2025-5-23- 4
  • Home
  • About Journal
  • Editorial Board
  • Author
    Instruction
    Copyright Agreement
  • Ethcis Statement
  • Subscribe
  • Contact
  • 中文
Home > Archive>Volume 21, Issue 6, 2020 >1446-1460. DOI:10.13430/j.cnki.jpgr.20200530001 Online First
PDF HTML XML Export Cite reminder
Research Progress on Wild Relatives of Cucumber
DOI:
10.13430/j.cnki.jpgr.20200530001
CSTR:
Author:
  • DONG Shao-yun

    DONG Shao-yun

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • MIAO Han

    MIAO Han

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • BO Kai-liang

    BO Kai-liang

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • ZHANG Sheng-ping

    ZHANG Sheng-ping

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • GU Xing-fang

    GU Xing-fang

    Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
Affiliation:

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences Beijing 100081

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference [202]
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The genus Cucumis includes about 70 species to date, and plants from this genus are found in 75 countries of Africa, Asia and Australia. The cultivated cucumber , which is important in daily diet, represented a narrow genetic diversity. The exploration and incorporation of elite and diversified genes, which were derived from wild relatives, are of great interest, in order to enrich the genetic basis of cultivated cucumber and the practical uses in breeding for new varieties. This review introduces the distribution and classification of Cucumis plants, the origin and discovery of the main wild relatives, the innovation of genetic resources between species, and finally emphasizes the research progress of the main wild species. Based on the expertise, the problems in the utilization of wild resources are summarized and the actions to improve and create novel cucumber varieties by incorporating wild resources are proposed. This work thus provides reference and guidance for the gene mining and genetic improvement of Cucurbits.

    Key words:Cucumis genus;wild species;genetic improvement
    Reference
    [1] 刘强, 黄瓜属(Cucumis)物种地理分布和分子系统发育的研究. 南京:南京农业大学, 2007.
    Liu Q. Distribution and molecular phylogenetics of Cucumis species. Nanjing: Nanjing Agricultural University, 2007.
    [2] Brown G B, Deakin J R, Wood B M. Identification of Cucumis species by paper chromatography of flavonoids. Journal of the American Society of Horticultural Science, 1969, 94:231-234.
    [3] Dane F K. Evolutionary studies in the genus Cucumis. Dissertation Abstracts International, 1977, 37(8):3766-3767.
    [4] Esquinas J T. Alloenzyme variation and relationships in the genus Cucumis. Dissertation Abstracts International, 1978, 38(10):4634B-4634B.
    [5] Dane F, Denna D W, Tsuchiya T. Evolutionary studies of wild species in the genus Cucumis. Zeitschrift fur Pflanzenzuchtung, 1980, 85 (2): 89-109.
    [6] Staub J E, Fredrick L, Marty T L. Electrophoretic variation in cross-compatible wild diploid species of Cucumis. Canadian Journal of Botany, 1987, 65 (4): 792-798.
    [7] Staub J E, Knerr L D, Holder D J. Phylogenetic relationships among several African Cucumis species. Canadian Journal of Botany, 1992, 70 (3): 509-517.
    [8] Jeffrey C. A review of the Cucurbitaceae. Botanical Journal of the Linnean Society, 1980, 81 (3): 233-247.
    [9] Perl-Treves R, Zamir D, Navot N, Galun E. Phylogeny of Cucumis based on isozyme variability and its comparison with plastome phylogeny. Theoretical and Applied Genetics, 1985, 71 (3): 430-436.
    [10] Kirkbride J H. Biosystematic monograph of the genus Cucumis (Cucurbitaceae): botanical identification of cucumbers and melons. Parkway Publishers, 1993: 159.
    [11] 陈劲枫, 庄飞云, 逯明辉, 钱春桃, 任刚. 采用SSR和RAPD标记研究黄瓜属(葫芦科)的系统发育关系. 植物分类学报, 2003, (05):427-435.
    Chen J F, Zhuang F Y, Lu M H, Qian C T, Ren G. Phylogenetic relationships in Cucumis ( Cucurbitaceae) revealed by SSR and RAPD analyses. Acta Phytotaxonomica Sinica, 2003, (05):427-435.
    [12] Garcia-Mas J, Monforte A J, Arus P. Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Systematics and Evolution, 2004, 248 (1-4): 191-203.
    [13] Chung S M, Staub J E, Chen J F. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome, 2006, 49 (3): 219-229.
    [14] Renner S S, Schaefer H, and Kocyan A. Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C-sativus) belongs in an Asian/Australian clade far from melon (C-melo). BMC Evolutionary Biology, 2007, 7(58).
    [15] Ghebretinsae A G, Thulin M, Barber J C. Relationships of cucumbers and melons unraveled: Molecular phylogenetics of Cucumis and related genera (Benincaseae, Cucurbitaceae). American Journal of Botany, 2007, 94(7): 1256-1266.
    [16] 赵娟. 基于线粒体序列信息及遗传特点探究甜瓜属亲缘关系. 南京: 南京农业大学, 2014.
    Zhao J. Phylogenetics of cucumis based on michondrial sequences and inheritance features. Nanjing: Nanjing Agricultural University, 2014.
    [17] Endl J, Achigan-Dako E G, Pandey A K, Monforte A J, Pico B, Schaefer H. Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India. American Journal of Botany, 2018, 105(10): 1662-1671.
    [18] Cheng H, Kong W P, Zhang M M, Hou D. The complete chloroplast genome of Cucumis anguria var. anguria (Cucurbitaceae) and its phylogenetic implication. Mitochondrial DNA Part B-Resources, 2020, 5(1): 654-655.
    [19] 庄飞云, 陈劲枫. 黄瓜栽培种、近缘野生种、种间杂种及其回交后代的RAPD分析. 园艺学报, 2003(01): 47-50.
    Zhuang F Y, Chen J F. The RAPD analysis of Cucumber cultivar, wild relatives, species hybrid and progenies. Acta Horticulturae Sinica,2003(01): 47-50.
    [20] 林德佩. 黄瓜植物的起源和分类研究进展. 中国瓜菜, 2017, 30(07): 1-3.
    Lin P D. A study of origin and taxonomy on cucumber. Chinese Melons, 2017, 30(07): 1-3.
    [21] Prasad V K, Rai M, Pan R S, Singh A K. Combining ability and standardized potence in crosses between Cucumis sativus L. x C. hardwickii R. Indian Journal of Horticulture. 2004, 61 (2): 128-131.
    [22] 戚春章, 袁珍珍, 李玉湘. 黄瓜新类型—西双版纳黄瓜. 园艺学报, 1983, (04): 259-263.
    Qi C Z, Yuan Z Z, Li Y X. A new type of cucumber- Cucumis sativus L. var. Xihuangbannanesis. Acta Horticulturae Sinica,1983, (04): 259-263.
    [23] Chen J F, Isshiki S, Tashiro Y. Biochemical affinities between Cucumis hystrix Chakr. and two cultivated Cucumis species (C-sativus L. and C-melo L.) based on isozyme analysis. Euphytica, 1997, 97(2): 139-141.
    [24] 吕婧. 黄瓜种质资源群体结构分析与核心种质集筛选. 北京: 中国农业科学院, 2011.
    Lv J. Germplasm population structure analysis and core collection of cucumber (Cucumis sativus L.). Beijing: Chinese Academy of Agricultural Sciences, 2011.
    [25] 齐建建. 黄瓜遗传多样性和人工驯化的分子基础. 北京: 中国农业科学院, 2014.
    Qi J J. The molecular basis of cucumber diveristy and domestication. Beijing: Chinese Academy of Agricultural Sciences, 2014.
    [26] Chen J F, Staub J E, Tashiro Yosuke. Successful interspecific hybridization between Cucumis sativus L. and C. C-hystrix Chakr. Euphytica, 1997, 96(3): 413-419.
    [27] Chen J F, Kirkbride J H. A new synthetic species of Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia, 2000, 52(4): 315-319.
    [28] 罗向东, 戴亮芳, 陈龙正, 钱春桃, 陈劲枫. 野黄瓜(Cucum is hystrix Chakr.)与3种不同基因型栽培黄瓜(C. sativus L.)种间杂交及杂种鉴定. 武汉植物学研究, 2006 (03), 207-211.
    Luo X D. Fang D L, Zheng C L, Tao Q C. Feng C J. Production and identification of interspecific hybrids between cucum is hystrix chakr. and three genotypes of C. Sativus l. Journal of Wuhan Botanical Research, 2006 (03), 207-211.
    [29] 罗向东. 黄瓜属种间遗传资源的创制及其细胞学和分子遗传学定性研究. 南京:南京农业大学, 2003.
    Luo X D. Development and cytogenetics and molecular characterization of interspecific germplasm of genus Cucumis. Nanjing: Nanjing Agricultural University, 2003.
    [30] Chen J F, Staub J, Qian C. Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. x Cucumis sativus L. Theoretical and Applied Genetics, 2003, 106(4): 688-695.
    [31] Chen J F, Luo X D, Staub J E. An allotriploid derived from a amphidiploid x diploid mating in Cucumis - I: Production, micropropagation and verification. Euphytica, 2003, 131(2): 235-241.
    [32] 张振涛. 甜瓜属主要物种染色体进化分析及种间异染色体系的创制和鉴定. 南京: 南京农业大学, 2016.
    Zhang Z T. Analysis of chromosome evolution and creation, identification of alien addition lines in main Cucumis species. Nanjing: Nanjing Agricultural University, 2016.
    [33] 罗向东. 栽培黄瓜(Cucumis sativus L.)与酸黄瓜(C. hystrix Chakr.)的种间杂种及异染色体系的创制与评价. 南京: 南京农业大学, 2006.
    Luo X D. Creation and evaluation of interspecies hybrid and different dyeing system of cucumber (Cucumis sativus L.) and pickled cucumber (C. hystrix Chakr.). Nanjing: Nanjing Agricultural University, 2006.
    [34] 孟佳丽, 娄群峰, 周晓慧, 史建磊, 陈劲枫. 黄瓜-酸黄瓜染色体片段导入系群体的构建及果实相关数量性状基因的定位. 中国农业科学, 2012, 45 (08): 1558-1567.
    Meng J L, Lou Q F, Zhou X H, Shi J L, Chen J F. Construction of Cucumber-Sour Cucumber Chromosome Introgression Lines and Location of Fruit Related QTLs. Scientia Agricultura Sinica, 2012, 45 (08): 1558-1567.
    [35] 史建磊. 栽培黄瓜种间染色体导入系的构建及遗传评价. 南京: 南京农业大学, 2009.
    Shi J L. Development of interspecific chromosome introgression lines of cucumber and its genetic evaluation. Nanjing: Nanjing Agricultural University, 2009.
    [36] 曹清河, 陈劲枫. 利用AFLP技术研究酸黄瓜(Cucumis hystrix)渐渗系的系统演化及分类地位. 江苏省遗传学会第七届代表大会暨学术研讨会, 扬州. 2006:1.
    Cao Q H, Chen J F. Using AFLP technology to study the systematic evolution and taxonomic status of the infiltration system of Cucumis hystrix. The 7th Congress and Academic Symposium of Jiangsu Genetic Society, Yangzhou. 2006:1.
    [37] 李梦雪, 毕云飞, 张振涛, 李子昂, 陈劲枫, 娄群峰. 黄瓜-酸黄瓜附加系的创制及细胞学鉴定. 中国园艺学会第八届黄瓜学术研讨会, 南京. 2018:1.
    Li M X, Bi Y F, Zhang Z T, Li Z A, Chen J F, Lou Q F. Creation and cytological identification of cucumber-hystrix additional line. The Eighth Cucumber Symposium of Chinese Horticultural Society, Nanjing. 2018:1.
    [38] 罗向东, 戴亮芳, 刘强, 娄群峰, 钱春桃, 陈劲枫. 栽培黄瓜与野黄瓜正反杂交的几种同工酶分析. 植物分类学报, 2006 (05): 488-493.
    Luo X D, Dai L F, Liu Q, Lou Q F. Qian C T, Chen J F. Isozyme analysis of reciprocal interspecific hybrid F1 between Cucumis sativus and its wild relative C. hystrix. Acta Phytotaxonomica Sinica, 2006 (05): 488-493.
    [39] 罗向东, 戴亮芳, 钱春桃, 陈劲枫. Cucumis属3种不同倍性种间杂交后代的同工酶分析. 西北植物学报, 2006 (02): 295-299.
    Luo X D, Dai L F, Qian C T, Chen J F. Isoenzyme analyses of progenies of the crosses of cucumis species with different ploidities. Acta Botany Boreal -Occident Sinica. 2006 (02): 295-299.
    [40] 罗向东, 戴亮芳, 钱春桃, 娄群峰, 陈劲枫. 黄瓜与酸黄瓜异源多倍体3种同工酶表达基因组剂量效应. 园艺学报, 2008 (03): 377-382.
    Luo X D, Dai L F, Qian C T, Lou Q F, Chen J F.Genomic dose effect of three isozymes expressed in cucumber and pickled cucumber. Acta Horticulturae Sinica, 2008 (03): 377-382.
    [41] Wang Y Z, Zhang Z T, Jia L. Molecular and cytogenetic analyses provide evidence of the introgression of chromosomal segments from the wild Cucumis hystrix into the cultivated cucumber through the bridge of a synthetic allotetraploid. Molecular Breeding, 2017, 37(897).
    [42] 曹清河. 黄瓜抗霜霉病异源易位系选育、相关基础研究及育种应用. 南京: 南京农业大学. 2006.
    Cao Q H. Reasearch on cucumber alien translocation line possessing resistance to downy mildew and its application in cucumber breeding. Nanjing: Nanjing Agricultural University. 2006.
    [43] Zhou X H, Qian C T, Lou Q F. Molecular analysis of introgression lines from Cucumis hystrix Chakr. to C-sativus L. Scientia Horticulturae, 2009, 119(3): 232-235.
    [44] 马华,程春燕,徐建,娄群峰,李季,陈劲枫. 黄瓜-酸黄瓜渐渗系的验证及其抗蔓枯病筛选. 南京农业大学学报, 2015, 38(03): 369-374.
    Ma H, Cheng C Y, Xu J, Lou Q F, Li J, Chen J F. Verification of cucumber-sour cucumber introgression lines and screening resistant to gummy stem blight. Journal of Nanjing Agricultural University. 2015, 38(03): 369-374.
    [45] 欧阳柳, 陈劲枫, 万红建, 钱春桃. 黄瓜渐渗系对霜霉病抗性的筛选鉴定. 江苏农业科学, 2008, (04): 130-132.
    Ou Y L, Chen J F, Wan H J, Qian C T. Screening and identification of resistance of cucumber introgression system to downy mildew. Jiangsu Agricultural Scienes, 2008, (04): 130-132.
    [46] 叶德友, 钱春桃, 陈劲枫. 抗南方根结线虫黄瓜—酸黄瓜渐渗系的筛选及鉴定. 园艺学报, 2011. 38(12): 2281-2288.
    Ye DY, Qian C T, Chen J F. Screening and Identification of Cucumber–Sour Cucumber Introgression Lines Resistant to the Root-knot Nematode Meloidogyne incognita. Acta Horticulturae Sinica, 2011. 38(12): 2281-2288.
    [47] 张燕霞. 黄瓜渐渗系抗南方根结线虫病遗传规律及分子标记研究. 南京: 南京农业大学, 2011.
    Zhang Y X. Study on inheritance and molecular markers of resistance to the root-knot nematode (Meloidogyne incognita) in cucumber introgression lines. Nanjing: Nanjing Agricultural Univerisity, 2011.
    [48] Bisht I S Bhat K V, Tanwar S P, Bhandari D C, Joshi K, Sharma A K. Distribution and genetic diversity of Cucumis sativus var. hardwickii (Royle) Alef in India. Journal of Horticultural Science & Biotechnology, 2004, 79(5): 783-791.
    [49] Harshawardhan C, Singh D K, Damke S R. Genetic variability study in Cucumis sativus var. hardwickii: key to cucumber improvement. International Journal of Basic and Applied Agricultural Research, 2015, 13: 340-343.
    [50] Choudhary H. and Singh D K. Breeding Potential of Indian Germplasm of Cucumis sativus var. hardwickii for Cucumber Improvement. Acta Horticulturae, 2010, 409-415.
    [51] Staub J E, Fredrick L R. Evaluation of fruit quality in Cucumis sativus var. hardwickii (R.) Alef.-derived lines. Report, Cucurbit Genetics Cooperative, USA, 1988(11): 25-28.
    [52] Walters S A, Wehner T C. Evaluation of Cucumis sativus var. hardwickii cultigens for resistance to root-knot nematodes. Report - Cucurbit Genetics Cooperative, 1997(20): 19-20.
    [53] Walters S A, Wehner T C, Barker K R. A single recessive gene for resistance to the root-knot nematode (Meloidogyne javanica) in Cucumis sativus var hardwickii. Journal of Heredity, 1997, 88(1): 66-69.
    [54] Walters S A, Wehner T C. Independence of the mj nematode resistance gene from 17 gene loci in cucumber. Hortscience, 1998, 33(6): 1050-1052.
    [55] 张自心. 黄瓜棒孢叶斑病抗性基因cca-2定位及多主棒孢RFP标记转化株的构建. 沈阳: 沈阳农业大学, 2016.
    Zhang Z X. Mapping of cca-2 gene resistant to cucumber target leaf spot and transformation of Corynspora cassiisola with RFP. Shenyang: Shenyang Agriclutural University, 2016.
    [56] Munshi A D. Panda B, Mandal B, Bisht I S, Rao E S, Kumar R. Genetics of resistance to Cucumber mosaic virus in Cucumis sativus var. hardwickii R. Alef. Euphytica, 2008,164(2): 501-507.
    [57] Schuman D A, Staub J E, Struckmeyer B E. Morphological and anatomical comparisons between two Cucumis sativus, botanical varieties: hardwickii and sativus. Report, Cucurbit Genetics Cooperative, USA, 1985(8): 15-18.
    [58] Delaney D E, Lower R L. Effects of the determinate locus on number of lateral branches in crosses between four cucumber lines and Cucumis sativus var. hardwickii. Report, Cucurbit Genetics Cooperative, USA, 1984(7): 3-5.
    [59] Staub J E, Globerson D, Genizi A. Inheritance of seed dormancy in Cucumis sativus var. hardwickii (Royle) Alef. Theoretical and Applied Genetics, 1989, 78(1): 143-151.
    [60] Staub J E, Struckmeyer B E. Leaf structure and photosynthetic relationships in Cucumis sativus var. sativus and Cucumis sativus var. hardwickii. Report- Cucurbit Genetics Cooperative, 1993(16):10-13.
    [61] Vecchia P D, Peterson C E, Staub J E. Inheritance of short-day response to flowering in crosses between a Cucumis sativus var. hardwickii (R.) Alef. line and Cucumis sativus L. lines. Report, Cucumber Genetics Cooperative, 1982(5): 4-5.
    [62] Horst E K, Lower R L. Cucumis hardwickii: a source of germplasm for the cucumber breeder. Cucurbit Genetics Cooperative, 1978(1): 5.
    [63] 程周超. 黄瓜SSR遗传图谱的构建及黄瓜重要农艺性状的QTL定位. 北京: 中国农业科学院, 2010.
    Cheng Z C. Construction of SSR genetic map and QTL analysis for important agronomic traits of cucumber. Beijing: Chinese Academy of Agricultural Sciences, 2010.
    [64] Renner S S. A valid name for the Xishuangbanna gourd, a cucumber with carotene-rich fruits. PhytoKeys, 2017, 85: 87-94.
    [65] 沈镝, 李锡香,方智远, 靳松, 刘发万. 不同类型西双版纳黄瓜果实成熟期营养成分分析. 植物遗传资源学报, 2009, 10 (04): 594-598.
    Shen D, Li X X, Fang Z Y, Jin S, Liu F W. Analysis on the nutrition components in the fruits of Cucumis sativus L. var. xishuangbannanesis during Maturation. Journal of Plant Genetic Resources, 2009, 10 (04): 594-598.
    [66] 沈镝. 西双版纳黄瓜群体遗传多样性分析及黄瓜果肉色QTL定位研究. 北京: 中国农业科学院, 2009.
    Shen D. Analysis of population genetic diversity in Cucumis sativus L. var. xishuangbannanesis and study on the QTLmapping of fruit flesh color in cucumber. Beijing: Chinese Academy of Agricultural Sciences, 2009.
    [67] 卢萍. 西双版纳黄瓜β-胡萝卜素生物合成及果实发育相关基因的表达分析. 北京: 中国农业科学院, 2016.
    Lu P. Expression analysis of genes related to β-carotene biosynthesis and fruit development in Cucumis sativus L.var. xishuangbannanesis. Beijing: Chinese Academy of Agricultural Sciences, 2016.
    [68] 卢萍, 王柬人, 李锡香, 宋江萍, 邱杨, 王海平, 张晓辉, 沈镝. 西双版纳黄瓜Cs-Psy1基因的序列特征与表达分析. 植物遗传资源学报, 2016. 17(06): 1050-1057.
    Lu P, Wang J R, Li X X, Song J P, Qiu Y, Wang H P, Zhang X H, Shen D. Sequence characteristics and expression analysis of Cs-Psy1 in Cucumis sativus L. var. xishuangbannanesis Qi &Yuan. 2016, 17(06): 1050-1057.
    [69] 张开京, 宋 慧, 薄凯亮, 李季, 马政, 娄群峰, 钱春桃, 陈劲枫. 西双版纳黄瓜多心室性状的QTL定位. 中国农业科学, 2015, 48(16): 3211-3220.
    Zhang K J, Song H, Bo K L, Li J, Ma Z, Lou Q F, Qian C T, Chen J F. QTL mapping of multi-locule-number trait in xishuangbanna cucumber. Scientia Agricultura Sinica, 2015, 48(16): 3211-3220.
    [70] Bo K L, Ma Z, Chen J F, Weng Y Q. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theoretical and Applied Genetics, 2015, 128(1): 25-39.
    [71] 马政, 薄凯亮, 李蕾, 钱春桃, 陈劲枫. 基于西双版纳黄瓜的遗传图谱构建及其重要农艺性状QTL定位分析. 中国农业科学, 2014, 47 (03):528-536.
    Ma Z, Bo K L, Li L, Qian C T, Chen J F. QTL mapping and analysis of the important agronomic traits of beijingjietou×xishuangbanna cucumber recombinant inbred lines. Scientia Agricultura Sinica, 2014, 47 (03):528-536.
    [72] Pan Y P, Qu S P, Bo K L, Gao M L, Haider K R, Weng Y Q. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics, 2017, 130(7): 1531-1548.
    [73] 薄凯亮, Weng Y Q, 陈劲枫. 西双版纳黄瓜短下胚轴基因的精细定位. 中国园艺学会黄瓜分会第四届年会. 广州, 2013:1.
    Bo K L, Weng Y Q, Chen J F. Fine mapping of cucumber short hypocotyl genes in Xishuangbanna. The Fourth Annual Meeting of Cucumber of Chinese Horticultural Society. Guangzhou, 2013:1.
    [74] 马政, 薄凯亮, 冀 刚, 钱春桃, 陈劲枫. 西双版纳黄瓜RIL群体叶绿素含量的遗传分析. 中国瓜菜, 2011, 24(06): 11-13.
    Ma Z, Bo K L, Yi G, Qian C T, Chen J F. Genetic analysis of chlorophyll content in a ril population derived from xishuangbanna cucumber. Chinese Melons, 2011, 24(06): 11-13.
    [75] 马政. 西双版纳黄瓜叶绿素含量的QTL定位分析. 南京: 南京农业大学, 2013.
    Ma Z. QTL analysis of the chlorophyll content in Xishaungbanna cucmber. Nanjing: Nanjing Agricultural Univerisity, 2013.
    [76] Chen J F, Moriarty G, Jahn M. Some disease resistance tests in Cucumis hystrix and its progenies from interspecific hybridization with cucumber. Meeting on Progress in Cucurbit Genetics & Breeding Research Cucurbitaceae. 2004: 189-196.
    [77] 陈劲枫, 林茂松, 钱春桃, 庄飞云, Stephen Lewis. 甜瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究. 南京农业大学学报, 2001, 24 (01): 21-24.
    Chen J F, Lin M S, Qian C T, Zhuang F Y, Stephen L. Identification of Meloidogyne incognita (Kofoid& White) Chitwood resistance in Cucumis hystrix Chakr. and the progenies of its interspecific hybrid with cucumber(C. sativus L.). Journal of Nanjing Agricultural University, 2001, 24 (01): 21-24.
    [78] 庄飞云, 陈劲枫, 钱春桃, 李式军, 任刚, 王志军. 甜瓜属种间杂交新种及其后代对低温的适应性反应. 南京农业大学学报, 2002, 25 (02): 27-30.
    Zhuang F Y, Chen J F, Qian C T, Li S J, Ren G, Wang Z J. Responses of seedlings of Cucumis× hytivus and progenies to low temperature. Journal of Nanjing Agricultural University, 2002, 25 (02): 27-30.
    [79] 钱春桃, 陈劲枫. 弱光条件下甜瓜属种间杂交新种的某些光合特性. 植物生理学通讯, 2002(04): 336-338.
    Qian C T, Chen J F. Several photosynthetic characters of the hybrid species Cucumis hytivus Chen & Kirkbride under weak light condition. Plant Physiology Newsletter, 2002(04): 336-338.
    [80] Chen J F, Staub J, Adelberg J, Lewis S, Kunkle B. Synthesis and preliminary characterization of a new species (amphidiploid) in Cucumis. Euphytica, 2002, 123(3): 315-322.
    [81] 曹清河, 陈劲枫, 李英, 刁卫平, 万红建. 黄瓜-酸黄瓜渐渗系霜霉病抗性及感病前后几种酶活性的变化. 植物病理学报, 2007, 37 (04): 433-437.
    Cao Q H, Chen J F, Li Y, Diao W P, Wan H J. Downy mildew resistance and changes of som e enzym e activities before and after infection with Pseudoperonospo ra cubensis in cucum ber-sour cucum ber introgres-sion lines. Acta Phytopathologica Sinica, 2007, 37 (04): 433-437.
    [82] 赵振国. 黄瓜—酸黄瓜抗霜霉病渐渗系分子标记的筛选及细胞程序性死亡相关基因的表达分析. 南京: 南京农业大学, 2011.
    Zhao Z G. Screening of molecular markers for downy mildew resistance introgression line of Cucumis hystrix-C. sativus and analysis of programmed cell death. Nanjing: Nanjing Agricultural University, 2011.
    [83] Zhang K J, Wang X, Zhu W W, Qin X D, Xu J, Cheng C Y, Lou Q F, Li J, Chen J F. Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theoretical and Applied Genetics, 2018, 131(10): 2229-2243.
    [84] Lou L, Wang H Y, Qian C T, Liu J, Bai Y L, Chen J F. Genetic mapping of gummy stem blight (Didymella bryoniae) resistance genes in Cucumis sativus-hystrix introgression lines. Euphytica, 2013, 192(3): 359-369.
    [85] 刘佳. 基于黄瓜/酸黄瓜渐渗系的蔓枯病抗性主效QTLs定位. 南京: 南京农业大学, 2013.
    Liu J. Mapping of QTLs for resistant to gummy stem blight in Cucumis stivus hystrix introgression line H1-8-1-2. Nanjing: Nanjing Agriculural University, 2013.
    [86] 张旭等, 徐建, 李季, 娄群峰, 陈劲枫. 黄瓜/酸黄瓜渐渗系‘IL77’抗蔓枯病主效QTL定位及候选基因鉴定. 园艺学报, 2018, 45 (11): 2141-2152.
    Zhang X, Xu J, Li J, Lou Q F, Chen J F. QTL mapping and identification of candidate gene for resistance to gummy stem blight in Cucumis sativus/hystrix introgression line‘IL77’. Acta Horticulturae Sinica, 2018, 45 (11): 2141-2152.
    [87] 钱春桃. 黄瓜异源易位系的细胞遗传学形成机制及其对枯萎病的抗性遗传特点. 南京: 南京农业大学, 2006.
    Qian C T. Cytogenetic formation mechanism and genetic characters of resistance to fusarium wilt in cucumber alien translocation line. Nanjing: Nanjing Agriculural University, 2006.
    [88] 曹清河, 陈劲枫, 钱春桃. 黄瓜抗霜霉病异源易位系CT-01的筛选与鉴定. 园艺学报, 2005, 32 (06):1098-1101.
    Cao Q H, Chen J F, Qian C T. Identifica tion and characterization of a cucumber alien translocation line ct201 possessing resistance to downy mildew. Acta Horticulturae Sinica, 2005, 32 (06):1098-1101.
    [89] Zhang K. Genetic mapping of angular leaf spot resistance to Pseudomonas syringae pv. lachrymans in a Cucumis hystrix introgression line of cucumber. Euphytica, 2019, 215(10): 176-176.
    [90] 沈镝, 李锡香, 冯兰香, 王海平, 宋江萍, 杨翠荣, 龚会芝. 葫芦科蔬菜种质资源对南方根结线虫的抗性评价. 植物遗传资源学报, 2007, 8(03): 340-342.
    Shen D, Li X X, Feng L X, Wang H P, Song J P, Yang C R, Gong H Z. Evaluation on resistance of Cucurbitaceae germplasm resources to root-knot nematode. Journal of Plant Genetic Resources, 2007, 8(03): 340-342.
    [91] 陈劲枫, 林茂松, 钱春桃, 庄飞云, Stephen Lewis. 甜瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究. 南京农业大学学报, 2001, 24 (01): 21-24.
    Chen J F, Lin M S, Qia C T, Zhuang F Y, Stephen Lewis. Identification of Meloidogyne incognita chitwood resistance in Cucumis hystrix Char. and the progenies of its interspecific hybrid with cucmber (C. sativus L.), Journal of Nanjing Agricultural University, 2001, 24 (01): 21-24.
    [92] 叶德友, 钱春桃, 陈劲枫. 酸黄瓜南方根结线虫病抗性与葫芦素B含量的关系. 西北植物学报, 2011, 31 (09): 1834-1839.
    Ye D Y, Qian C T, Chen J F. Relationships of Sour Cucumber Resistant to the Root-knot Nematode Meloidogyne incognita with Its Content of Cucurbitacin B. Acta Bot.Boreal.-Occident.Sin, 2011, 31 (09): 1834-1839.
    [93] 叶德友, 王暄, 张燕霞, 钱春桃, 陈劲枫. 酸黄瓜南方根结线虫病抗性的解剖学及其细胞学研究. 植物病理学报, 2010, 40 (05): 495-503.
    Ye D Y, Wang X, Zhang Y X, Qian C T, Chen J F. Anatomy and cytology of sour cucumber for its resistance to the root-knot nematode Meloidogyne incognita. Acta Phytopathologica Sinica, 2010, 40 (05): 495-503.
    [94] 叶德友, 钱春桃, 贾媛媛, 张燕霞, 陈劲枫. 黄瓜及其近缘种对南方根结线虫的抗性及酶响应变化的研究. 园艺学报, 2009, 36 (12): 1755-1760.
    Ye D Y, Qian C T, Jia Y Y, Zhang Y X, Chen J F. Cucumber and its related species for resistance to the sourthern rootknot Nematode meloidogyne incognita and respond to changes of enzyme. Acta Horticulturae Sinica, 2009, 36 (12): 1755-1760.
    [95] 叶德友, 钱春桃, 陈劲枫. 酸黄瓜对南方根结线虫抗性的光合响应. 中国农业科学, 2011, 44 (20): 4248-4257.
    Ye D Y, Qian C T, Chen J F. Photosynthetic Response to the Root-Knot Nematode Meloidogyne incognita in Resistant Cultivar Sour Cucumber (Cucumis hystrix Chakr.). Scientia Agricultura Sinica, 2011, 44 (20): 4248-4257.
    [96] 程春燕,刘雪娇, 杨树琼, 李季, 陈劲枫. 黄瓜-酸黄瓜渐渗系抗南方根结线虫材料防御相关基因表达机制的初步研究. 中国园艺学会黄瓜分会第四届年会, 广州, 2013: 1.
    Cheng C Y, Liu X J, Yang S Q, Li J, Chen J F. A Preliminary Study on the Gene Expression Mechanism of Cucumber-Pickled Cucumber Introgression System Against the Resistance of Southern Root-knot Nematode Materials. The Fourth Annual Meeting of Cucumber Branch of Chinese Horticultural Society. Guangzhou, 2013:1.
    [97] 刘雪娇. 黄瓜/酸黄瓜渐渗系抗南方根结线虫病相关抗性机制及QTLs定位研究. 南京: 南京农业大学, 2014.
    Liu X J. Relative resistant mechanism research and QTL mapping of meloidogyne incognita resistance in Cucumis sativus-Hystrix introgression line. Nanjing: Nanjing Agriculural University, 2014.
    [98] 程春燕. 黄瓜/酸黄瓜渐渗系抗南方根结线虫的遗传及抗性机制研究. 南京: 南京农业大学, 2016.
    Cheng C Y. Studies on genetics and mechanism of the resistance to southern root-knot nematode in Cusumis sativus Hystrix introgression line. Nanjing: Nanjing Agriculural University, 2016.
    [99] Cheng C Y, Wang X, Liu X, Yang S Q, Yu X Q, Qian C T, Li J, Lou Q F, Chen J F. Candidate genes underlying the quantitative trait loci for root-knot nematode resistance in a Cucumis hystrix introgression line of cucumber based on population sequencing. Journal of Plant Research, 2019, 132 (6): 813-823.
    [100] 王永平, 史红林, 陈劲枫. 甜瓜属野生种耐铝盐胁迫的初步研究. 农业科学与技术, 2010, 11 (07): 40-46.
    Wang Y P, Shi H L, Chen J F. Preliminary study on the adaptability of Cucumis hystrix Chakr. under Aluminun salt stress. Agricultural Science&Technology, 2010, 11 (07): 40-46.
    [101] 魏跃 王永平 王全智 史红林 薄凯亮 陈劲枫 甜瓜属野生种铝胁迫诱导基因ChAI的克隆及序列分析. 核农学报, 2010, 24 (06): 1286-1290.
    WeiY, Wang Y P, Wang Q Z, Shi H L, Bo K L, Chen J F. Cloning and sequence analysis of aluminum-induced gene chai from the wild cucumis species (Cucumis hystrix Chakr.). Acta Agriculturae Nucleatae Sinica, 2010, 24 (06): 1286-1290.
    [102] Wan H, and Chen J F. Enhanced expression of a thaumatin-like gene, involved in Pseudoperonospora cubensis and abiotic stresses, induced by DNA introgression from a wild relative, Cueumis hystrix. Plant Omics, 2013, 6 (2): 135-143.
    [103] Han Y H, Pan J S, Thammapichai P, Li Z Y, Weng Y Q. Asynchronous meiosis in Cucumis hystrix-cucumber synthetic tetraploids resulting in low male fertility. Crop Journal, 2016, 4(4): 275-279.
    [104] 张淑霞. 甜瓜属双二倍体(Cucumis hytivus Chen and Kirkbride)育性的初步研究及全雌型黄瓜品系的创制. 南京: 南京农业大学, 2010.
    Zhang S X. Preliminary study on fertility of cucumis hytivus chen and kirkbride and creation of gynoecious cucumber strains. Nanjing: Nanjing Agricultural University, 2010.
    [105] 钱春桃. 甜瓜属种间杂交新种Cucumis×hytivus Chen & Kirkbride的细胞遗传学研究. 南京: 南京农业大学, 2002.
    Qian C T. Cytogenetic studies on the novel interspecific hybrid species-Cucumis hytivus Chen & Kirkbride. Nanjing: Nanjing Agricultural University, 2002.
    [106] 庄飞云, 陈劲枫, 钱春桃, 罗向东, 雷春. 甜瓜属人工异源四倍体(Cucumis hytivus)染色体组间重组的细胞学及分子标记研究. 中国农业科学, 2005, 38 (03): 582-588.
    Zhuang F Y, Chen J F, Qian C T, Luo X D, Lei C. Cytological and molecular studies on genomic exchange and reconstitution in the synthetic allotetraploid Cucumis hytivus. Scientia Agricultura Sinica, 2005, 38 (03): 582-588.
    [107] 陈龙正, 娄群峰, Wolukau J N, 陈劲枫, 耿红, 罗向东. 甜瓜属人工异源四倍体早期基因组变化的初步研究. 园艺学报, 2005, (06): 1105-1107.
    Chen L Z, Lou Q F, Wolukau J N, Chen J F, Geng H, Luo X D. Preleminary studies on early genom ic changes of a synthetic a llotetraploid in cucumis. Acta Horticulturae Sinica, 2005, (06): 1105-1107.
    [108] Wolukau J N, Chen L Z, Zhuang Y, Lou Q F, Chen J F, Zhang X Q. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis x hytivus. Planta, 2007, 225 (3): 603-614.
    [109] 陈龙正. 甜瓜属人工异源双二倍体Cucumis hytivus早期世代遗传与表观遗传变化. 南京: 南京农业大学, 2008.
    Chen Z L. Genetic and epigenetic changes in early generations of amphidipolid Cucumis hytivus. Nanjing: Nanjing Agricultural University, 2008.
    [110] 庄勇. 甜瓜属人工异源四倍体Cucumis×hytivus早期世代表型与基因表达变化研究. 南京: 南京农业大学, 2009.
    Zhuang Y. Changes of phenotype and gene expression in early generations of the synthesized allotetraploid. Nanjing: Nanjing Agricultural University, 2009.
    [111] 翟于菲, 虞夏清, 朱早兵, 王盼乔, 赵勤政, 陈劲枫. 甜瓜属异源多倍化引起叶绿体基因组变异. 中国园艺学会第八届黄瓜学术研讨会. 南京. 2018: 1.
    Zhai Y F, Yu X Q, Zhu Z B, Wang P Q, Zhao Q Z, Chen J F. Chloroplast genome variation caused by polyploid in Cucumis. The Eighth Cucumber Symposium of Chinese Horticultural Society, Nanjing. 2018:1.
    [112] 魏跃. 甜瓜属Cucumis×hytivus Chen and Kirkbride种间杂交的分子验证和细胞器基因的遗传分析. 南京: 南京农业大学, 2009.
    Wei Y. Molecular confirmation of the interspecific hybrid trait of Cucumis hytivus Chen and kirkbride and the inheritance analysis of organellar genes in interspecific crossing. Nanjing: Nanjing Agricultural University, 2009.
    [113] 魏跃, 赵桂华, 杨鹤同, 陈劲枫. 甜瓜属种间杂交线粒体DNA的遗传分析. 植物遗传资源学报, 2011, 12( 04): 612-618.
    Wei Y, Zhao G H, Yang H T, Chen J F. Inheritance analysis of mitochondrial (mt) DNA in the interspecific crossing of genus cucumis. Journal of Plant Genetic Resources. 2011, 12( 04): 612-618.
    [114] 庄飞云. 黄瓜属种间杂种(Cucumis hytivus Chen and Kirkbride)的细胞分子遗传及其系统亲缘关系研究. 南京: 南京农业大学, 2003.
    Nanjing: Nanjing Agricultural University,
    [115] 王希希. 甜瓜属异源四倍体光合特性及其叶绿素生物合成研究. 南京: 南京农业大学, 2016.
    Wang X X. Analyses of photosynthetic characteristics and chloroplhyll biosynthesis of allotetraploid in Cucumis. Nanjing: Nanjing Agricultural University, 2016.
    [116] 虞夏清, 王盼乔, 翟于菲, 朱早兵, 赵勤政, 陈劲讽. 甜瓜属异源多倍体化引起叶片延迟成熟及部分同源基因的冗余与非加性表达. 中国园艺学会第八届黄瓜学术研讨会, 南京. 2018: 1.
    Yu X Q, Wang P Q, Zhuo Y F, Zhu Z B, Zhao Q Z, Chen JF. Heteropolyploidization of Melon causes delayed leaf maturation and redundant and non-additive expression of some homologous genes. The Eighth Cucumber Symposium of Chinese Horticultural Society, Nanjing.2018:1.
    [117] 虞夏清. 甜瓜属异源多倍化引起叶色黄化的光适应性评价和microRNAs分析. 南京: 南京农业大学, 2016.
    Yu X Q. Evaluation of light acclimation and analysis of micro RNAs concerning leaf chlorosis induced by allopolyploidy in Cucumis. Nanjing: Nanjing Agricultural University, 2016.
    [118] Matsumoto Y, Miyagi M. Evaluation of the resistance in Gherkin (Cucumis anguria L.) to fusarium wilt and inheritance of the resistant gene. Journal of Agricultural Science (Toronto), 2012, 4 (9): 145-149.
    [119] Matsumoto Y, Miyagi M. A single dominant gene confers resistance to Fusarium oxysporum f. sp melonis race 1 in West Indian Gherkin (Cucumis anguria L.) accessions. South African Journal Of Botany, 2012, 83: 117-120.
    [120] Matsumoto Y, Miyagi M. Chromosomal location and mode of inheritance of a gene conferring resistance to fusarium wilt in Cucumis anguria L. Journal Of Horticultural Science & Biotechnology, 2012, 87 (6): 539-544.
    [121] Nijs A D. Inheritance of resistance to cucumber green mottle mosaic virus (Cgm) in Cucumis anguria L. Report, Cucumber Genetics Cooperative, 1982, (5): 57-58.
    [122] Yoon J Y, Chung I M, Thiruvengadam M. Evaluation of phenolic compounds, antioxidant and antimicrobial activities from transgenic hairy root cultures of gherkin (Cucumis anguria L.). South African Journal of Botany, 2015, 100: 80-86.
    [123] 叶德友, 钱春桃, 王暄. 南方根结线虫侵染对黄瓜植株生长和抗氧化系统的影响. 植物保护学报, 2012, 39 (04): 321-326.
    Ye D Y, Qian C T, Wang X. Effects of infection by Meloidogyne incognita on plant growth and antioxidant system of cucumber. Journa of Plant Protection, 2012, 39 (04): 321-326.
    [124] Walters S A, Wehner T C. Screening Cultigens of Cucumber and Horned Cucumber for Resistance to Root Knot Nematodes. Hortscience, 1990, 9(25): 1123-1123.
    [125] Ye D, Qian C, Kurowski C. Identification of a novel source of resistance to the root-knot nematode Meloidogyne incognita in Cucumis. Russian Journal of Nematology, 2012, 20(1): 45-51.
    [126] Ling J, Mao Z C, Zhai M J, Zeng F, Yang Y H, Xie B Y. Transcriptome profiling of Cucumis metuliferus infected by Meloidogyne incognita provides new insights into putative defense regulatory network in Cucurbitaceae. Scientific Reports, 2017, 7 (3544).
    [127] Ye D Y, Qi Y H, Cao S F, Wei B Q, Zhang H S. Histopathology combined with transcriptome analyses reveals the mechanism of resistance to Meloidogyne incognita in Cucumis metuliferus. Journal of Plant Physiology, 2017, 212: 115-124.
    [128] Provvidenti R, Robinson R W. Inheritance of resistance to watermelon mosaic virus 1 in Cucumis metuliferus. Journal of Heredity, 1977, 68 (1): 56-57.
    [129] Provvidenti R, Gonsalves D. Resistance to papaya ringspot virus in Cucumis metuliferus and its relationship to resistance to watermelon mosaic virus 1. Journal of Heredity, 1982, 73 (3): 239-240.
    [130] Chen S. Molecular cloning and analysis of papaya ringspot virus resistance candidate genes Cm8 and Cm23 in Cucumis metuliferus. 2015, 47(1): 98-115.
    [131] Lin C. Cloning and functional analysis of serine proteinase inhibitor of Cucumis metuliferus. Viruses, 2015, 7: 3816-3834
    [132] Eslamboly A A, Deabes A A. Grafting cucumber onto some rootstocks for controlling root- knot nematodes. Minufiya Journal of Agriculture Research. 2014, 39(3): 1109-1129.
    [133] Walters S A, Wehner T C. Incompatibility in diploid and tetraploid crosses of Cucumis sativus and Cucumis metuliferus. Euphytica, 2002, 128 (3): 371-374.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Copy
Share
0
Article Metrics
  • Abstract:1193
  • PDF: 10378
  • HTML: 0
  • Cited by: 0
History
  • Received:May 30,2020
  • Revised:June 21,2020
  • Adopted:July 01,2020
  • Online: November 05,2020
  • Published:
Article QR Code
You are the 650687th visitor 京ICP备09069690号-23
® 2025 All Rights Reserved
Supported by:Beijing E-Tiller Technology Development Co., Ltd.
Firefox, Chrome, IE10, IE11 are recommended. Other browsers are not recommended.