Cheng F, Cressman L G, Wang X, Mcclung C R. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell, 2012, 24(6): 2415-2426
    [62] Schiessl S V, Huettel B, Kuehn D, Reinhardt R, Snowdon R J. Flowering time gene variation in Brassica species shows evolutionary principles. Frontiers in Plant Science, 2017, 8: 1742
    [63] Cai X, Wu J, Liang J, Lin R, Zhang K, Cheng F, Wang X. Improved Brassica oleracea JZS assembly reveals significant changing of LTR-RT dynamics in different morphotypes. Theoretical and Applied Genetics, 2020, 133(11): 3187-3199
    [64] Abuyusuf M, Nath U K, Kim H-T, Biswas M K, Park J-I, Nou I-S. Intronic sequence variations in a gene with peroxidase domain alter bolting time in cabbage (Brassica oleracea var. capitata). Plant Molecular Biology Reporter, 2018, 36(5-6): 725-737
    [65] Wang J, Zhang B, Guo H, Chen L, Han F, Yan C, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Zhang Y. Transcriptome analysis reveals key genes and pathways associated with the regulation of flowering time in cabbage (Brassica oleracea L. var. capitata). Plants, 2023, 12(19): 3413
    [66] Shu J, Liu Y, Zhang L, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H. QTL-seq for rapid identification of candidate genes for flowering time in broccoli×cabbage. Theoretical and Applied Genetics, 2018, 131(4): 917-928
    [67] 王宇, 蒋炜, 闫凯, 周雯文, 王志敏, 魏大勇, 汤青林. 青花菜AGL18及HDA9与开花信号整合子互作研究. 园艺学报, 2018, 45(12): 2383-2394Wang Y, Jiang W, Yan K, Zhou W W, Wang Z M, Wei D Y, Tang Q L. Protein interactions of flowering inhibitors AGL18 and HDA9 with integrator factors in Brassica oleracea var. italica. Acta Horticulturae Sinica, 2018, 45(12):2383-2394
    [68] 蒋炜, 周雯文, 李朝闯, 闫凯, 王宇, 王志敏, 宋明, 汤青林. 青花菜开花促进因子AGL19与整合子AGL24和SOC1的互作研究. 园艺学报, 2017, 44(10): 1905-1913Jiang W, Zhou W W, Li C C, Yan K, Wang Y, Wang Z M, Song M, Tang Q L. Interactions of flowering promoting factor AGL19 with integrator factors AGL24 and SOC1 in Brassica oleracea var. italica. Acta Horticulturae Sinica, 2017, 44(10):1905-1913
    [69] Lin X, Liu B, Weller J L, Abe J, Kong F. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 2021, 63(6): 981-994
    [70] Bohuon E J R, Keith D J, Parkin I A P, Sharpe A G, Lydiate D J. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theoretical and Applied Genetics, 1996, 93(5): 833-839
    [71] 伍向苹, 王直新, 卓宸剑, 文静, 易斌, 马朝芝, 沈金雄, 傅廷栋, 涂金星. 甘蓝型油菜CO同源基因功能初步研究. 中国油料作物学报, 2021, 43(2): 186-194Wu X P, Wang Z X, Zhuo C J, Wen J, Yi B, Ma C Z, Shen J X, Fu T D, Tu J X. Preliminary study on function of CO homologs in Brassica napus. Chinese Journal of Oil Crop Sciences, 2021, 43(2):186-194
    [72] Yu K, Wang X, Chen F, Chen S, Peng Q, Li H, Zhang W, Hu M, Chu P, Zhang J, Guan R. Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L.. Scientific Reports, 2016, 6: 30576
    [73] Xu J, Dai H. Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant Growth Regulation, 2016, 80(3): 315-322
    [74] Osborn T C, Kole C, Parkin I A P, Sharpe A G, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146(3): 1123-1129
    [75] 曹维荣, 王超. 甘蓝迟抽薹基因的RAPD标记. 生物技术通报, 2007 (5): 167-169Cao W R, Wang C. RAPD marker of later bolting gene on cabbage. Biotechnology Bulletin, 2007 (5): 167-169
    [76] 乌兰, 王超. 结球甘蓝迟抽薹基因RAPD标记转SCAR标记. 分子植物育种, 2010, 8(2): 307-311Wu L, Wang C. A SCAR marker derived from the RAPD marker linked to later bolting gene in headed cabbage. Molecular Plant Breeding, 2010, 8(2): 307-311
    [77] 李江丽, 王超, 张晓烜, 姜凯旋, 赵乐杰. 结球甘蓝(Brassica oleracea var. capitata)迟抽薹基因SCAR标记转CAPS标记. 分子植物育种, 2020, 18(5): 1529-1534Li J L, Wang C, Zhang X X, Jiang K X, Zhao L J. A CAPS marker derived from the SCAR marker linked to later bolting gene in Brassica oleracea var. capitata. Molecular Plant Breeding, 2020, 18(5): 1529-1534
    [78] 王娇, 张斌, 吴元康, 杨丽梅, 庄木, 吕红豪, 王勇, 季家磊, 闫超, 张扬勇. 甘蓝BoFLCs基因标记开发及优异单倍型聚合. 中国蔬菜, 2024 (5): 40-50Wang J, Zhang B, Wu Y K, Yang L M, Zhuang M, Lyu H H, Wang Y, Ji J L, Yan C, Zhang Y Y, Development of BoFLCs gene markers and pyramiding of elite haplotypes in cabbage (Brassica oleracea L. var. capitata), China Vegetables, 2024 (5): 40-50
    [79] 宋洪元, 李勤菲, 李樟萍, 任雪松, 司军. CN107190092B 用于鉴定结球甘蓝开花早晚的分子标记、引物对及分子标记方法与应用. 2020-11-24Song H Y, Li Q F, Li Z P, Ren X S, Si J. CN107190092B Molecular marker, primer pair and molecular marker method and application for identification of flowering time and evening of cabbage. 2020-11-24
    [80] 陈炯炯, 唐其蔚, 匡汉晖. CN112410464A 用于羽衣甘蓝和芥蓝花期鉴定的分子标记引物及应用. 2022-04-22Chen J J, Tang Q W, Kuang H H. CN112410464A Molecular marker primers for identification of flowering period of kale and kale and their application. 2022-04-22
    [81] Li X, Wang Y, Cai C, Ji J, Han F, Zhang L, Chen S, Zhang L, Yang Y, Tang Q, Bucher J, Wang X, Yang L, Zhuang M, Zhang K, Lv H, Bonnema G, Zhang Y, Cheng F. Large-scale gene expression alterations introduced by structural variation drive morphotype diversification in Brassica oleracea. Nature Genetics, 2024 (56): 517-529
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钟世浚,颜文晨,刘霄芸,等.甘蓝类蔬菜抽薹开花调控相关基因研究进展[J].植物遗传资源学报,2025,26(4):622-632.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:81
  • 下载次数: 144
  • HTML阅读次数: 34
  • 引用次数: 0
历史
  • 收稿日期:2024-08-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码
您是第5920820位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!