2025年6月13日 1:13 星期五
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
首页 > 过刊浏览>2025年第26卷第4期 >611-621. DOI:10.13430/j.cnki.jpgr.20240816002 优先出版
PDF HTML阅读 XML下载 导出引用 引用提醒
脱落酸与赤霉素调控种子休眠萌发的研究进展
DOI:
10.13430/j.cnki.jpgr.20240816002
CSTR:
作者:
  • 于文庚 1,2

    于文庚

    扬州大学农学院, 江苏扬州 225000;淮阴师范学院生命科学学院/环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘磊 2

    刘磊

    淮阴师范学院生命科学学院/环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 吴德鹏 2

    吴德鹏

    淮阴师范学院生命科学学院/环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘福霞 2

    刘福霞

    淮阴师范学院生命科学学院/环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭剑 1

    郭剑

    扬州大学农学院, 江苏扬州 225000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李广浩 1

    李广浩

    扬州大学农学院, 江苏扬州 225000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陆大雷 1

    陆大雷

    扬州大学农学院, 江苏扬州 225000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵祥祥 2

    赵祥祥

    淮阴师范学院生命科学学院/环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223300
    在期刊界中查找
    在百度中查找
    在本站中查找
作者单位:

1.扬州大学农学院, 江苏扬州 225000;2.淮阴师范学院生命科学学院/环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223300

作者简介:

研究方向为作物栽培耕作新理论与新技术,E-mail:pyfl23jfr@163.com

通讯作者:

陆大雷,研究方向为作物栽培与逆境生理,E-mail:dllu@yzu.edu.cn
赵祥祥,研究方向为植物遗传改良,E-mail:xxzhao2013@163.com

中图分类号:

基金项目:

江苏省农业科技自主创新资金项目(CX(22)3087);江苏省自然科学基金(BK20221410);江苏省高等学校自然科学研究项目(22KJA210001);国家自然科学基金项目(32270675)


Research Progress of Seed Dormancy and Germination Regulation by Abscisic Acid and Gibberellin
Author:
  • YU Wengeng 1,2

    YU Wengeng

    College of Agriculture, Yangzhou University, Yangzhou 225000,Jiangsu;School of Life Sciences, Huaiyin Normal University/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223300,Jiangsu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Lei 2

    LIU Lei

    School of Life Sciences, Huaiyin Normal University/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223300,Jiangsu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Depeng 2

    WU Depeng

    School of Life Sciences, Huaiyin Normal University/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223300,Jiangsu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Fuxia 2

    LIU Fuxia

    School of Life Sciences, Huaiyin Normal University/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223300,Jiangsu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Jian 1

    GUO Jian

    College of Agriculture, Yangzhou University, Yangzhou 225000,Jiangsu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Guanghao 1

    LI Guanghao

    College of Agriculture, Yangzhou University, Yangzhou 225000,Jiangsu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Dalei 1

    LU Dalei

    College of Agriculture, Yangzhou University, Yangzhou 225000,Jiangsu
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Xiangxiang 2

    ZHAO Xiangxiang

    School of Life Sciences, Huaiyin Normal University/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223300,Jiangsu
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Agriculture, Yangzhou University, Yangzhou 225000,Jiangsu;2.School of Life Sciences, Huaiyin Normal University/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223300,Jiangsu

Fund Project:

Foundation projects: Jiangsu Agricultural Science and Technology Innovation Fund (CX(22)3087); Natural Science Foundation of Jiangsu Province (BK20221410);The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJA210001); National Natural Science Foundation of China (32270675)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [85]
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    种子适时休眠与萌发确保植物在不同环境条件下能够有效地生存和繁衍,该过程受到多种内源激素和外在环境因子的精确调控。近些年,脱落酸(ABA, abscisic acid)和赤霉素(GA, gibberellin)调控种子休眠与萌发的研究取得了重要进展,尤其是二者交互调控休眠与萌发等方面有所突破。本文详细阐述了ABA与GA的代谢过程以及信号转导通路在基因转录水平和蛋白翻译后水平调控种子休眠和萌发的分子机制,进一步探讨了二者介导种子休眠与萌发之间的拮抗作用及其交互关系,并系统总结了ABA和GA的代谢及信号转导通路如何响应外界光温环境变化进而精确调控种子休眠与萌发的研究进展,以期为更好地理解种子休眠与萌发的激素调控网络以及未来对ABA与GA调控种子休眠萌发机制的深入研究提供理论参考。

    关键词:休眠;萌发;脱落酸;赤霉素
    Abstract:

    Timely seed dormancy and germination ensures that plants could successively survive and subsequently propagate under various environmental conditions, which is precisely regulated by endogenous phytohormones and exogenous environmental factors. In recent years, significant progress has been made in the regulation of seed dormancy and germination by abscisic acid (ABA) and gibberellin (GA), particularly with regard to the interaction between them. This article elaborates the molecular mechanisms underlying seed dormancy and germination regulated by the metabolism and signal transduction of ABA and GA at the transcriptional and post-translational levels. It further explores the antagonistic effects and interactions in mediating seed dormancy and germination between ABA and GA. Lastly, it comprehensively summarizes the research progress on the regulatory mechanisms by which the metabolism and signaling pathway of ABA and GA finely regulate seed dormancy and germination in response to external light and temperature signals. The aim of this review is to provide a better understanding of the hormone regulatory network of seed dormancy and germination and theoretical references for future in-depth studies on the mechanisms of seed dormancy and germination regulation by ABA and GA.

    Key words:dormancy;germination;ABA;GA
    参考文献
    [1] Liu X, Hou X. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Frontiers in Plant Science, 2018, 9: 251
    [2] 宋松泉, 唐翠芳, 雷华平, 姜孝成, 王伟青, 程红焱. 种子休眠与萌发调控的研究进展. 作物学报, 2024, 50(1): 1-15Song S Q, Tang C F, Lei H P, Jiang X C, Wang W Q, Cheng H Y. Research progress of seed dormancy and germination regulation. Acta Agronomica Sinica, 2024, 50(1): 1-15
    [3] Pri-Tal O, Sun Y, Dadras A, Fürst-Jansen J M, Zimran G, Michaeli D, Wijerathna-Yapa A, Shpilman M, Merilo E, Yarmolinsky D. Constitutive activation of ABA receptors in Arabidopsis reveals unique regulatory circuitries. New Phytologist, 2024, 241(2): 703-714
    [4] Kim D, Koo S. Concise and practical total synthesis of (+)-abscisic acid. ACS Omega, 2020, 5(22): 13296-13302
    [5] Wu W, Cao S F, Shi L Y, Chen W, Yin X R, Yang Z F. Abscisic acid biosynthesis, metabolism and signaling in ripening fruit. Front Plant Science, 2023, 14: 1279031
    [6] Dong T, Park Y, Hwang I. Abscisic acid:Biosynthesis, inactivation, homoeostasis and signalling. Essays in Biochemistry, 2015, 58: 29-48
    [7] Wu H, Dai G X, Yuchun R, Wu K X, Wang J G, Hu P, Wen Y, Wang Y Y, Zhu L X, Chai B Z, Liu J L,Deng G F,Qian Q, Hu J. Disruption of LEAF LESION MIMIC 4 affects ABA synthesis and ROS accumulation in rice. The Crop Journal, 2023, 11(5): 1341-1352
    [8] Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North H M, Marion-Poll A. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The Plant Journal, 2012, 70(3): 501-512
    [9] Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal, 2006, 45(3): 309-319
    [10] Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 2012, 5(6): 1375-1388
    [11] Jensen M K, Lindemose S, de Masi F, Reimer J J, Nielsen M, Perera V, Workman C T, Turck F, Grant M R, Mundy J, Petersen M, Skriver K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio, 2013, 3: 321-327
    [12] Baek D, Shin G, Kim M C, Shen M, Lee S Y, Yun D J. Histone deacetylase HDA9 with ABI4 contributes to abscisic acid homeostasis in drought stress response. Frontiers in Plant Science, 2020, 11: 143
    [13] Kim H M, Joung Y H. Heterologous expression of the hot pepper ABA 8′-hydroxylase in escherichia coli for phaseic acid poduction. Journal of Microbiology and Biotechnology, 2023, 33(3): 378
    [14] Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiology, 2004, 134(4): 1439-1449
    [15] Okamoto M, Kushiro T, Jikumaru Y, Abrams S R, Kamiya Y, Seki M, Nambara E. ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry, 2011, 72(8): 717-722
    [16] Hussain S, Brookbank B P, Nambara E. Hydrolysis of abscisic acid glucose ester occurs locally and quickly in response to dehydration. Journal of Experimental Botany, 2020, 71(6): 1753-1756
    [17] Varshney V, Majee M. JA shakes hands with ABA to delay seed germination. Trends in Plant Science, 2021, 26(8): 764-766
    [18] Zhao H, Nie K, Zhou H, Yan X, Zhan Q, Zheng Y, Song C P. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytologist, 2020, 228(2): 596-608
    [19] Wang J, Deng Q W, Li Y H, Yu Y, Liu X, Han Y F, Luo X D, Wu X J, Ju L, Sun J Q, Liu A H, Fang J. Transcription factors Rc and OsVP 1 coordinately regulate preharvest sprouting tolerance in red pericarp rice. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14748-14757
    [20] Mao X, Zhang J, Liu W, Yan S, Liu Q, Fu H, Zhao J, Huang W, Dong J, Zhang S, Yang T F,Yang W,Lin B, Wang F. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice, 2019, 12: 2
    [21] Mao X, Zheng X, Sun B, Jiang L, Zhang J, Lyu S, Yu H, Chen P, Chen W, Fan Z, Li C,Liu Q. MKK3 cascade regulates seed dormancy through a negative feedback loop modulating ABA signal in rice. Rice, 2024, 17(1): 2
    [22] Li Y, Zhou J, Li Z, Qiao J, Quan R, Wang J, Huang R, Qin H. Salt and ABA response ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiology, 2022, 189(2): 1110-1127
    [23] Wang Z, Ren Z, Cheng C, Wang T, Ji H, Zhao Y, Deng Z, Zhi L, Lu J, Wu X. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis. Molecular Plant, 2020, 13(9): 1284-1297
    [24] Ding Z J, Yan J Y, Li G X, Wu Z C, Zhang S Q, Zheng S J. WRKY 41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. The Plant Journal, 2014, 79(5): 810-823
    [25] Liu F, Zhang H, Ding L, Soppe W J, Xiang Y. Reversal of RDO5 1, a homolog of rice Seed dormancy4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis. The Plant Cell, 2020, 32(6): 1933-1948
    [26] Feng Y R, Li T T, Wang S J, Lu Y T, Yuan T T. Triphosphate Tunnel Metalloenzyme 2 acts as a downstream factor of ABI4 in ABA-mediated seed germination. International Journal of Molecular Sciences, 2023, 24(10): 8994
    [27] Zhu Y, Hu X, Duan Y, Li S, Wang Y, Rehman A U, He J, Zhang J, Hua D, Yang L. The Arabidopsis nodulin homeobox factor AtNDX interacts with AtRING1A/B and negatively regulates abscisic acid signaling. The Plant Cell, 2020, 32(3): 703-721
    [28] Jhanji S, Goyal E, Chumber M, Kaur G. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. Plant Physiology and Biochemistry, 2024: 108352
    [29] Yang C, Li X, Chen S, Liu C, Yang L, Li K, Liao J, Zheng X, Li H, Li Y. ABI5-FLZ13 module transcriptionally represses growth-related genes to delay seed germination in response to ABA. Plant Communications, 2023, 4(6): 100636
    [30] Yang M, Han X, Yang J, Jiang Y, Hu Y. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. The Plant Cell, 2021, 33(9): 3022-3041
    [31] Nie K, Zhao H, Wang X, Niu Y, Zhou H, Zheng Y. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination. Journal of Integrative Plant Biology, 2022, 64(4): 930-941
    [32] Guo P, Chong L, Wu F, Hsu C C, Li C, Zhu J K, Zhu Y. Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. Journal of Integrative Plant Biology, 2021, 63(4): 802-815
    [33] Zhao H, Zhang Y, Zheng Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5. Frontiers in Plant Science, 2022, 13: 1000803
    [34] Feng C Z, Chen Y, Wang C, Kong Y H, Wu W H, Chen Y F. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal, 2014, 80(4): 654-668
    [35] Huang Y, Feng C, Ye Q, Wu W, Chen Y. Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genetics, 2016, 12(2): e1005833
    [36] Li X, Zhong M, Qu L, Yang J, Liu X, Zhao Q, Liu X, Zhao X. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Science, 2021, 310: 110983
    [37] Hedden P. The current status of research on gibberellin biosynthesis. Plant and Cell Physiology, 2020, 61(11): 1832-1849
    [38] Shohat H, Eliaz N I, Weiss D. Gibberellin in tomato: Metabolism, signaling and role in drought responses. Molecular Horticulture, 2021, 1(1): 15
    [39] Li Y, Shan X, Jiang Z, Zhao L, Jin F. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions. Plant Physiology and Biochemistry, 2021, 166: 621-633
    [40] Xing M Q, Chen S H, Zhang X F, Xue H W. Rice OsGA2ox9 regulates seed GA metabolism and dormancy. Plant Biotechnology Journal, 2023, 21(12): 2411
    [41] 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展. 生物技术通报, 2018, 34(7): 1-13Gao X H, Fu X D. Research progress for the gibberellin signaling and action on plant growth and development. Biotechnology Bulletin, 2018, 34(7): 1-13
    [42] Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. The Plant Cell, 2006, 18(12): 3399-3414
    [43] Ashikari M, Hironori I, Miyako U-T, Sasaki A, Gomi K, Kitano H, Matsuoka M. Gibberellin signal transduction in rice. Journal of Plant Growth Regulation, 2003, 22: 141-151
    [44] Ravindran P, Kumar P P. Regulation of seed germination: The involvement of multiple forces exerted via gibberellin acid signaling. Molecular Plant, 2019, 12(1): 24-26
    [45] Wang Z, Liu L, Cheng C, Ren Z, Xu S, Li X. GAI functions in the plant response to dehydration stress in Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21(3): 819
    [46] Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, Wang X. Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiology, 2015, 169(3): 2288-2303
    [47] Ravindran P, Verma V, Stamm P, Kumar P P. A novel RGL2-DOF6 complex contributes to primary seed dormancy in Arabidopsis thaliana by regulating a GATA transcription factor. Molecular Plant, 2017, 10(10): 1307-1320
    [48] Boccaccini A, Santopolo S, Capauto D, Lorrai R, Minutello E, Serino G, Costantino P, Vittorioso P. The DOF protein DAG1 and the DELLA protein GAI cooperate in negatively regulating the AtGA3ox1 gene. Molecular Plant, 2014, 7(9): 1486-1489
    [49] Richter R, Behringer C, Müller I K, Schwechheimer C. The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes & Development, 2010, 24(18): 2093-2104
    [50] Xu P, Hu J, Chen H, Cai W. SMAX1 interacts with DELLA protein to inhibit seed germination under weak light conditions via gibberellin biosynthesis in Arabidopsis. Cell Reports, 2023, 42(7):112740
    [51] Liu H, Yuan L, Guo W, Wu W. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling. Plant Science, 2022, 322: 111350
    [52] 江玲, 万建民. 植物激素ABA和GA调控种子休眠和萌发的研究进展. 江苏农业学报, 2007 (4): 360-365Jiang L, Wan J M. Advances in seed dormancy and germination regulated by plant hormones ABA and GA. Journal of Agricultural Sciences, 2007 (4): 360-365
    [53] Chen Y, Xiang Z, Liu M, Wang S, Zhang L, Cai D, Huang Y, Mao D, Fu J, Chen L. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice. Plant, Cell & Environment, 2023, 46(4): 1384-1401
    [54] Huang X, Zhang X, Gong Z, Yang S, Shi Y. ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis. The Plant Journal, 2017, 89(2): 354-365
    [55] Xian B, Rehmani M S, Fan Y, Luo X, Zhang R, Xu J, Wei S, Wang L, He J, Fu A. The ABI4-RGL2 module serves as a double agent to mediate the antagonistic crosstalk between ABA and GA signals. New Phytologist, 2024, 241(6): 2464-2479
    [56] Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, Hou X. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nature Communications, 2016, 7(1): 12768
    [57] Alonso-Blanco C, Bentsink L, Hanhart C J, B-d Vries H, Koornneef M. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics, 2003, 164(2): 711-729
    [58] Carrillo-Barral N, Rodríguez-Gacio M d C, Matilla A J. Delay of Germination-1 (DOG1): A key to understanding seed dormancy. Plants, 2020, 9(4): 480
    [59] Li Q, Chen X, Zhang S, Shan S, Xiang Y. DELAY OF GERMINATION 1, the master regulator of seed dormancy, integrates the regulatory network of phytohormones at the transcriptional level to control seed drmancy. Current Issues in Molecular Biology, 2022, 44(12): 6205-6217
    [60] Lee H G, Lee K, Seo P J. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Plant Molecular Biology, 2015, 87: 371-381
    [61] Yano R, Kanno Y, Jikumaru Y, Nakabayashi K, Kamiya Y, Nambara E. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiology, 2009, 151(2): 641-654
    [62] Chen H, Ruan J, Chu P, Fu W, Liang Z, Li Y, Tong J, Xiao L, Liu J, Li C. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. The Plant Journal, 2020, 101(2): 310-323
    [63] Shen J, Zhang L, Wang H, Guo J, Li Y, Tan Y, Shu Q, Qian Q, Yu H, Chen Y. The phosphatidylethanolamine-binding proteins OsMFT1 and OsMFT2 regulate seed dormancy in rice. The Plant Cell, 2024, 36(9):3857-3874
    [64] Huang Y, Song J, Hao Q, Mou C, Wu H, Zhang F, Zhu Z, Wang P, Ma T, Fu K. WEAK SEED DORMANCY 1, an aminotransferase protein, regulates seed dormancy in rice through the GA and ABA pathways. Plant Physiology and Biochemistry, 2023, 202: 107923
    [65] He Y, Cheng J, He Y, Yang B, Cheng Y, Yang C, Zhang H, Wang Z. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. Plant Biotechnology Journal, 2019, 17(2): 322-337
    [66] 林荣呈, 刘宏涛, 李继刚, 孔凡江, 刘斌, 王海洋, 杨洪全, 钟上威, 朱丹萌, 淮俊玲, 李洪, 刘双荣, 王璠, 王文秀, 茅志磊, 邓兴旺. 植物光信号转导研究领域近十年重要研究进展. 植物生理学报, 2024, 60(3): 399-429Lin R C, Liu H T , Li J G, Kong F J, Liu B, Wang H Y, Yang H Q, Zhong S W, Zhu D M, Huai J L, Li H, Liu S R, Wang F, Wang W X, Mao Z L, Deng X W. Research advances in plant light signaling transduction during the past ten years. Plant Physiology Journal, 2024, 60(3): 399-429
    [67] 李振华, 徐如宏, 任明见, 李鲁华. 光敏色素感知光温信号调控种子休眠与萌发研究进展. 植物生理学报, 2019, 55(5): 539-546Li Z H, Xu R H, Ren M J, Li L H. Advances in phytochrome regulating seed dormancy and germination by sensing light and temperature signals. Plant Physiology Journal, 2019, 55(5): 539-546
    [68] Peng J, Wang M, Wang X, Qi L, Guo C, Li H, Li C, Yan Y, Zhou Y, Terzaghi W. COP1 positively regulates ABA signaling during Arabidopsis seedling growth in darkness by mediating ABA-induced ABI5 accumulation. The Plant Cell, 2022, 34(6): 2286-2308
    [69] Lee B-D, Yim Y, Ca?ibano E, Kim S-H, García-León M, Rubio V, Fonseca S, Paek N-C. CONSTITUTIVE PHOTO-MORPHOGENIC 1 promotes seed germination by destabilizing RGA-LIKE 2 in Arabidopsis. Plant Physiology, 2022, 189(3): 1662-1676
    [70] Yang L, Jiang Z, Jing Y, Lin R. PIF1 and RVE1 form a transcriptional feedback loop to control light-mediated seed germination in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(9): 1372-1384
    [71] Gabriele S, Rizza A, Martone J, Circelli P, Costantino P, Vittorioso P. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. The Plant Journal, 2010, 61(2): 312-323
    [72] Kim D H, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. The Plant Cell, 2008, 20(5): 1260-1277
    [73] Park J, Lee N, Kim W, Lim S, Choi G. ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. The Plant Cell, 2011, 23(4): 1404-1415
    [74] Yang L, Jiang Z, Liu S, Lin R. Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis. New Phytologist, 2020, 225(4): 1593-1605
    [75] Luo X, Dai Y, Xian B, Xu J, Zhang R, Rehmani M S, Zheng C, Zhao X, Mao K, Ren X. PIF4 interacts with ABI4 to serve as a transcriptional activator complex to promote seed dormancy by enhancing ABA biosynthesis and signaling. Journal of Integrative Plant Biology, 2024, 66(5):909-927
    [76] Qi L, Liu S, Li C, Fu J, Jing Y, Cheng J, Li H, Zhang D, Wang X, Dong X. PHYTOCHROME-INTERACTING FACTORS interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness. Molecular Plant, 2020, 13(3): 414-430
    [77] Chiu R S, Nahal H, Provart N J, Gazzarrini S. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature. BMC Plant Biology, 2012, 12: 15
    [78] Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim D H, Kawakami N. ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. The Plant Cell, 2013, 25(12): 4863-4878
    [79] Ibarra S E, Tognacca R S, Dave A, Graham I A, Sánchez R A, Botto J F. Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds. Plant, Cell & Environment, 2016, 39(1): 213-221
    [80] Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology, 2008, 146(3): 1368-1385
    [81] Suriyasak C, Oyama Y, Ishida T, Mashiguchi K, Yamaguchi S, Hamaoka N, Iwaya-Inoue M, Ishibashi Y. Mechanism of delayed seed germination caused by high temperature during grain filling in rice (Oryza sativa L.). Scientific Reports, 2020, 10(1): 17378
    [82] Chen W, Wang W, Lyu Y, Wu Y, Huang P, Hu S, Wei X, Jiao G, Sheng Z, Tang S. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. The Crop Journal, 2021, 9(1): 68-78
    [83] Yoshida H, Hirano K, Yano K, Wang F, Mori M, Kawamura M, Koketsu E, Hattori M, Ordonio R L, Huang P. Genome-wide association study identifies a gene responsible for temperature-dependent rice germination. Nature Communications, 2022, 13(1): 5665
    [84] Xu F, Tang J, Wang S, Cheng X, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature Genetics, 2022, 54(12): 1972-1982
    [85] Zhang C, Wang H, Tian X, Lin X, Han Y, Han Z, Sha H, Liu J, Liu J, Zhang J. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination. Nature Communications, 2024, 15(1): 2211
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于文庚,刘磊,吴德鹏,等.脱落酸与赤霉素调控种子休眠萌发的研究进展[J].植物遗传资源学报,2025,26(4):611-621.

复制
相关视频

分享

微信扫一扫:分享

微信里点“发现”,扫一下

二维码便可将本文分享至朋友圈。

文章指标
  • 点击次数:234
  • 下载次数: 151
  • HTML阅读次数: 58
  • 引用次数: 0
历史
  • 收稿日期:2024-08-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-03
  • 出版日期:
文章二维码
您是第5919753位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!